• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of W6+ Modification on Electrical Properties of Bi4Ti3O12 High Temperature Piezoelectric Ceramics

    2020-10-13 06:26:18
    陶瓷學報 2020年1期

    (School of Materials Science and Engineering, Jingdezhen Ceramic Institute; China National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen 333403, Jiangxi, China)

    Abstract: WO3 modified bismuth layer-structured Bi4Ti3O12(Bi4Ti3-xWxO12, 0.00≤x≤0.16, BITW) ferroelectric ceramics were synthesized by using asolid-state reaction method. The effect of W6+ modification on microstructure and electrical properties of the Bi4Ti3O12(BIT) ceramics was studied. It was found that the grains of the BITW ceramics were refined and the microstructure was homogenized at the optimal doping concentration of W6+. As a consequence, both the conductivity and dielectric loss of the ceramics were reduced, while the piezoelectric and electromechanical properties were enhanced, due to the improved densification behavior of the materials. When the WO3 doping concentration was x=0.14, the ceramics exhibited optimum electrical properties, with d33=16 pC/N, kp=8.1%, Qm=1942, εr=160(at 100 kHz), tanδ=0.016(at 100 kHz), TC=632 ℃ and ρ=9.4×107 Ω·cm at 500 ℃, indicating that the BITW ceramics could have potential in high temperature applications.

    Key words: bismuth piezoelectric ceramics; Bi4Ti3O12; piezoelectric properties; dielectric properties; thermal stability

    1 Introduction

    Bismuth layer-structured compounds consist of(Bi2O2)2+and perovskite-like (Am-1BmO3m+1)2-layers compiled in an alternative manner alongc-axis, leading to a chemical formula of(Bi2O2)2+(Am-1BmO3m+1)2-, where A is occupied by cations with dodecahedral coordination or complex cations through the combination of Na+, K+, Ba2+,Sr2+, Bi3+, and so on, while B is occupied by cations with hexahedral coordination or complex cations of Co3+, Fe3+, Zr4+, Ti4+, Nb5+, W6+, and so on.Meanwhile,mis a value of 1-5, which is the number of the perovskite-like layer between two (Bi2O2)2+layers[1-10]. Bismuth layer-structured ferroelectrics(BLSFs) have attracted much attention, due to the high fatigue resistance, high Curie temperatures,high coercive fields, high electromechanical figure of merit and low ageing rate. Currently, various BLSFs have been reported in the open literatures,such as CaBi2Nb2O9, Bi4Ti3O12, CaBi4Ti4O15,Na0.5Bi4.5Ti4O15, K0.5Bi4.5Ti4O15and SrBi4Ti4O15[9-19].

    Bi4Ti3O12(BIT,m=3) is a typical BLSF material,with a high Curie temperature ofTC~675 ℃[1,7]. It is composed of (Bi2Ti3O10)2-and (Bi2O2)2+layers with an alternative configuration. Due to its isotropic structure, the spontaneous polarization is only present on thea-bplane. However, owing to thea-bplane conductivity is higher than that in thec-axis direction by about one order of magnitude, the BIT ceramics cannot be easily poled when they have a relatively low density. As a result, it is still a challenge to fabricate BIT ceramics with desired piezoelectric properties, thus limiting their practical applications[3-7].

    During past years, various doping methods have been adopted to modify the properties of BIT ceramics. For example, Zheng et al. used Nb2O5to increase the density, reduce the conductivity and enhance the dielectric properties of BIT ceramics[7].Peng et al. reported a W/Nbco-doping approach to substitute Ti at B site, which could reduce the concentration of oxygen vacancy, thus leading to enhanced dielectric and piezoelectric performances[3]. However, the effect of doping with W6+has not been well clarified. In this regard, the current work was aimed to have a systematic study on the influence of W6+doping on phase evolution,microstructure characterization, dielectric properties,ferroelectric behaviors, high-temperature resistivity and thermal stability of BIT ceramics by using the conventional solid-state reaction method.

