劉子凡,陳晨,黃潔,魏云霞,廖道龍
木薯種莖劣變的蛋白質(zhì)組學(xué)分析
劉子凡1,陳晨1,黃潔2,3*,魏云霞2,3,廖道龍4
(1.海南大學(xué)熱帶作物學(xué)院,海南 海口 570228;2.中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所,海南 儋州 571737;3.農(nóng)業(yè)農(nóng)村部木薯種質(zhì)資源保護與利用重點實驗室,海南 儋州 571737;4.海南省農(nóng)業(yè)科學(xué)院蔬菜研究所,海南 ???571100)
以華南8號(SC8)和南植199(NZ199)種莖為試驗材料,分析其在老化0、2、4、6 d的蛋白質(zhì)表達差異。與老化0 d的種莖相比,老化2、4、6 d的種莖,SC8的差異表達蛋白質(zhì)總數(shù)分別為38、64和68個,上調(diào)表達的差異蛋白質(zhì)數(shù)分別為11、18和25個,下調(diào)表達的差異蛋白質(zhì)數(shù)分別為27、46和43個;NZ199的差異表達蛋白質(zhì)總數(shù)分別為55、63和84個,上調(diào)表達的差異蛋白質(zhì)數(shù)分別為17、23和43個,下調(diào)表達的差異蛋白質(zhì)數(shù)分別為38、40和41個。與老化0、2、4 d凝膠相比,老化6 d種莖的凝膠中,SC8、NZ199分別檢測到19、36個共有差異蛋白質(zhì)點,且分別有17、30個被成功匹配;2個品種種莖差異蛋白點功能基本相似,主要涉及分子伴侶、碳水化合物和能量代謝、轉(zhuǎn)移、防御、解毒和抗氧化等相關(guān)蛋白質(zhì)。在成功匹配的差異蛋白質(zhì)中,D–3–磷酸甘油脫氫酶、磷酸甘油酸激酶、類殼三糖苷酶–1蛋白、蘋果酸酶、擬定肉桂醇脫氫酸、1–脫氧–D–木酮糖–5–磷酸還原異構(gòu)酶等差異蛋白質(zhì)下調(diào)表達;擬定谷胱甘肽硫–轉(zhuǎn)移酶parC、類異黃酮還原酶、病程相關(guān)蛋白Bet v I家族、熱激蛋白、GPN60蛋白、α–淀粉酶、ATP 合成酶β亞基和烯醇化酶等差異蛋白質(zhì)上調(diào)表達。差異表達蛋白質(zhì)主要參與對氧化應(yīng)激反應(yīng)、毒素分解、谷胱甘肽代謝、蛋白質(zhì)折疊和糖酵解等生物過程,分布于線粒體、葉綠體、溶質(zhì)、細胞質(zhì)、細胞壁等位置,主要發(fā)揮結(jié)合功能、催化活性和氧化還原功能。
木薯;種莖;劣變;蛋白質(zhì)組學(xué)
木薯(Crantz)是世界三大薯類作物之一,主要用于食用及加工淀粉、乙醇等。木薯主要以種莖種植,常因貯藏技術(shù)欠佳,導(dǎo)致種莖質(zhì)量變差。為了提高木薯種莖質(zhì)量,前人在改良種莖貯藏方法[1–4]和優(yōu)選種莖處理方法[5–9]上進行了研究,但均需在種莖出苗后或測定產(chǎn)量后方可確定最終效果,所需時間長,期間又因環(huán)境因素不穩(wěn)定,導(dǎo)致重復(fù)性差。生產(chǎn)上,有通過觀察種莖老熟程度或種莖切口乳汁多少來判斷種莖質(zhì)量的方法,但經(jīng)驗性和主觀性成分大,容易誤判。
蛋白質(zhì)是生命現(xiàn)象最直接的體現(xiàn)者,蛋白質(zhì)的種類、數(shù)量及存在形式都會在種子老化過程中發(fā)生變化[10]。研究人員對不同作物種子劣變的蛋白質(zhì)組學(xué)機制進行了研究[11–13],但對木薯種莖的劣變機制研究尚少。本研究中,通過分析不同老化程度木薯種莖的蛋白質(zhì)表達差異,旨在為改進種莖貯藏與處理的技術(shù)、揭示木薯種莖劣變的分子機理提供依據(jù)。
供試木薯品種為華南8號(SC8)和南植199 (NZ199),由中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所提供。2017年3月24日,種植于中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所六坡基地。株行距均為80 cm。2018年2月25日收獲。收獲時在離地10 cm處砍斷種莖,去除20 cm頂梢及所有葉片,獲得種莖材料。
