徐菊萍
“海上生明月,天涯共此時(shí)?!碑?dāng)我們吟誦此詩,感受詩中呈現(xiàn)的雄渾闊大的意境,浮現(xiàn)天際線與一輪圓月交相輝映的畫面之時(shí),是否會(huì)抽象出圓與直線的三種位置關(guān)系?當(dāng)我們用數(shù)學(xué)的眼光去觀察現(xiàn)實(shí)世界,加以思考提煉,會(huì)發(fā)現(xiàn)現(xiàn)實(shí)世界中蘊(yùn)含的本質(zhì)規(guī)律有助于我們更好地探索這個(gè)世界。今天,讓我們拿起數(shù)學(xué)這把打開科學(xué)大門的鑰匙,一起探索如何用數(shù)學(xué)這個(gè)工具更好地認(rèn)識物理、化學(xué)、語文等學(xué)科的秘密。
例1如圖1,這是一幅用杠桿撬石頭的示意圖,C是支點(diǎn),當(dāng)用力壓杠桿的A端時(shí),杠桿繞C點(diǎn)轉(zhuǎn)動(dòng),另一端B向上翹起,石頭就被撬動(dòng)了?,F(xiàn)有一塊石頭,要使其滾動(dòng),杠桿B端必須向上翹10厘米。已知杠桿上的AC與BC長度之比為5∶1,若要使這塊石頭滾動(dòng),至少要將杠桿的A端向下壓多少厘米?
【融合學(xué)科】物理。
【分析】本題考查的數(shù)學(xué)知識是相似模型。先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對應(yīng)邊成比例求得端點(diǎn)A向下壓的長度。
解:如圖2,AM、BN都與水平線垂直,即AM∥BN。
易知:△ACM∽△BCN,
∵杠桿上AC與BC長度之比為5∶1,
∴AM=5,即AM=5BN,BN1
∴當(dāng)BN≥10厘米時(shí),AM≥50厘米。故要使這塊石頭滾動(dòng),至少要將杠桿的端點(diǎn)A向下壓50厘米。
例2在壓力不變的情況下,某物體承受的壓強(qiáng)p(Pa)是它的受力面積S(m2)的反比例函數(shù),其圖像如圖3。
(1)求p與S之間的函數(shù)關(guān)系式。
(2)求當(dāng)S=0.5m2時(shí)物體承受的壓強(qiáng)p。
【融合學(xué)科】物理。
【分析】本題考查的是數(shù)學(xué)知識中反比例函數(shù)模型。現(xiàn)實(shí)生活中存在大量成反比例關(guān)系的兩個(gè)變量,在物理學(xué)科中應(yīng)用也比較廣泛,解答該類問題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式。
答:物體承受的壓強(qiáng)p為500Pa。
例3現(xiàn)有兩種酒精溶液,甲種酒精溶液的酒精與水的比是3∶7,乙種酒精溶液的酒精與水的比是4∶1?,F(xiàn)要得到酒精與水的比為3∶2的酒精溶液50kg,問甲、乙兩種酒精溶液應(yīng)各取多少?
【融合學(xué)科】化學(xué)。
【分析】本題考查的數(shù)學(xué)知識是方程模型,涉及兩個(gè)未知量。我們可以通過設(shè)未知數(shù),尋找題目的等量關(guān)系,列出方程組求解即可。
解:設(shè)甲、乙兩種酒精溶液分別取
答:甲酒精溶液取20kg,乙酒精溶液取30kg。
例4“送郎一路雨飛馳,十里江亭折柳枝;離人遠(yuǎn)影疾行去,歸來夢醒度相思。”如果用縱軸y表示從軍者與送別者離原地的距離,用橫軸x表示送別進(jìn)行的時(shí)間,從軍者的行進(jìn)路線為O→A→B→C,送別者的行進(jìn)路線為O→A→B→D,那么下面的圖像與上述詩的含義大致吻合的是()。
【融合學(xué)科】語文。
【分析】本題考查的是數(shù)學(xué)知識的函數(shù)圖像,要學(xué)會(huì)根據(jù)古詩翻譯問題情境,結(jié)合題意理解函數(shù)圖像的橫軸和縱軸表示的量,再根據(jù)實(shí)際情況來判斷函數(shù)圖像。
解:“送郎一路雨飛馳,十里江亭折柳枝”,說明從軍者和送別者一開始是在函數(shù)圖像的O點(diǎn)處,之后兩人離開O點(diǎn)一段距離后停留了一段時(shí)間;“離人遠(yuǎn)影疾行去,歸來夢醒度相思”,說明從軍者是匆匆地離開,而送別者回到了原處。所以選C。
(作者單位:南京師范大學(xué)附屬蘇州石湖中學(xué))