    2 Experimental

    Bi4Ti3-xWxO12(0.00≤x≤0.16) ceramics were prepared by using the conventional solid-state reaction method, with commercial powders of Bi2O3(99%), TiO2(98%) and WO3(99%) as the starting materials. The powders with designed compositions were mixed by using ball milling in ethanol with ZrO2balls for 12 h. The mixtures were calcined at 800 ℃ for 3 h, followed by ball milling for 24 h. The milled samples were dried and sieved through 60 mesh-screen. The dried powders were granulated with PVA solution (4wt.%) and compacted into pellets with a diameter of about 12 mm and thickness of about 0.6 mm at pressures of 10-12 MPa. The pellet samples were then treated with cold isostatic pressing at a pressure of 250 MPa. Finally, the green bodies were heated at 650 ℃ for 140 min to remove the PVA and sintered at 1100 ℃ for 3 h. The sintered samples were polished, coated with silver paste and fired to electrode, poled at 160 ℃ in silicone oil at electric fields of 12-15 kV/mm for 20 min. Electrical properties of the samples were measured after the poling process was finished.

    Phase structure of the samples were analyzed by using X-ray diffraction (XRD, D8-Advance, Bruker,Germany), while their microstructures were observed by using scanning electron microscopy(SEM, JSM-6700F, JEOL, Japan). Piezoelectric constant (d33) was measured by using ad33-meter(ZJ-2,Institute of Acoustics, Academia Sinica).Dielectric properties as a function of temperatures were recorded at 100 kHz by using a precision impedance analyzer (TH282S). Planar electromechanical coupling factor (kp) and electromechanical quality factor (Qm) were obtained by using Agilent 4294A impedance analyzer according to the resonance-antiresonance characteristics. Ferroelectric properties of the samples were characterized by using a ferroelectric-tester (Precision Workstation).

    3 Results and Discussion

    3.1 Phase composition and microstructure

    Fig.1 (a) shows XRD patterns of BITW ceramics doped with different concentrations of W6+,while zoom-in view of the patterns over 29.6-30.4 °are depicted in Fig. 1 (b). As observed in Fig.1 (a),the samples withx= 0-0.12 are of rhombohedral structure, with (117) to be the strongest peak,consistent with the characteristic of BLSFs(112m+1), while no secondary phase is present.However, in the samples withx≥ 0.12, a secondary phase is detected with a peak at about 30 °,corresponding to Bi2Ti2O7(444). This is because the substituted Ti4+ions at the B-site drafted away from the lattice site, which reacted with Bi2O3to form Bi2Ti2O7, once the concentration is sufficiently high.The presence of secondary phases inevitably has negative effect on dielectric, piezoelectric and electromechanical properties of the BITW ceramics.At the same time, the diffraction peaks shift slightly to lower angle, as illustrated in Fig. 1 (b), indicating that the unit cell is expanded, simply because the ionic radius r(W6+) = 62 pm > r(Ti4+) = 60.5 pm,according to the Bragg equation (2dsinθ = nλ).

    Fig.1 XRD patterns of the BITW ceramic samples with different doping concentrations (a) wide angle and (b)zoom-in view

    Fig.2 shows SEM images of the BITW ceramics(x= 0.00, 0.08, 0.14, 0.16) after polishing and thermally etching. It is found that the samples have been nearly fully densified, with strong adhesion among the grains. The microstructures are characterized by randomly distributed plate-like grains, because the grain growth rate in thec-axis direction is lower than that along thea-bplane, thus leading to planar grains[6,9]. After introducing a small quantity of W6+(x=0.08), the grain size of the ceramics is slightly decreased, as seen in Fig.2 (b).Also, the doping with W6+resulted in a refinement in the grains and microstructure. However, further increase in the concentration of W6+led to excess grain growth. In this case,x=0.14 is the optimal doping concentration for the BIT ceramics, with most homogeneous microstructure, lowest porosity and highest density, as demonstrated in Fig.2 (c). As expected, this sample exhibits the highest piezoelectric performances.