取上述種莖材料進行人工加速老化,設(shè)0、2、4、6 d 4個老化時間(分別用A0、A2、A4和A6表示)。3次重復(fù)。參照文獻[14]的方法進行老化,獲得4種不同活力的種莖材料,去除髓部,液氮冷凍后,于粉碎機中粉碎。粉末保存于–80 ℃的冰箱中,備用。
1.2.1種莖蛋白質(zhì)的提取與分離
采用苯酚甲醇醋酸銨法提取蛋白質(zhì)。加800 μL裂解液至蛋白樣品中,參照文獻[15]的方法配置溶解液,室溫下溶解1 h,13 000 r/min離心5 min;分裝,每管50 μL,用于蛋白定量和SDS–PAGE。參照文獻[16]的方法進行蛋白定量;參照文獻[17]的方法進行單向SDS–PAGE凝膠電泳檢測和蛋白質(zhì)雙向電泳分離。
1.2.2凝膠圖像掃描
用Image Scanner Ⅲ 掃描儀(GE healthcare)掃描脫色后的雙向電泳凝膠并保存圖像。運用AlphaEaseFC(ChemiImager 4400)進行圖片數(shù)據(jù)轉(zhuǎn)換。
1.2.3差異表達蛋白的選取
運用Delta2D 4.1雙向電泳軟件,對全蛋白質(zhì)圖譜進行蛋白質(zhì)點統(tǒng)計和定量分析,以蛋白點歸一化體積表示其相對表達豐度,以A0的蛋白質(zhì)雙向電泳圖譜作為對照,分別與A2、A4和A6的圖譜進行兩兩比對,找出差異蛋白點,編號。再從A6凝膠中選擇與A0、A2、A4凝膠共有的、清晰的差異點。重復(fù)3次,進行T檢驗。差異表達量在2.0倍以上的為差異表達蛋白質(zhì)點[18],包括老化途中徹底消失或新生成的差異蛋白質(zhì)點。選取清晰的點,用特制的挖點槍頭挖點,重新編號,放入預(yù)先滅菌并裝有60 μL去離子水的1.5 mL離心管內(nèi)。
1.2.4差異表達蛋白的鑒定及GO分析
將差異表達蛋白質(zhì)送至深圳華大基因公司進行檢測,檢測結(jié)果通過Mascot軟件,從NCBInr、SwissProt和EST數(shù)據(jù)庫分析其名稱、功能、亞細胞定位、登錄號等信息;通過Uniprot及TargetP 1.1 Server網(wǎng)站對鑒定的蛋白質(zhì)進行GO分析,獲得差異表達蛋白質(zhì)的功能分類、生物學(xué)過程分析和亞細胞定位的注釋。
經(jīng)pH值4.0~7.0的線性IPG膠條和12%SDS– PAGE凝膠,對A0、A2、A4、A6 種莖蛋白質(zhì)進行IEF和SDS–PAGE雙向分離、考馬斯亮藍G250染色及掃描后,獲得的種莖全蛋白質(zhì)電泳圖圖譜較清晰,點較多,蛋白分離情況良好,蛋白質(zhì)點基本為圓形,無明顯拖尾現(xiàn)象,說明已成功分離出木薯種莖全蛋白質(zhì)。
比較木薯種莖差異表達蛋白總數(shù)發(fā)現(xiàn),與A0種莖相比,SC8種莖A2、A4、A6的差異表達蛋白質(zhì)總數(shù)分別為38、64和68個,NZ199種莖A2、A4、A6的差異表達蛋白質(zhì)總數(shù)分別為55、63和84個。說明木薯種莖老化程度越高,差異表達蛋白質(zhì)總數(shù)越多。SC8種莖差異表達蛋白質(zhì)總數(shù)呈先快速增加后趨于平緩的變化趨勢,而NZ199種莖一直呈快速增加的變化趨勢。
比較木薯種莖上調(diào)、下調(diào)表達蛋白質(zhì),發(fā)現(xiàn)與A0種莖相比,SC8種莖A2、A4、A6的上調(diào)表達蛋白質(zhì)數(shù)分別為11、18和25個,NZ199種莖A2、A4、A6的上調(diào)表達蛋白質(zhì)分別為17、23和43個;SC8種莖A2、A4、A6的下調(diào)表達蛋白質(zhì)分別為27、46和43個,NZ199種莖A2、A4、A6的下調(diào)表達蛋白分別為38、40和41個??傮w上看,種莖下調(diào)表達蛋白質(zhì)數(shù)高于上調(diào)表達蛋白質(zhì)數(shù),這與種莖老化程度加深以及蛋白質(zhì)的合成、修飾、分泌受到影響有關(guān)。與A0相比,NZ199種莖A6的下調(diào)表達差異蛋白質(zhì)數(shù)小于上調(diào)表達差異蛋白質(zhì)數(shù),這可能與NZ199種莖的抗老化能力較強有關(guān)。
