蔣瑋,周群,李莘哲
(1.廣西路橋工程集團有限公司,廣西 南寧 530000;2.廣西路橋集團勘察設計有限公司)
大跨PC連續(xù)剛構橋主梁參數眾多,受力復雜,設計者往往憑借以往經驗和參考已有設計或類比試算來選取參數。然而,實際工程中因主梁參數選取不合理而導致主梁受力不佳出現(xiàn)多種病害的實例不在少數,更有甚者直接導致安全事故的發(fā)生。因此,對主梁參數進行優(yōu)化研究,為主梁參數合理選取提供行之有效的科學指導顯得十分必要。
文獻[5-7]采用遺傳算法、遺傳算法與神經網絡結合、響應面法等方法對主梁參數優(yōu)化進行研究,雖能夠得到在經驗范圍之內的精度較好的優(yōu)化結果,但這些方法理論過于深奧,需要大量樣本數據反復計算,不便于被工程人員掌握,實用性較差,難以推廣應用;文獻[8-10]均以某一座大跨連續(xù)剛構橋為研究對象,利用正交試驗設計思想,通過改變主梁設計參數,以主梁跨中應力、撓度、混凝土數量為優(yōu)化指標建立綜合目標函數,通過對計算結果的分析,得出主梁跨中性能最優(yōu)參數組合,但研究僅選取主梁跨中截面下緣應力作為優(yōu)化指標,存在缺乏對主梁全截面應力考核的不足,且均選取一種跨徑進行研究,其結論是否適用其他跨徑難以確定。
為進一步深入研究大跨PC連續(xù)剛構橋主梁參數的合理取值,該文基于正交試驗法,選取主梁邊主跨比、梁底曲線冪次、跨中高跨比、支點高跨比作為主梁優(yōu)化參數,建立以主跨全截面平均應力、跨中最大撓度、混凝土數量為優(yōu)化指標的綜合目標函數,間隔10 m建立主跨100~150 m之間6種不同跨徑的有限元參數試驗模型,通過對有限元結果的計算與分析,研究主梁參數的最優(yōu)組合,為主梁參數選取提供更科學可靠的理論指導。
背景工程為某山區(qū)高速公路一座三跨PC連續(xù)剛構橋,橋跨布置為(72+120+72)m,上構主梁為單箱單室箱梁,C55混凝土,橋面總寬12 m,頂板厚0.28 m,變截面梁高由跨中3.1 m漸變至支點7.0 m,按二次拋物線進行漸變,其橫斷面如圖1所示。底板厚由跨中0.32 m漸變至支點0.7 m,漸變規(guī)律同梁高,底板總寬6.5 m。
圖1 主梁支點與跨中橫斷面圖(單位:cm)
下構為雙薄壁墩,橫向壁寬6.5 m,順向壁厚1.5 m,雙肢中心間距7.0 m,墩高40 m,C40混凝土。
采用最新Midas 2019按實際施工過程建立結構整體有限元模型(圖2),上構為C55混凝土,下構為C40混凝土,全橋共劃分為184個梁單元,其中上構104個梁單元,下構80個梁單元。
圖2 整體有限元模型圖
根據文獻[1-4]及筆者對中國已建及在建大跨近100座PC連續(xù)剛構橋主梁參數統(tǒng)計可得,主梁邊主跨比多數為0.52~0.6,梁底冪次為1.6~2.0,跨中高跨比為0.02~0.03,支點高跨比為0.052~0.067。因此,該文主梁4個優(yōu)化參數選取范圍即在以上統(tǒng)計范圍之內,每個優(yōu)化參數選取4個參數值進行試驗,其試驗參數水平表如表1所示。
表1 主梁試驗參數水平表
該文選用的正交表L16(44)及試驗參數正交表如表2、3所示。
表2 正交表
為對各試驗整體性能進行綜合評價,該文采用公式評分法將多目標優(yōu)化問題轉換為單目標優(yōu)化問題,即建立以主跨全截面平均應力、跨中最大撓度、混凝土數量為優(yōu)化指標的綜合目標函數,具體函數表達式如下:
(1)
式中:n為主跨節(jié)段數;i為主跨各節(jié)段截面編號;σsi為截面i恒活載標準值作用下上緣應力;σxi為截面i恒活載標準值作用下下緣應力;ftk為主梁C55混凝土抗拉強度標準值,ftk=2.74 MPa;f為跨中最大撓度值;[f]為撓度限值,[f]=L/600,L為主跨跨徑;F為主梁總重量;G為所有試驗中主梁總重量最小值;K1、K2、K3為單個目標函數;K為綜合目標函數。