    3.2 Dielectric properties

    Fig.3 depicts dielectric constant and loss tangent of the BITW ceramics at 100 kHz, as a function of temperature. As revealed in Fig.3, for the samples withx≤ 0.12, dielectric constant at both room temperature and Curie temperature is increased with increasing doping concentration of W6+. This is because the substitution of Ti4+with W6+led to the formation of bismuth vacancydue to the requirement of electric neutrality. As a result, the crystal lattice is distorted and the domain wall motion is enhanced, thus leading to increase in dielectric constant[7]. Meanwhile, the Curie temperature is reduced as shown in the inset of Fig.3,since the 5d electron of W6+has higher energy than the 3d electron of Ti4+. Also, owing to r(W6+)=62 pm>r(Ti4+)=60.5 pm, the unit cell is expanded and the W6+occupied more space, so that the octahedron is squeezed[3,24]. In addition, the volatilization of Bi2O3during the high temperature sintering process would also reduce the Curie temperature[25]. For pure BIT ceramics, tanδstarts to rise at about 250 ℃ and rapidly increases as the temperature approachesTCdue to the leakage current at high temperatures, as observed in Fig.3. With the introduction of WO3, the tanδnearTCis largely reduced, suggesting the effect of WO3doping in decreasing the dielectric loss and improving dielectric properties of the BITW ceramics.

    Fig.2 Surface SEM images of the polished and thermally etched BITW ceramics(a) x = 0.00, (b) x = 0.08, (c) x = 0.14 and (d) x = 0.16

    Fig.3 Dielectric constant (εr) and loss tangent (tanδ) of the BITW ceramics as a function of temperature

    Room temperature electrical properties of the BITW ceramics are listed in Tab.1. With increasing doping concentration (x), both thed33andkpare maximized atx= 0.14, with values of 16 pC/N and 8.1%, respectively. As compared with that of the pure BIT, the piezoelectric constant is increased by about 5 times, while the value of tanδ (at 100 kHz) is 0.016, which is nearly the lowest among all the samples, further demonstrating the positive effect of W6+doping.

    Tab. 1 Electrical properties of the BITW ceramics

    3.3 DC resistivity

    DC conductivities of the BITW ceramics versus 1/T are shown in Fig.4. DC resistivities of the samples as a function of temperature are plotted as the inset in the figure. The substitution for the B-site Ti4+with W6+could increase the resistivity of the BITW ceramics, because BIT hasp-type conduction characteristics[16]. Due to the volatilization of Bi2O3during the sintering process, both oxygen vacancyand bismuth vacancywould be produced,through the following equation:

    During the cooling process, oxygen is dissolved and incorporated into the crystal lattice, creating holes, as given by:

    On the other hand, when Ti4+ions at the B-site are substituted with W6+ions, the defectis formed, while releasing electrons:

    The electrons would neutralize the holes, thus suppressing the concentration of the carriers[7,15].According to conductivity equation (σ=nqμ), the W-doping reduces the conductivity and increases the resistivity of the materials. At 550 ℃, the resistivity of the BITW ceramics is maximized atx= 0.14,which is 9.4×107Ω·cm, thus demonstrating potential applications in high temperature piezoelectric devices.

    Fig.4 Temperature dependence of conductivity of the BITW ceramics, with the inset showing the temperature dependence of DC resistivity

    3.4 Ferroelectric properties

    Fig.5 shows P-E hysteresis loops of the BITW ceramics measured at room temperature. All the curves are not closed, reflecting the presence of internal field related to the crystal defects and domain motion[1,25,26]. With varying concentration of W6+, spontaneous polarization (Ps) rises first and then declines, while both the remnant polarization and coercive field are increased. SEM results indicated that grain size of the BITW ceramics was reduced after the introduction of W6+, which results in an increase in coercive field, even though the content of oxygen vacancy is decreased. It is widely accepted that the coercive field is inversely proportion to the grain size, because domain motion is more difficult when there are more grain boundaries[7,29]. In addition, both the charge and radius of W6+ion is larger than those of Ti4+ion,the dipole-dipole distance is increased and the WO6octahedron is distorted, thus leading to enhancedPr.Therefore, W-doping significantly improved the ferroelectric properties of the BITW ceramics.

