鄧英
【摘? ? 要】為了提高小學數(shù)學教學質量,本文以數(shù)學應用題教學為研究,總結了具體的教學策略,希望能夠不斷地提高學生的數(shù)學學習水平。
【關鍵詞】小學數(shù)學? 應用題教學? 策略
中圖分類號:G4? ? ? 文獻標識碼:A DOI:10.3969/j.issn.1672-0407.2020.05.085
應用題是小學數(shù)學教學課堂重要部分,為了提高學生應用題學習水平,要重視培養(yǎng)學生審題習慣,要有效的設計教學策略,才能不斷提高教學質量,為學生日后發(fā)展奠定良好基礎。
一、教師要重視學生審題習慣的培養(yǎng)
根據(jù)調查并結合多年的教學經(jīng)驗不難看出,大多數(shù)學生之所以認為應用題難的原因,來源于沒有一個良好的審題習慣,應用題的基礎就是審題,若是學生在審題階段就產(chǎn)生了偏差,例如看錯一個重要的條件等,那學生的計算結果就回出現(xiàn)錯誤,當然也有一部分學生將這種錯誤看作是“粗心”,并沒有放在心上,但不知道這是加重了審題的錯誤,若是依舊放縱,那么學生對于應用題的解決能力將會止步不前。因此,教師有必要幫助學生逐漸學會審題,幫助學生掌握各種類型的應用題的每一種審題方法。也只有這樣,學生的“粗心”現(xiàn)象才能夠有效杜絕,正確解題率才會有所提升,學生對應用題的學習信心才能夠進一步增加。
例如,教師為學生講解“圓柱圓錐體積計算”的應用題題型時,為有效幫助學生掌握審題方法,采取了一下的教學方式:以給學生安排一道存在陷阱的問題開始上課:一個圓錐,底面半徑3cm,高6cm,將其放在圓柱形的水缸中,該水缸中高12cm,底面半徑4cm,那么請問圓柱水缸內原來的高度為11cm的水面將會上升到多少厘米?有許多的學生一看到這種題目,就會直接解題,就導致忽視了水缸中原來高度的條件,在學生產(chǎn)生錯誤又及時被糾正時,學生就會清楚地明白審題的重要性,那么教師的教學任務和目標就能夠達到理想的效果。
二、教師要善于設計生活化的教學內容
數(shù)學與學生的實際生活分不開,教師要發(fā)揮出這門學科的特征進行教學,只有這樣學生才能夠體會到數(shù)學的親切,那么學生的學習動力和渴望學習知識的欲望就會進一步的增加。因此,在實際教學時,教師要將生活中的問題轉變?yōu)閿?shù)學中的知識,并使其轉變?yōu)閼妙}的模式呈現(xiàn)在學生眼前。讓學生通過解決這種題型,逐漸養(yǎng)成通過數(shù)學知識的方法來解決生活中問題的意識,從而學生的數(shù)學綜合能力就能夠得到顯著的提高,學生自身的解題能力也將取得進一步的發(fā)展。
比如,教師在為學生講解“概率”相關知識的過程中,為確保學生能夠得到解答應用題能力的提升,給學生列出了以下生活型的問題:問學生,若是班級里有三十名學生能夠獲得獎品,但需要通過投票的方式來決定,其中奇數(shù)號可以投1票,偶數(shù)號的學生可以投2票,這樣的方式對大家公平嗎?學生會對這種問題有極高的興趣,而且非常愿意發(fā)揮自身的想象力解答問題,最后通過學習,學生就會注意到生活中與數(shù)學息息相關的現(xiàn)象,例如抽獎等。以此來保證應用題的教學效果和教學質量。
三、要重視給學生留有足夠的時間思考
學生是否愿意獨立思考是其解題能力水平高低的前提。數(shù)學的教學模式是培養(yǎng)學生能夠獨立思考能力的關鍵。大多數(shù)教師會因為課上時間的珍貴,而控制學生的思考時間以便有充足的時間進行題目的講解,但卻忽略了應用題的教學貴精不貴多,講解典型題目,為學生提供更多獨立思考的時間才是應用題教學的精髓。這是由于學生在經(jīng)過思考后,才能夠更好地理解教師所講解的解題方法,進而起到活學活用的效果。
例如,教師在實際教學中時,為確保學生都能夠掌握獨立思考的能力,在每一次的講解中都只準備少量的典型應用題,而在每一題的學習時,都會在適當?shù)臅r間為學生留下幾分鐘的思考時間和小組討論時間,支持、鼓勵學生和大家分享自身的想法和疑問,利用這種方式,學生們會更加渴望未知知識的探索,并且享受這種思考的感覺,長期下來,學生們的思考能力將會得到顯著的上升,也有助于學生解題效率的提高。
四、教師要引導學生用化歸法解應用題
所謂“化歸法”,便是當學生遇到一時難以解決的問題時,能夠將此問題聯(lián)系到其他問題,通過對其他問題的解決來輔助完成對該問題的破解。運用此類方法需學生掌握較為廣泛的知識面,可以將未知問題準確劃入已知問題的范疇,通過解決已知來破解未知。例如,已知A與B的差和比例,求B的值。解決這題目時,學生往往覺得無從入手。但如果先求解A,再通過二者的關系求出問題數(shù)值,便可順利解決了。又如,已知一個長方形的兩邊邊長,在此長方形中如何獲取圓的最大面積?對這類問題與其從邏輯上思考,不如引導學生親手進行實踐檢驗。準備與題目相同邊長的圖形,求在此圖形中的圓形如何最大化。此時求解圓的面積便需從長方形入手。這種思路的歸類轉換可以為學生打開解題的通道,讓學生從另一個角度思考和解決問題,打破既定問題的拘囿,運用更廣闊的思維解決未知問題。在解決問題后,教師還可以根據(jù)學生的掌握情況進行問題延伸,比較兩種圖形面積數(shù)值的關系,這樣會進一步幫助學生引申思路,活躍思維?;瘹w法能夠幫助學生在面對難解問題時,采用間接的方式進行化解,消減題目的難度,將個別問題歸類于普遍問題,理清復雜的邏輯關系,從而得出更為簡單和明晰的解題思路,逐步接近問題的隱含內容,最終實現(xiàn)對問題的破解。教師要逐步幫助學生進行問題歸類,輔助學生扎實掌握問題的普遍形式,熟練運用解題技巧,當遇到較為特殊和復雜的題目時,學生便能夠準確將其歸結于所屬類別進行處理,這樣不但提高了對問題的解決效率,還能在學生頭腦中建立邏輯性更強的知識體系,從而完成數(shù)學知識體系的搭建。
五、結束語
總之,在小學數(shù)學教學課堂,為了提高學生應用題學習能力,要科學地制定更加完善的教學模式,以此才能不斷提高教學效率,希望結合以上研究,能夠不斷提高學生應用題學習水平。
參考文獻
[1]茍瑞莉.對新課程下小學數(shù)學應用題的教學策略探討[J].學周刊,2019(34):31.
[2]劉新慧.談有效開展小學數(shù)學應用題教學[J].學周刊,2019(32):92.
[3]崔淑萍.探討小學數(shù)學應用題教學中存在的問題及優(yōu)化策略[J].課程教育研究,2019(45):168-169.