檢測A6凝膠中與A0、A2、A4凝膠共有的、清晰的差異蛋白質(zhì)點,發(fā)現(xiàn)SC8種莖和NZ199種莖分別有19、36個差異蛋白質(zhì)點。將上述差異蛋白質(zhì)點進行質(zhì)譜鑒定與分析,分別成功匹配到17、30個差異蛋白質(zhì)點,具體信息分別見表1和表2。
表1 從SC8種莖鑒定的17個差異表達蛋白質(zhì)的相關(guān)信息
表1(續(xù))
表2 從NZ199種莖鑒定出的30個差異表達蛋白質(zhì)的相關(guān)信息
從表1和表2可知,2個品種種莖均存在不同的蛋白質(zhì)點鑒定為同一蛋白質(zhì)的情況,例如:SC8種莖中點號為12、13、15的蛋白質(zhì)點,NZ199種莖中點號為6和9的蛋白質(zhì)點,這可能是由蛋白質(zhì)的降解或者甲基化、磷酸化修飾等造成的[19]。另外,2個品種木薯種莖的差異蛋白質(zhì)點功能也基本相似,均含有分子伴侶、碳水化合物和能量代謝、轉(zhuǎn)移、防御及解毒和抗氧化5類相關(guān)蛋白質(zhì),且在其功能蛋白質(zhì)中均存在著許多共同的蛋白。2個品種共同的差異蛋白質(zhì)相對分子質(zhì)量值為17 000~55 000,理論等電點為5~7。說明木薯種莖劣變時,主要是這幾類小分子質(zhì)量的弱酸性蛋白質(zhì)發(fā)生了較大變化。
從表1和表2還可以看出,差異蛋白質(zhì)中碳水化合物和能量代謝相關(guān)蛋白質(zhì),SC8種莖中,NADP+依賴型蘋果酸酶(NADP–ME)、磷酸甘油酸激酶(PGK)、D–3–磷酸甘油酸脫氫酶、擬定肉桂醇脫氫酶下調(diào)表達,α–淀粉酶上調(diào)表達;NZ199種莖中,蘋果酸酶、磷酸甘油酸激酶、擬定甘露醇脫氫酶和類殼三糖苷酶–1蛋白下調(diào)表達,烯醇化酶和ATP合成酶β亞基上調(diào)表達。差異蛋白質(zhì)中轉(zhuǎn)移相關(guān)蛋白質(zhì),SC8種莖中均為擬定谷胱甘肽硫–轉(zhuǎn)移酶parC(GSTs),NZ199種莖中有2個GSTs、1個S–甲酰谷胱甘肽水解酶均上調(diào)表達。差異蛋白質(zhì)中防御相關(guān)蛋白質(zhì),SC8種莖中均為病程相關(guān)蛋白Bet v I家族;NZ199種莖中,2個病程相關(guān)蛋白Bet v I家族和1個脫水蛋白均上調(diào)表達。差異蛋白質(zhì)中解毒和抗氧化相關(guān)蛋白質(zhì),SC8種莖中均為胞漿亞型2 L–抗壞血酸過氧化物酶(APX),且下調(diào)表達;NZ199種莖中擬定核氧化還原蛋白1和類異黃酮還原酶上調(diào)表達,APX和1–脫氧–D–木酮糖–5–磷酸還原異構(gòu)酶蛋白(DXR)下調(diào)表達。分子伴侶相關(guān)蛋白質(zhì),SC8種莖中類熱休克同源蛋白70–2和熱激蛋白70,NZ199種莖中線粒體亞型X2熱激蛋白90–6、熱休克同源蛋白70、I型類熱激蛋白17.3、線粒體型熱激蛋白23.6和CPN60蛋白,均上調(diào)表達。說明種莖劣變會導(dǎo)致種莖細胞受到損傷,種莖為維持自身活力,會啟動應(yīng)激機制進行自身修復(fù)。
根據(jù)UniprotKB(http://www.uniprot.org/uniprot/)網(wǎng)站上每個蛋白質(zhì)的注釋及其參與的生化途徑,進行功能分類、生物學(xué)過程分析和亞細胞定位。
從圖1可以看出,SC8種莖的17個差異蛋白質(zhì)中,參與結(jié)合功能的蛋白質(zhì)有9個,參與催化活性的蛋白質(zhì)7個(催化α淀粉酶活性1個、磷酸甘油酸脫氫酶活性1個、放氧活動1個、氧化還原酶活性4個),參與氧化還原的蛋白質(zhì)7個(過氧化物酶3個、轉(zhuǎn)移酶4個);NZ199種莖的30個差異蛋白質(zhì)中,參與結(jié)合功能的蛋白質(zhì)19個,參與催化活性的蛋白質(zhì)7個,參與氧化還原的蛋白質(zhì)8個(氧化還原酶5個、過氧化物酶3個)。