    Fig.5 P-E hysteresis loops of the BITW ceramics

    3.5 Thermal stability

    Fig.6 shows variations ofd33as a function of annealing temperature, in which the inset depicts the value ofd33versus doping concentration (x). For pure BIT ceramics, the value ofd33is very slightly decreasing with increasing temperature and suddenly drops near the Curie temperature. This is because the presence of the oxygen vacancies facilitated the reorientation of the dipoles, so that the anti-fatigue capability is weakened[7,26,27]. After doping with W6+,the concentration of the oxygen vacancy is reduced,thermal stability of the materials is enhanced. As a result, the W-doped BIT ceramics still have relatively high remnant polarization near the Curie temperature. The sample withx=0.14 has ad33level of 16 pC/N at room temperature, while the value ofd33is 14.4 pC/N at 600 ℃, corresponding to about 90% retention. Therefore, W6+-doping could improve the thermal stability of BIT ceramics.

    Fig.6 d33 of the BITW ceramics versus annealing temperature,with the inset showing content x dependence of d33

    4 Conclusions

    (1) XRD results indicated that orthorhombic phase was observed as the content of WO3wasx≤0.10, while the samples withx≥0.12 contained secondary phase Bi2Ti2O7. Meanwhile, the diffraction peaks shifted to low-angle side,suggesting the distortion of the crystal lattice, which is beneficial to the enhancement of piezoelectric properties of the BITW ceramics.

    (2) SEM observation revealed that the grain growth of the BITW ceramics was effectively retarded due to the doping with WO3as its concentration was appropriate. Due to the reduction in grain size and the increase in density, the BITW ceramics had fewer defects and thus enhanced electrical properties. Specifically, the sample withx=0.14 exhibited optimal electrical performances,withd33= 16 pC/N, tanδ= 0.016(at 100 kHz),kp8.1%, andQm= 1942.

    (3) Resistivity of the BITW ceramics was also maximized in the sample withx=0.14, which was 9.4×107Ω·cm at 500 ℃, thus expanding their applications in high-temperature devices.