由表3可知:根據各試驗的參數組合,分別建立主跨120 m各試驗有限元模型,提取各試驗主梁恒活載標準值作用下主跨各截面上下緣應力、跨中最大撓度及混凝土數量,按前文所述建立的綜合目標函數,得主跨120 m主梁綜合目標函數K計算結果如表4所示。
表3 試驗參數正交表
表4 主跨120 m綜合目標K計算結果
根據表4計算結果,對主梁4個試驗參數進行極差及方差分析,結果見表5、6。
表5 主跨120 m綜合目標K極差R分析結果
由表4可知:以最小主跨全截面平均應力為準則,主梁最優(yōu)參數組合為試驗4(A1B4C4D4);以最小跨中最大撓度為準則,主梁參數組合最優(yōu)為試驗9(A3B1C3D4);以最小主跨全截面平均應力、跨中最大撓度、混凝土數量構成的綜合目標為準則,主梁最優(yōu)參數組合為試驗4(A1B4C4D4)。
此外,試驗9(A3B1C3D4)、試驗15(A4B3C2D4)、試驗6(A2B2C1D4)分別為同一邊主跨比下的最優(yōu)參數組合,實際設計中可根據實際邊主跨比綜合考慮采用;試驗12(A3B4C2D1)、試驗1(A1B1C1D1)、試驗14(A4B2C3D1)均為很差的參數組合,實際設計中應盡量避免使用。
由表5可知:較大的支點高跨比、較大的跨中高跨比、較小的邊主跨比及合適的梁底曲線冪次對主梁綜合性能有很好的改善作用。
由表6可知:支點高跨比對主梁綜合性能影響顯著,各試驗因素影響大小順序依次為:支點高跨比>跨中高跨比>梁底曲線冪次>邊主跨比。
表6 主跨120 m綜合目標K方差分析結果
在4.1節(jié)研究的基礎上,根據表3各試驗的參數組合,分別建立主跨100、110、130、140、150 m各試驗有限元模型,分別提取各試驗主梁恒活載標準值作用下主跨各截面上下緣應力、跨中最大撓度及混凝土數量,按第3節(jié)所建立的綜合目標函數,得不同主跨跨徑下主梁綜合目標K如表7~11所示。
表7 主跨100 m綜合目標K計算結果
表8 主跨110 m綜合目標K計算結果
表9 主跨130 m綜合目標K計算結果
表10 主跨140 m綜合目標K計算結果
由表7~11可知:以主跨全截面平均應力、跨中最大撓度、混凝土數量構成的綜合目標最小為準則,主梁最優(yōu)參數組合基本為試驗4(A1B4C4D4)[主跨130 m時,為試驗9(A3B1C3D4)],相對較優(yōu)組合仍為試驗9(A3B1C3D4)、試驗15(A4B3C2D4)、試驗6(A2B2C1D4)。
表11 主跨150 m綜合目標K計算結果
相對很差組合仍為試驗14(A4B2C3D1)、試驗1(A1B1C1D1)、試驗12(A3B4C2D1),且其綜合目標K值從小至大排序與主跨120 m也基本一致。
因此,以主跨全截面平均應力、跨中最大撓度、混凝土數量構成的綜合目標最小為準則,所得主梁最優(yōu)組合與最差組合具有一定的普遍性及適用性。
對以上各主跨綜合目標K同樣進行極差及方差分析,所得結論與主跨120 m結論基本一致,同樣具有一定的普遍性及適用性
(1)以主梁最小綜合性能指標為準則,最優(yōu)參數組合為A1B4C4D4,即主梁邊主跨比取0.525、梁底曲線冪次取2.0、跨中高跨比取0.028 3、支點高跨比取0.066 7。
(2)實際剛構橋設計中可根據實際邊主跨比考慮A1B4C4D4、A3B1C3D4、A4B3C2D4、A2B2C1D4等參數組合的綜合應用。
(3)實際剛構橋設計中應盡量避免A3B4C2D1、A1B1C1D1、A4B2C3D1等綜合性能很差的參數組合的應用。
(4)實際剛構橋設計中應盡量采用較大的高跨比/較小邊主跨比及合適的梁底曲線冪次來改善主梁的綜合性能。
(5)支點高跨比對主梁綜合性能影響最為顯著,各試驗因素影響大小順序依次為:支點高跨比>跨中高跨比>梁底曲線冪次>邊主跨比。