圖1 木薯種莖差異表達蛋白質(zhì)的GO分子功能分類
從圖2可以看出,SC8種莖差異蛋白質(zhì)中,參與對氧化應(yīng)激反應(yīng)過程的占22%,參與毒素分解過程的占22%,參與谷胱甘肽代謝過程的占21%;NZ199種莖差異蛋白質(zhì)中,參與蛋白質(zhì)折疊過程的占22%,參與對氧化應(yīng)激反應(yīng)過程的占16%,參與糖酵解過程的占16%。說明木薯種莖的劣變是由于結(jié)合功能的蛋白質(zhì)、氧化還原清除活性氧自由基的蛋白質(zhì)和催化某些酶活性的蛋白質(zhì)的上調(diào)或下調(diào)表達所致。
圖2 木薯種莖差異表達蛋白質(zhì)的功能歸類分析結(jié)果
從圖3可以看出,木薯種莖差異蛋白質(zhì)主要位于線粒體、葉綠體、溶質(zhì)、細胞質(zhì)、膜的整體組成部分、細胞壁、胞液和分泌蛋白質(zhì)上,SC8種莖和NZ199種莖中分別有47%、33%的差異蛋白質(zhì)分布在其他位置。說明種莖發(fā)生老化劣變時,差異蛋白質(zhì)分布多樣化,這有利于各類生理功能的發(fā)揮。
圖3 木薯種莖差異表達蛋白質(zhì)的亞細胞定位分析結(jié)果
營養(yǎng)缺乏、激素代謝紊亂、高溫、菌類感染等多種因素會導(dǎo)致植物細胞內(nèi)活性氧(ROS)濃度的增加,形成氧化脅迫[20]。對木薯種莖來說,高溫脅迫可導(dǎo)致種莖ROS濃度增加,最終導(dǎo)致種莖發(fā)生劣變。劣變的種莖細胞內(nèi)由于ROS積累形成二硫鍵,導(dǎo)致D–3–磷酸甘油酸脫氫酶的下調(diào)表達[21];劣變的種莖防御能力下降,其大分子物質(zhì)變性,合成酶活性下降,生理活性物質(zhì)被破壞與失衡。劉興暉等[22]的研究結(jié)果表明,殼三糖苷酶與防御能力呈正相關(guān)。蘋果酸酶的催化產(chǎn)物能夠促進多種抗逆物質(zhì)的合成;肉桂醇脫氫酶與植物木質(zhì)素生物合成有關(guān),木質(zhì)素可阻止各種病原菌的侵入,增強植物環(huán)境脅迫的應(yīng)對能力[23]。D–3–磷酸甘油酸脫氫酶將3–磷酸甘油酸氧化為3–磷酸羥基丙酮酸,形成合成蛋白質(zhì)所需的絲氨酸、甘氨酸和半胱氨酸;1–脫氧–D–木酮糖–5–磷酸還原異構(gòu)酶蛋白可能影響赤霉素的合成[24]。說明上述酶下調(diào)表達與種莖細胞受到脅迫有關(guān)。
種莖發(fā)生劣變時,自身修復(fù)的應(yīng)激機制會即刻啟動,以維持或恢復(fù)種莖活力。自身修復(fù)方式主要是抗衰老保護系統(tǒng)和去毒系統(tǒng)。GSTs參與細胞內(nèi)的毒素分解過程和谷胱甘肽代謝過程,清除有毒化合物[25];類異黃酮還原酶與植物中多種抗毒素的合成密切相關(guān)[26];防御相關(guān)蛋白質(zhì)中病程相關(guān)蛋白在細胞內(nèi)參與防御反應(yīng),抵御不良環(huán)境的影響[27–29];分子伴侶蛋白質(zhì)中的熱激蛋白HSP保護細胞膜和相關(guān)蛋白,以防種莖細胞脫水[30];CPN60蛋白與各種配體和細菌作用,參與抑制細胞凋亡[31–32],增強抗脅迫能力。種莖劣變時,種莖細胞上述差異蛋白質(zhì)的上調(diào)表達有助于清除種莖細胞ROS,維持種莖的活力,這與前人的研究結(jié)論一致[33]。α–淀粉酶能促進催化淀粉水解成可溶性糖,為有氧呼吸提供原料;ATP合成酶β亞基的活性下降影響細胞內(nèi)pH值和線粒體膜電位[34];烯醇化酶與呼吸作用密切相關(guān),在細胞能量代謝過程中具有重要作用[35]。α–淀粉酶、ATP合成酶β亞基和烯醇化酶的上調(diào)表達為種莖自身修復(fù)的運轉(zhuǎn)提供了能量,這也是種莖活力自身修復(fù)應(yīng)激機制的一種表現(xiàn)。本試驗中,SC8種莖α–淀粉酶上調(diào)表達,與陳晨等[33]的研究結(jié)果一致。