    国内精品一区二区在线观看| 久久精品国产自在天天线| 亚洲国产欧洲综合997久久,| 欧美在线一区亚洲| 色视频www国产| 午夜精品一区二区三区免费看| 欧美绝顶高潮抽搐喷水| 看十八女毛片水多多多| 少妇丰满av| 麻豆国产97在线/欧美| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx性猛交bbbb| 国产亚洲欧美98| 成熟少妇高潮喷水视频| 在线看三级毛片| 亚洲中文字幕一区二区三区有码在线看| 又黄又爽又免费观看的视频| 男女那种视频在线观看| 三级毛片av免费| 日韩欧美免费精品| 欧美性感艳星| 久久亚洲真实| 亚洲av免费高清在线观看| 久久久国产成人精品二区| 国产av麻豆久久久久久久| 亚洲成人免费电影在线观看| 最新中文字幕久久久久| 免费看美女性在线毛片视频| 午夜爱爱视频在线播放| 久久久久久久亚洲中文字幕| 夜夜看夜夜爽夜夜摸| 一区福利在线观看| 性插视频无遮挡在线免费观看| 欧美xxxx性猛交bbbb| 午夜福利成人在线免费观看| 欧美另类亚洲清纯唯美| 久久人妻av系列| 欧美最黄视频在线播放免费| 国产69精品久久久久777片| 成人鲁丝片一二三区免费| 最新在线观看一区二区三区| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| 成人亚洲精品av一区二区| 欧美成人a在线观看| 男女下面进入的视频免费午夜| 亚洲精品日韩av片在线观看| 欧美又色又爽又黄视频| 一个人看的www免费观看视频| 国产伦一二天堂av在线观看| 色视频www国产| 久99久视频精品免费| 在现免费观看毛片| 精品无人区乱码1区二区| 最后的刺客免费高清国语| 天堂√8在线中文| 午夜免费成人在线视频| 免费看光身美女| 亚洲,欧美,日韩| 精品人妻一区二区三区麻豆 | 国产欧美日韩精品一区二区| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华精| 亚洲精品国产成人久久av| 国产黄片美女视频| 国产精品久久久久久久久免| 亚洲精品色激情综合| 日韩精品中文字幕看吧| 嫩草影院入口| 日本黄色视频三级网站网址| 欧美色视频一区免费| 欧美日韩精品成人综合77777| 国产在线精品亚洲第一网站| 色综合站精品国产| 国产精品福利在线免费观看| netflix在线观看网站| 中国美女看黄片| 丰满乱子伦码专区| 男人舔女人下体高潮全视频| 在线国产一区二区在线| 日韩欧美在线二视频| 国内精品久久久久久久电影| www.www免费av| 亚洲av第一区精品v没综合| 五月玫瑰六月丁香| 麻豆国产97在线/欧美| 欧美一区二区国产精品久久精品| 变态另类丝袜制服| 长腿黑丝高跟| 亚洲性夜色夜夜综合| 麻豆国产97在线/欧美| 国产一区二区激情短视频| 国产成人福利小说| 长腿黑丝高跟| 亚洲国产欧美人成| 亚洲精品国产成人久久av| 麻豆国产97在线/欧美| 国产成年人精品一区二区| 成人国产麻豆网| 久久这里只有精品中国| 在线观看av片永久免费下载| 亚洲自拍偷在线| 色在线成人网| 国产一区二区在线观看日韩| 婷婷精品国产亚洲av在线| 12—13女人毛片做爰片一| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费| 两个人的视频大全免费| 日韩欧美国产一区二区入口| 亚洲精品在线观看二区| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 99热只有精品国产| 久久精品久久久久久噜噜老黄 | 国产精品一区二区免费欧美| 在线播放无遮挡| 熟女电影av网| 国产一区二区三区av在线 | 午夜免费成人在线视频| 88av欧美| 69人妻影院| 69av精品久久久久久| 亚洲最大成人手机在线| 国产av一区在线观看免费| 直男gayav资源| 99久久精品国产国产毛片| 色精品久久人妻99蜜桃| 国产一区二区在线av高清观看| 久久99热这里只有精品18| 黄片wwwwww| 亚洲欧美日韩无卡精品| 亚洲成人中文字幕在线播放| 无遮挡黄片免费观看| 一进一出抽搐gif免费好疼| 国内精品美女久久久久久| 国产精品一区二区性色av| 人妻夜夜爽99麻豆av| 午夜福利高清视频| 国产精品久久久久久亚洲av鲁大| 成年女人看的毛片在线观看| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 22中文网久久字幕| 99久久中文字幕三级久久日本| 亚洲精品影视一区二区三区av| 亚洲一区高清亚洲精品| 国产色婷婷99| 欧美不卡视频在线免费观看| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 1024手机看黄色片| 美女被艹到高潮喷水动态| 亚洲专区国产一区二区| 村上凉子中文字幕在线| 综合色av麻豆| 