摘要:在初中數(shù)學(xué)教學(xué)過(guò)程中,數(shù)學(xué)建模是最基本、最常用的數(shù)學(xué)方法和思想,其可以將抽象的理論、概念和內(nèi)容形象化、具體化,既可以加深學(xué)生對(duì)數(shù)學(xué)知識(shí)的了解和掌握,而且還可以有效提高學(xué)生數(shù)學(xué)應(yīng)用能力,提高課堂教學(xué)效果。
關(guān)鍵詞:初中數(shù)學(xué);數(shù)學(xué)模型;應(yīng)用對(duì)策
數(shù)學(xué)模型就是通過(guò)對(duì)實(shí)際數(shù)學(xué)問(wèn)題進(jìn)行思考和分析后,轉(zhuǎn)化為簡(jiǎn)單數(shù)學(xué)問(wèn)題的過(guò)程,然后借助相關(guān)的數(shù)學(xué)知識(shí)來(lái)解答數(shù)學(xué)問(wèn)題。在初中數(shù)學(xué)課堂教學(xué)過(guò)程中,函數(shù)模型、方程(組)模型、不等式(組)模型、概率模型得到了廣泛的應(yīng)用,其可以使數(shù)學(xué)問(wèn)題得到有效的解決,并提高學(xué)生的數(shù)學(xué)知識(shí)和技能,培養(yǎng)和提高學(xué)生們的綜合能力水平。
一、 函數(shù)模型
函數(shù)是初中數(shù)學(xué)教學(xué)體系中比較關(guān)鍵的組成部分,不僅是課堂教學(xué)的重點(diǎn),同時(shí)也是解答數(shù)學(xué)問(wèn)題的核心,在初中數(shù)學(xué)教學(xué)過(guò)程中,函數(shù)模型無(wú)處不在,其可以有效提高數(shù)學(xué)問(wèn)題的解答效率和準(zhǔn)確性,提高課堂教學(xué)效果。
例如,在進(jìn)行蘇教版“函數(shù)”教學(xué)過(guò)程中,教師可以引入如下案例:某商店采購(gòu)了一批每支1.8元的圓珠筆,計(jì)劃售價(jià)為4.0元/支,每個(gè)月該圓珠筆的銷(xiāo)售量為200支。為了提高銷(xiāo)售量,該商店決定降價(jià)促銷(xiāo),通過(guò)調(diào)研發(fā)現(xiàn),如果每支降價(jià)1.0元,那么每月的銷(xiāo)售量將會(huì)提高50支。
問(wèn)題1:試求銷(xiāo)售單價(jià)x與月銷(xiāo)量y之間的函數(shù)關(guān)系?
問(wèn)題1:試求銷(xiāo)售單價(jià)x與銷(xiāo)售利潤(rùn)z之間的函數(shù)關(guān)系?
解答1:通過(guò)對(duì)上述條件進(jìn)行分析得知,y=200+50(4.0-x)=-50x+400,y與x間多對(duì)應(yīng)的函數(shù)為y=-50x+400。
解答1:通過(guò)對(duì)上述條件進(jìn)行分析得知,z=(x-1.8)(-50x+400),簡(jiǎn)化后得z與x間的函數(shù)為z=-50x2+490x-720。
該例題中涉及一次函數(shù)和二次函數(shù)問(wèn)題,在對(duì)問(wèn)題進(jìn)行分析后,借助函數(shù)模型可以將具體的問(wèn)題轉(zhuǎn)化為由函數(shù)構(gòu)成的抽象問(wèn)題,以確保數(shù)學(xué)問(wèn)題得到有效的解決。除上述模型外,對(duì)于成本計(jì)算、供排水、方案優(yōu)化選擇等問(wèn)題都可以借助函數(shù)模型給予有效的解決,這樣既可以提高數(shù)學(xué)問(wèn)題的解決效率,而且還可以提高學(xué)生數(shù)學(xué)應(yīng)用能力。
二、 方程(組)模型
對(duì)實(shí)際生活而言,方程和方程組模型所發(fā)揮的作用不容忽視,其既可以有效解決生活中問(wèn)題,而且還可以完成包括收益計(jì)算、價(jià)格計(jì)算、成本分配計(jì)算等工作。
解題思路:根據(jù)題目要求合理假設(shè)未知數(shù),并挖掘已知或隱含的等量關(guān)系,在此基礎(chǔ)上列出含有未知數(shù)的等式,以實(shí)現(xiàn)對(duì)方程(組)的有效解答,最后還需要對(duì)解的合理性進(jìn)行驗(yàn)證。
例如,在進(jìn)行蘇教版七年級(jí)數(shù)學(xué)教學(xué)過(guò)程中,教師可以嘗試著在日歷上畫(huà)出2×2的正方形圈,其中的數(shù)字之和是76,試問(wèn)這4個(gè)數(shù)分別是什么?