NADP–ME上調(diào)表達可維持膜的流動性[36];APX的過量表達可提高植物的抗逆能力[37];PGK是糖酵解的關(guān)鍵酶,該酶的缺乏可引起生物體代謝等功能的紊亂;防御相關(guān)蛋白質(zhì)中的脫水蛋白可清除細胞中的ROS,維持細胞膜的穩(wěn)定性[38]。上述蛋白質(zhì)上調(diào)表達有利于種莖活力的自身修復(fù)。本試驗中,NADP–ME、APX和PGK均下調(diào)表達,這是否與這些蛋白對逆境較敏感有關(guān),有待進一步研究。
[1] 張樹河,李海明,李和平,等.不同擺放方式對木薯種莖貯藏效果的影響[J].福建熱作科技,2016,41(3):16–18. ZHANG S H,LI H M,LI H P,et al.Effects of different setting patterns on cassava stem storage[J].Fujian Science & Technology of Tropical Crops,2016,41(3):16–18.
[2] 陸燦升.如何選留及貯藏木薯種莖[J].農(nóng)家之友,2001(12):29. LU C S.How to select and store cassava stem[J].Friends of Farmers,2001(12):29.
[3] 劉斌,申章佑,甘秀芹,等.中國木薯種莖越冬貯藏區(qū)域劃分及其安全貯藏方法[J].南方農(nóng)業(yè)學(xué)報,2013,44(12):1992–1996. LIU B,SHEN Z Y,GAN X Q,et al.Overwintering safe storage methods and region division of seedstem of cassava in China[J].Journal of Southern Agriculture,2013,44(12):1992–1996.
[4] 樊吳靜,羅興錄,阮榆.不同貯藏方式對木薯種莖發(fā)芽及其相關(guān)生理特性影響研究[J].中國農(nóng)學(xué)通報,2012,28(33):65–70. FAN W J,LUO X L,RUAN Y.Effects of different storage methods on germination and physiological indexes of seed-stem of cassava[J].Chinese Agricultural Science Bulletin,2012,28(33):65–70.
[5] 陸小靜,劉子凡,柳紅娟,等.含鈣藥劑浸種對木薯產(chǎn)量和品質(zhì)的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2014,40(4):349–352. LU X J,LIU Z F,LIU H J,et al.Effect of seedling soaking by some sorts of medicaments upon the yield and quality of cassava[J].Journal of Hunan Agricultural University(Natural Sciences),2014,40(4):349–352.
[6] 李天,魏云霞,黃潔,等.石灰種莖處理對木薯萌發(fā)和幼苗生長的影響[J].江西農(nóng)業(yè)學(xué)報,2018,30(5):1–6. LI T,WEI Y X,HUANG J,et al.Effects of treating seed stem with lime on seed stem germination and seedling growth of cassava[J].Acta Agriculturae Jiangxi,2018,30(5):1–6.