免费在线观看成人毛片| 黄色欧美视频在线观看| 国产老妇女一区| 亚洲精品成人久久久久久| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 亚洲av成人av| 一本一本综合久久| 高清在线国产一区| 亚洲av五月六月丁香网| 国产男靠女视频免费网站| 久久久久久久久久黄片| 欧美成人一区二区免费高清观看| 成人av在线播放网站| 中文字幕久久专区| 精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 综合色av麻豆| 亚洲aⅴ乱码一区二区在线播放| 午夜激情福利司机影院| 窝窝影院91人妻| 日韩一本色道免费dvd| 国产成年人精品一区二区| 欧美zozozo另类| 一本一本综合久久| 一级毛片久久久久久久久女| 99riav亚洲国产免费| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 在线观看66精品国产| 久久人人精品亚洲av| 深夜精品福利| 极品教师在线免费播放| 亚洲欧美日韩高清专用| 日本在线视频免费播放| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 永久网站在线| 国产高潮美女av| 精品人妻视频免费看| 热99在线观看视频| 哪里可以看免费的av片| 91在线精品国自产拍蜜月| 日韩高清综合在线| 简卡轻食公司| 少妇裸体淫交视频免费看高清| 久久热精品热| 午夜福利在线在线| 日本五十路高清| 美女免费视频网站| 我的女老师完整版在线观看| 国产高清视频在线观看网站| 久久久久久大精品| 乱人视频在线观看| 中文字幕熟女人妻在线| 岛国在线免费视频观看| 午夜老司机福利剧场| 久久久国产成人免费| 少妇人妻精品综合一区二区 | 一边摸一边抽搐一进一小说| 久久亚洲真实| 国产欧美日韩一区二区精品| 中文字幕精品亚洲无线码一区| 午夜激情福利司机影院| 级片在线观看| 少妇的逼水好多| 国语自产精品视频在线第100页| 成人特级黄色片久久久久久久| 国产黄片美女视频| 无遮挡黄片免费观看| 国产精品国产三级国产av玫瑰| 日本色播在线视频| 久久久久久久久大av| 少妇人妻一区二区三区视频| 亚洲av.av天堂| 校园人妻丝袜中文字幕| 精品久久久久久久久av| 日本a在线网址| 午夜爱爱视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区免费欧美| 国内精品一区二区在线观看| 久久久午夜欧美精品| 99久久精品热视频| 亚洲最大成人av| 亚洲av免费高清在线观看| 最新在线观看一区二区三区| 国产色爽女视频免费观看| 91在线观看av| 又紧又爽又黄一区二区| 日韩人妻高清精品专区| 国产精品一及| 欧美性猛交黑人性爽| 精品久久久久久久末码| 很黄的视频免费| 直男gayav资源| 看黄色毛片网站| av福利片在线观看| 色吧在线观看| 18禁黄网站禁片免费观看直播| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 禁无遮挡网站| 如何舔出高潮| 麻豆一二三区av精品| 亚洲经典国产精华液单| 一区二区三区高清视频在线| 少妇人妻一区二区三区视频| 男女之事视频高清在线观看| 成人性生交大片免费视频hd| 亚洲图色成人| 欧美日韩瑟瑟在线播放| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| 黄色视频,在线免费观看| 一区二区三区四区激情视频 | 欧美一级a爱片免费观看看| 日本成人三级电影网站| 最新中文字幕久久久久| 观看美女的网站| 欧美色欧美亚洲另类二区| 免费黄网站久久成人精品| 午夜精品一区二区三区免费看| 国产精品亚洲美女久久久| 午夜福利在线观看免费完整高清在 | 美女高潮的动态| 联通29元200g的流量卡| 亚洲欧美日韩东京热| 日日啪夜夜撸| 九九热线精品视视频播放| 精品人妻熟女av久视频| 国产色婷婷99| 在线天堂最新版资源| 久久久久久伊人网av| 久久久久九九精品影院| 91精品国产九色| 中文资源天堂在线| 中文字幕av成人在线电影| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯| 精品人妻熟女av久视频| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| 成人一区二区视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线观看av片永久免费下载| 久久精品综合一区二区三区| 日本 欧美在线| 久久久久精品国产欧美久久久| 成人国产综合亚洲| 国产一区二区三区av在线 | 亚洲熟妇熟女久久| 男插女下体视频免费在线播放| 