解:假設(shè)x是最小的數(shù),其余數(shù)字分別是x+1、x+7、x+8。
根據(jù)題意得知:x+x+1+x+7+x+8=76。
此時(shí)可以求解出這4天是15號(hào)、16號(hào)、22號(hào)、23號(hào)。
上述方程(組)問(wèn)題相對(duì)比較簡(jiǎn)單,只需要構(gòu)建簡(jiǎn)單的一元一次方程組就可以解決數(shù)學(xué)問(wèn)題。在初中數(shù)學(xué)教學(xué)過(guò)程中,借助方程(組)模型既可以有效表達(dá)購(gòu)買(mǎi)數(shù)量和價(jià)格之間所存在的關(guān)系,而且還可以幫助學(xué)生更好地了解和掌握數(shù)學(xué)之間的相互聯(lián)系,在提高學(xué)生對(duì)方程(組)模型了解和掌握的同時(shí),還可以有效提高數(shù)學(xué)問(wèn)題的解決效率。
三、 不等式(組)模型
在初中數(shù)學(xué)教學(xué)過(guò)程中,不等式和不等式組模型屬于比較常用的重要模型,常見(jiàn)的不等式(組)模型包括不等式組、純不等式、等式和不等式綜合題、最優(yōu)方案問(wèn)題、不等式和函數(shù)綜合題等。實(shí)際上,不同的不等式問(wèn)題要結(jié)合不同的等式、不等式或函數(shù)模型來(lái)給予有效的解答。通常情況下,不等式問(wèn)題具有比較強(qiáng)的抽象性,無(wú)形之中增加了學(xué)生解題的難度,此時(shí)就可以借助不等式(組)模型給予有效的解答。
例如,將8kg價(jià)格為20元/kg的甲種糖果與若干18元/kg的乙種糖果進(jìn)行混合,既要保證糖果不少于15kg,又要確??們r(jià)不超過(guò)400元,試問(wèn)乙種糖果最少是多少?最多是多少?
上述問(wèn)題屬于標(biāo)準(zhǔn)的不等式組問(wèn)題,其與方程組問(wèn)題存在一定的相似性,但是在題目中含有不少于、不超過(guò)等不確定性的關(guān)鍵詞,在解題過(guò)程中極易誘發(fā)學(xué)生出現(xiàn)錯(cuò)誤的理解。實(shí)際上,不等式(組)模型在方案制定、盈虧分析、投資決策等問(wèn)題中得到了廣泛的應(yīng)用,此時(shí)教師要做好引導(dǎo)作用,以期更好的發(fā)揮不等式(組)模型的優(yōu)勢(shì),提高數(shù)學(xué)課堂教學(xué)效果。
四、 概率模型
與上述其他數(shù)學(xué)模型相比,概率模型所涉及的題干內(nèi)容量比較大,而且內(nèi)容較為分散,無(wú)形之中增加了學(xué)生理解和掌握的難度。雖然初中數(shù)學(xué)中所涉及的概率問(wèn)題比較少,但是其仍然是中考中比較重要的考點(diǎn)。因此,作為初中數(shù)學(xué)教師,在課堂教學(xué)過(guò)程中,要對(duì)概率模型給予重點(diǎn)講解,這樣既能夠提高學(xué)生對(duì)課堂教學(xué)內(nèi)容的了解和掌握,而且還可以確保課堂教學(xué)的整體效果和質(zhì)量。
例如,小亮和小強(qiáng)是一對(duì)雙胞胎,其父母為他們選購(gòu)了兩套不同品牌的運(yùn)動(dòng)服,小亮和小強(qiáng)都想選擇自己喜歡的,于是父母設(shè)計(jì)了如下游戲以確保誰(shuí)先挑選:將一個(gè)箱子中放入4個(gè)小球,分別標(biāo)有數(shù)字1,2,3,4,小亮隨機(jī)從中摸出一個(gè)小球,隨后小強(qiáng)再隨機(jī)從剩余的3個(gè)小球中摸出一個(gè)小球,如果兩個(gè)小球上的數(shù)字和是奇數(shù),則小強(qiáng)先挑選,否則小亮先挑選。
(1)通過(guò)列表法或樹(shù)狀圖法求解出小亮先挑選的概率;
(2)該游戲是否公平?請(qǐng)解釋。
通常情況下,概率模型具有綜合性強(qiáng)的特點(diǎn),如果學(xué)生對(duì)其不了解,一旦遇到復(fù)雜的問(wèn)題,將會(huì)無(wú)從下手。此時(shí)就需要教師注重對(duì)概率模型的講解,引導(dǎo)和鼓勵(lì)學(xué)生從復(fù)雜題干中挖掘關(guān)鍵解題信息,這樣既能夠提高學(xué)生對(duì)概率模型的應(yīng)用能力,而且還可以使相關(guān)數(shù)學(xué)問(wèn)題得到有效解決。
綜上所述,在進(jìn)行初中數(shù)學(xué)課堂教學(xué)過(guò)程中,教師要結(jié)合教學(xué)內(nèi)容選擇與之相匹配的數(shù)學(xué)模型,這樣既能夠激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情和積極性,而且還可以有效拓展學(xué)生的數(shù)學(xué)思維、創(chuàng)新思維,在確保課堂教學(xué)效果的同時(shí),提高學(xué)生的數(shù)學(xué)綜合素養(yǎng)。
參考文獻(xiàn):
[1]施清水.初中數(shù)學(xué)教學(xué)中常見(jiàn)數(shù)學(xué)模型舉例[J].考試周刊,2017,6(21):66-67.
[2]陳娟.數(shù)學(xué)模型思想在初中數(shù)學(xué)教學(xué)中的滲透[J].考試周刊,2017,13(55):151-152.
作者簡(jiǎn)介:
徐葉琴,江蘇省興化市,江蘇省興化市大垛中心校。