[7] 羅興錄.云大–120浸種對木薯的增產(chǎn)效應(yīng)[J].西南農(nóng)業(yè)學(xué)報,2001,14(1):87–90. LUO X L.Studies on the effects of increasing cassava yield by soaking the seed-stems with homobrassino-lide[J]. Southwest China Journal of Agricultural Sciences,2001,14(1):87–90.
[8] 劉海剛,黃潔,羅會英,等.種莖覆膜、浸水和蠟封對木薯抗旱性的影響[J].熱帶作物學(xué)報,2014,35(4):668–672. LIU H G,HUANG J,LUO H Y,et al.The drought resistance effect of mulching film,soaking water and sealing wax for cassava cutting[J].Chinese Journal of Tropical Crops,2014,35(4):668–672.
[9] 蘇必孟,劉子凡,黃潔,等.基于主成分分析的木薯抗旱栽培措施的綜合評價[J].熱帶作物學(xué)報,2017,38(2):189–193. SU B M,LIU Z F,HUANG J,et al.Assessment on drought resistance cultivation of cassava based on principal component analysis[J].Chinese Journal of Tropical Crops,2017,38(2):189–193.
[10] KONG L Q,HUO H Q,MAO P S.Antioxidant response and related gene expression in aged oat seed[J].Frontiers in Plant Science,2015,6:158.
[11] 王志軍,葉春秀,李有忠,等.棉花種子活力劣變的差異蛋白質(zhì)組學(xué)研究[J].西北植物學(xué)報,2017,37(11):2204–2213. WANG Z J,YE C X,LI Y Z,et al.Differential proteomics analysis of seed deterioration in cotton[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(11):2204–2213.
[12] 宋利茹,王爽,牛娟,等.春大豆種子田間劣變性和劣變抗性的差異蛋白質(zhì)組學(xué)研究[J].中國農(nóng)業(yè)科學(xué),2015,48(1):23–32. SONG L R,WANG S,NIU J,et al.Differentially proteomics analysis of pre-harvest seed deterioration and deterioration resistance in spring soybean[J].Scientia Agricultura Sinica,2015,48(1):23–32.
[13] 孔令琪.不同老化處理對燕麥種子生理、蛋白質(zhì)及抗氧化基因的影響[D].北京:中國農(nóng)業(yè)大學(xué),2015. KONG L Q.Physiological changes,protein and related antioxidant gene expression responses ofL. seed under different aging treatment[D].Beijing:China Agricultural University,2015.
[14] 陳晨,黃潔,劉子凡,等.木薯種莖活力的生理生化鑒評指標(biāo)研究[J].生態(tài)科學(xué),2019,38(3):125–132. CHEN C,HUANG J,LIU Z F,et al.Study on physiological and biochemical evaluation indices of cassava(Crantz) stem vigor[J]. Ecological Science,2019,38(3):125–132.
[15] 林楊杰,趙明,楊生超,等.大豆種子蛋白質(zhì)組樣品制備方法研究[J].大豆科學(xué),2016,35(5):810–817. LIN Y J,ZHAO M,YANG S C,et al.A study on sample preparations for proteomics of soybean seeds[J].Soybean Science,2016,35(5):810–817.
[16] SHAW M M,RIEDERER B M.Sample preparation for two-dimensional gel electrophoresis[J].Proteomics,2003,3(8):1408–1417.
[17] 宋雁超.嫁接影響木薯塊根產(chǎn)量變化的蛋白質(zhì)組學(xué)分析[D].海口:海南大學(xué),2017. SONG Y C.The proteomic analysis regarding the effects of grafting on the yield of cassava storage roots[D]. Haikou:Hainan University,2017.
[18] CHEN S B,GLAZER I,GOLLOP N,et al.Proteomic analysis of the entomopathogenic nematodeIS-6 IJs under evaporative and osmotic stresses[J]. Molecular and Biochemical Parasitology,2006,145(2):195–204.
[19] 王瑩慧,孫萌萌,汪育文,等.高產(chǎn)雜交水稻兩優(yōu)培九衰老進程中劍葉差異蛋白質(zhì)組學(xué)分析[J].江蘇農(nóng)業(yè)學(xué)報,2018,34(6):1207–1216.WANG Y H,SUN M M,WANG Y W,et al. Comparative flag leaf proteomic profiling of high-yielding hybrid rice Liangyoupeijiu during senescence[J].Jiangsu Journal of Agricultural Sciences,2018,34(6):1207–1216.