久久久久精品国产欧美久久久| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 人人妻人人澡欧美一区二区| 99久久无色码亚洲精品果冻| 国产av麻豆久久久久久久| 最好的美女福利视频网| 91久久精品国产一区二区成人| 性欧美人与动物交配| 伦理电影大哥的女人| 亚洲精品色激情综合| 久久热精品热| 日韩强制内射视频| 最近最新中文字幕大全电影3| 伦理电影大哥的女人| 麻豆国产97在线/欧美| 校园春色视频在线观看| 亚洲精品亚洲一区二区| 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 听说在线观看完整版免费高清| 欧美3d第一页| 小说图片视频综合网站| 欧美一区二区国产精品久久精品| 中出人妻视频一区二区| 成年版毛片免费区| 波多野结衣高清作品| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 午夜福利18| 国内毛片毛片毛片毛片毛片| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 嫩草影院新地址| 啦啦啦观看免费观看视频高清| 2021天堂中文幕一二区在线观| 麻豆国产97在线/欧美| 亚洲精品456在线播放app | 又粗又爽又猛毛片免费看| 嫁个100分男人电影在线观看| 97热精品久久久久久| av女优亚洲男人天堂| 精品欧美国产一区二区三| 好男人在线观看高清免费视频| 三级毛片av免费| 欧美成人免费av一区二区三区| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 在线观看免费视频日本深夜| 婷婷精品国产亚洲av在线| 国产不卡一卡二| 我的女老师完整版在线观看| 搡女人真爽免费视频火全软件 | 久久精品夜夜夜夜夜久久蜜豆| 无遮挡黄片免费观看| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲 | 黄色视频,在线免费观看| 人人妻人人看人人澡| 亚洲成人久久性| 久久久久久久久久黄片| 色播亚洲综合网| 男人狂女人下面高潮的视频| 亚洲午夜理论影院| 亚洲av中文av极速乱 | 欧美日韩亚洲国产一区二区在线观看| 在线观看舔阴道视频| 成人av一区二区三区在线看| 国产私拍福利视频在线观看| 欧美成人性av电影在线观看| 日本黄色片子视频| 一级黄色大片毛片| 国产成人福利小说| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 国内揄拍国产精品人妻在线| 我要搜黄色片| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 亚洲av美国av| 男插女下体视频免费在线播放| 午夜久久久久精精品| 欧美区成人在线视频| 日韩欧美一区二区三区在线观看| 日日干狠狠操夜夜爽| 欧美3d第一页| 国产精品亚洲美女久久久| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 国产av麻豆久久久久久久| 22中文网久久字幕| 欧美精品国产亚洲| 禁无遮挡网站| 国产大屁股一区二区在线视频| 波野结衣二区三区在线| 美女大奶头视频| av视频在线观看入口| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 婷婷色综合大香蕉| 色播亚洲综合网| 久久精品国产亚洲av天美| 亚洲av二区三区四区| 男女下面进入的视频免费午夜| 亚洲av一区综合| 国产精品伦人一区二区| 午夜日韩欧美国产| 亚洲国产高清在线一区二区三| 精品一区二区免费观看| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 亚洲午夜理论影院| av中文乱码字幕在线| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区精品| 老师上课跳d突然被开到最大视频| 一进一出抽搐gif免费好疼| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 99热这里只有是精品在线观看| 免费av观看视频| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看 | 在线观看美女被高潮喷水网站| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 91久久精品电影网| 乱人视频在线观看| 美女高潮的动态| 搞女人的毛片| 又黄又爽又刺激的免费视频.| 亚洲va在线va天堂va国产| 日本一本二区三区精品| 大型黄色视频在线免费观看| 男人的好看免费观看在线视频| 亚洲av五月六月丁香网| 中文字幕熟女人妻在线| 99热精品在线国产| www.色视频.com| 99在线视频只有这里精品首页| av在线天堂中文字幕| 国产久久久一区二区三区| 亚洲av中文av极速乱 | 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看| 午夜福利在线观看吧| 色5月婷婷丁香| 97碰自拍视频| 欧美日韩精品成人综合77777| 乱系列少妇在线播放| 熟女电影av网| 一区二区三区四区激情视频 | 成熟少妇高潮喷水视频| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 日日夜夜操网爽| 最好的美女福利视频网| 久9热在线精品视频| 一个人看的www免费观看视频| 午夜福利18| 国产高清不卡午夜福利| 国产精品三级大全| 日本黄色片子视频| 九九在线视频观看精品| 精品久久国产蜜桃| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 淫妇啪啪啪对白视频| 国产男人的电影天堂91| 免费黄网站久久成人精品| www日本黄色视频网| 欧美丝袜亚洲另类 | 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 天堂√8在线中文| 中文字幕人妻熟人妻熟丝袜美| 无遮挡黄片免费观看| 国内精品久久久久久久电影| 色哟哟哟哟哟哟| 久久亚洲真实| 国产精品一区二区三区四区免费观看 | 伦精品一区二区三区| 久久人人爽人人爽人人片va| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 久久午夜亚洲精品久久| 亚洲av二区三区四区| 国产黄色小视频在线观看| 天堂av国产一区二区熟女人妻| 国产一区二区激情短视频| 国产av麻豆久久久久久久| 黄色女人牲交| 韩国av在线不卡| 午夜福利高清视频| 久久九九热精品免费| 成年版毛片免费区| 亚洲av第一区精品v没综合| 91在线观看av| 亚洲18禁久久av| 一本精品99久久精品77| 亚洲精品日韩av片在线观看| 别揉我奶头~嗯~啊~动态视频| h日本视频在线播放| 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| www.色视频.com| 老司机午夜福利在线观看视频| 亚洲专区中文字幕在线| 97热精品久久久久久| 黄色一级大片看看| 亚洲狠狠婷婷综合久久图片| 国产探花在线观看一区二区| 久久久成人免费电影| 国产视频内射| 精品人妻偷拍中文字幕| 99riav亚洲国产免费| 国产白丝娇喘喷水9色精品| 嫩草影院精品99| 精品一区二区三区av网在线观看| 最新中文字幕久久久久| 能在线免费观看的黄片| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 精品99又大又爽又粗少妇毛片 | 久久九九热精品免费| 又紧又爽又黄一区二区| 性插视频无遮挡在线免费观看| 国产成人一区二区在线| 日本a在线网址| 婷婷亚洲欧美| 色播亚洲综合网| 亚洲,欧美,日韩| 狠狠狠狠99中文字幕| 免费看光身美女| 男女视频在线观看网站免费| 黄色一级大片看看| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 欧美zozozo另类| 免费看光身美女| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av| 在线观看美女被高潮喷水网站| www.www免费av| 国产精品98久久久久久宅男小说| 春色校园在线视频观看| 久久香蕉精品热| 男人和女人高潮做爰伦理| 日本黄大片高清| 日韩亚洲欧美综合| 悠悠久久av| 51国产日韩欧美| 国产女主播在线喷水免费视频网站 | 亚洲欧美精品综合久久99| 国产精品无大码| 女的被弄到高潮叫床怎么办 | 99久国产av精品| 欧美bdsm另类| 亚洲天堂国产精品一区在线| 97超视频在线观看视频| 国产色婷婷99| 嫩草影院精品99| 黄色日韩在线| 三级毛片av免费| 国产91精品成人一区二区三区| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片| 亚洲美女黄片视频| 真实男女啪啪啪动态图| 在线观看美女被高潮喷水网站| 色哟哟哟哟哟哟| 亚洲久久久久久中文字幕| 久久久久久大精品| 夜夜看夜夜爽夜夜摸| 91麻豆av在线| 色综合站精品国产| 在线a可以看的网站| 在线免费观看不下载黄p国产 | 成人综合一区亚洲| 天美传媒精品一区二区| 成人国产综合亚洲| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃| 国产精品乱码一区二三区的特点| 久9热在线精品视频| 草草在线视频免费看| 搡老熟女国产l中国老女人| 国产精品嫩草影院av在线观看 | 一进一出抽搐动态| 国产91精品成人一区二区三区| 久久久久久久久久成人|