[20] FOYER C H,NOCTOR G.Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J].Plant,Cell & Environment,2005,28(8):1056–1071.
[21] 王三根,宗學(xué)鳳.植物抗性生物學(xué)[M].重慶:西南師范大學(xué)出版社,2015. WANG S G,ZONG X F.Plant resistance biology[M]. Chongqing:Southwest China Normal University Press,2015.
[22] 劉興暉,趙磊,周新.殼三糖苷酶研究進展[J].醫(yī)學(xué)綜述,2006,12(11):700–701. LIU X H,ZHAO L,ZHOU X.Progress in research of chitotriosidase[J].Medical Recapitulate,2006,12(11):700–701.
[23] BOERJAN W,RALPH J,BAUCHER M.Lignin biosynthesis[J].Annual Review of Plant Biology,2003,54(1):519–546.
[24] XING S F,MIAO J,LI S,et al.Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino,dwarf and defects in trichome initiation and stomata closure in[J].Cell Research,2010,20(6):688–700.
[25] 張雪,陶磊,喬晟,等.谷胱甘肽轉(zhuǎn)移酶在植物抵抗非生物脅迫方面的角色[J].中國生物工程雜志,2017,37(3):92–98. ZHANG X,TAO L,QIAO S,et al.Roles of glutathione S-transferase in plant tolerance to abiotic stresses[J]. China Biotechnology,2017,37(3):92–98.
[26] BRANDALISE M,SEVERINO F E,MALUF M P,et al. The promoter of a gene encoding an isoflavone reductase-like protein in coffee() drives a stress-responsive expression in leaves[J].Plant Cell Reports,2009,28(11):1699–1708.
[27] VAN LOON L C,REP M,PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J].Annual Review of Phytopathology,2006,44:135–162.
[28] LIU J J,STURROCK R,EKRAMODDOULLAH A K M.The superfamily of thaumatin-like proteins:its origin,evolution,and expression towards biological function[J]. Plant Cell Reports,2010,29(5):419–436.
[29] JAIN D,KHURANA J P.Role of pathogenesis-related (PR) proteins in plant defense mechanism[J].Molecular Aspects of Plant-Pathogen Interaction,2018:265–281.
[30] GHOSH S,PAL A.Identification of differential proteins of mungbean cotyledons during seed germination:a proteomic approach[J].Acta Physiologiae Plantarum,2012,34(6):2379–2391.
[31] ZANIN-ZHOROV A,BRUCK R,TAL G,et al.Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines[J].Journal of Immunology,2005,174(6):3227–3236.
[32] ZANIN-ZHOROV A,TAL G,SHIVTIEL S,et al.Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells:effects on signaling,chemotaxis,and inflammation[J]. Journal of Immunology,2005,175(1):276–285.
[33] 陳晨,劉子凡,黃潔,等.木薯種莖活力的評價指標(biāo)研究[J].云南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)),2019,34(4):583–589. CHEN C,LIU Z F,HUANG J,et al.Study on the index of cassava seed stem vigor[J].Journal of Yunnan Agricultural University (Natural Science),2019,34(4):583–589.
[34] 朱智耀,高彥彬,劉靜,等.糖脂平對胰島素抵抗大鼠PGC–1α、細胞色素C、ATP合成酶β亞基基因表達影響[J].世界中西醫(yī)結(jié)合雜志,2016,11(12):1656–1658. ZHU Z Y,GAO Y B,LIU J,et al.Impacts of tangzhiping on genetic expressions of PGC-1α,cytochrome C and ATP synthases β subunit in the rats of insulin resistance[J].World Journal of Integrated Traditional and Western Medicine,2016,11(12):1656–1658.
[35] 楊亞平.水稻種子劣變的生理生化機制及其相關(guān)蛋白質(zhì)研究[D].長沙:湖南師范大學(xué),2008. YANG Y P.Studies on the physiological and biochemical mechanisms and the proteins relative to deterioration of rice seeds[D].Changsha:Hunan Normal University,2008.
[36] 劉增輝,邵宏波,初立業(yè),等.干旱、鹽、溫度對植物體NADP–蘋果酸酶的影響與機理[J].生態(tài)學(xué)報,2010,30(12):3334–3339. LIU Z H,SHAO H B,CHU L Y,et al.The effect and the mechanism of drought,salt and temperature on NADP-malic enzymes in plants[J].Acta Ecologica Sinica,2010,30(12):3334–3339.
[37] DAVLETOVA S,RIZHSKY L,LIANG H J,et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of[J]. The Plant Cell,2005,17(1):268–281.
[38] HARA M,F(xiàn)UJINAGA M,KUBOI T.Radical scavenging activity and oxidative modification of citrus dehydrin[J].Plant Physiology and Biochemistry,2004,42(7/8):657–662.
Proteomics profiling of the deteriorated cassava(Crantz) stem
LIU Zifan1, CHEN Chen1, HUANG Jie2,3*, WEI Yunxia2,3,LIAO Daolong4?
(1. College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China; 2. Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China; 3.Keys Laboratory of Protection and Utilization of Cassava Germplasm Resources, Ministry of Agriculture and Rural Affairs, Danzhou, Hainan 571737, China; 4. Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan 571100, China)
To look into theoretical basis of the molecular mechanism of deterioration, we took cassava() stem, cassava stems of South China 8 (SC8) and Nanzhi 199 (NZ199) varieties at four aging degrees as materials and characterized the differentially expressed proteins(DEPs) in the stems responding to four aging degrees. The results showed that: 1) Compared to the non-aged stems, 38 DEPs of the stems of SC8 with two-day age were up-regulated by 11 and down-regulated by 27, 64 DEPs from the stems of SC8 with four-day age were up-regulated by 18 and down-regulated by 46, and 68 DEPs from the stems of SC8 at six-day age were up-regulated by 25 and down-regulated by 43. 2) Compared to the non-aged stems, 55 DEPs of the NZ199 at two-day age were up-regulated by 17 and down-regulated by 38, 63 DEPs from of NZ199 at four-day age were up-regulated by 23 and down-regulated by 40, and 84 DEPs of NZ199 at six-day age were up-regulated by 43 and down-regulated by 41. 3) Compared to the non-aged stems, two days aged and four days aged treatment, 17 of 19 common DEPs were identified from the age of six days for SC8 stems, while 30 of 36 common DEPs were identified from the age of six days for NZ199 stems. These 30 proteins were grouped into five functional categories, chaperone proteins, carbon metabolism and energy metabolism related proteins, transfer proteins, defense proteins, detoxification and antioxidant related proteins. 4) D-3-phosphoglycerate dehydrogenase, phosphoglycerate kinase, chitotriosidase-1-like, malic enzyme, probable cinnamyl alcohol dehydrogenase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase were down-regulated, while probable glutathione S-transferase parC, isoflavone reductase-like, pathogenesis-related protein Bet v I family, heat shock protein, chaperonin CPN60, alpha amylase, ATP synthase subunit beta and enolase were up-regulated. 5) DEPs mainly participated in biological process, including response to oxidative stress, toxin catabolic process, glutathione metabolic process, protein folding and glycolytic process. The proteins were mainly located in mitochondria, chloroplasts, cytoplasm, cell wall, and etc, and played roles of binding, catalytic activity and oxidoreductase activity.
cassava; stem; deterioration; proteomics
S533.01
A
1007-1032(2020)04-0402-08
10.13331/j.cnki.jhau.2020.04.004
劉子凡,陳晨,黃潔,魏云霞,廖道龍.木薯種莖劣變的蛋白質(zhì)組學(xué)分析[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2020,46(4):402–409.
LIU Z F, CHEN C, HUANG J, WEI Y X,LIAO D L. Proteomics profiling of the deteriorated cassava(Crantz) stem[J]. Journal of Hunan Agricultural University(Natural Sciences), 2020, 46(4): 402–409.
http://xb.hunau.edu.cn
2019–09–09
2019–10–05
農(nóng)業(yè)農(nóng)村部現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS–11–hnhj);中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所非營利性科研機構(gòu)改革專項(pzsfyl–201807)
劉子凡(1975—),男,江西余干人,博士,副教授,主要從事熱帶作物高效栽培與種子科學(xué)研究,jiangxilaobiao@163.com;
,黃潔,碩士,研究員,主要從事木薯高產(chǎn)栽培研究,hnhjcn@163.com
責(zé)任編輯:毛友純
英文編輯:柳正