• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于Elastic Net特征變量選擇的黃山毛峰茶等級(jí)評(píng)價(jià)

      2020-08-12 15:00:08潘天紅李魚(yú)強(qiáng)
      關(guān)鍵詞:兒茶素黃山茶葉

      潘天紅,李魚(yú)強(qiáng),陳 琦,陳 山

      基于Elastic Net特征變量選擇的黃山毛峰茶等級(jí)評(píng)價(jià)

      潘天紅1,2,李魚(yú)強(qiáng)2,陳 琦3,陳 山2

      (1. 安徽大學(xué)電氣工程與自動(dòng)化學(xué)院,合肥 230061;2. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013;3.黃山海關(guān)茶葉質(zhì)量安全研究中心,黃山 245000)

      為簡(jiǎn)化茶葉化學(xué)檢測(cè)分析過(guò)程,實(shí)現(xiàn)茶葉高精度等級(jí)評(píng)價(jià),該研究以黃山毛峰茶為研究對(duì)象,結(jié)合茶葉中茶多酚、兒茶素、咖啡堿、沒(méi)食子酸及氨基酸成分檢測(cè),提出基于Elastic Net特征變量選擇的茶葉等級(jí)評(píng)價(jià)方法,建立基于特征成分的黃山毛峰茶等級(jí)評(píng)價(jià)模型。試驗(yàn)選取6個(gè)不同等級(jí)共96個(gè)黃山毛峰茶葉樣品,并分析了全部樣品的19個(gè)成分,通過(guò)Elastic Net選取了9個(gè)特征成分(沒(méi)食子酸、表兒茶素沒(méi)食子酸酯、兒茶素、表兒茶素、沒(méi)食子酸兒茶素沒(méi)食子酸酯、表沒(méi)食子兒茶素、谷氨酸、精氨酸和兒茶素苦澀味指數(shù))建立等級(jí)評(píng)價(jià)模型,并與主成分分析(Principal Components Analysis, PCA)進(jìn)行對(duì)比。100次蒙特卡羅試驗(yàn)結(jié)果表明,相比于PCA預(yù)測(cè)集準(zhǔn)確率平均值為70.79%,基于Elastic Net特征變量選擇的黃山毛峰茶等級(jí)評(píng)價(jià)準(zhǔn)確率更高為78.72%。在此基礎(chǔ)上,構(gòu)建Elastic Net特征變量雷達(dá)圖,實(shí)現(xiàn)黃山毛峰茶等級(jí)多變量綜合評(píng)價(jià)可視化。研究結(jié)果表明所提方法可有效選擇茶葉特征成分,提高黃山毛峰茶等級(jí)評(píng)價(jià)準(zhǔn)確率,為茶葉高精度等級(jí)評(píng)價(jià)提供參考。

      模型;品質(zhì)控制;Elastic Net;特征變量選擇;黃山毛峰茶;等級(jí)評(píng)價(jià)

      0 引 言

      黃山毛峰作為中國(guó)十大名茶之一,以其香高持久等特點(diǎn)擁有一定的國(guó)際市場(chǎng)[1-2]。然而,隨著市場(chǎng)的不斷擴(kuò)大,茶葉摻假現(xiàn)象的不斷發(fā)生不僅損害了黃山綠茶的市場(chǎng)形象,也限制了地方經(jīng)濟(jì)的快速發(fā)展,如何實(shí)現(xiàn)茶葉精準(zhǔn)評(píng)價(jià)是目前限制綠茶發(fā)展的關(guān)鍵問(wèn)題[3]。傳統(tǒng)感官分析方法主要通過(guò)感官實(shí)現(xiàn)茶葉品質(zhì)評(píng)價(jià)和產(chǎn)地識(shí)別,但是其主觀性強(qiáng)、穩(wěn)定性差。此外,由于人工檢測(cè)效率低,該方法無(wú)法實(shí)現(xiàn)大批量檢測(cè)分析[4-5]。

      綠茶品質(zhì)的級(jí)別差異主要體現(xiàn)在外觀、湯色、滋味、香氣和葉底等5個(gè)感官指標(biāo),而支持這些表觀現(xiàn)象的根本是其所含化學(xué)物質(zhì)的種類及含量[6-8]。為避免感官評(píng)審的主觀性,各種基于茶葉內(nèi)在成分差異的分析方法不斷被提出[7,9-10]。王曼等[11]通過(guò)近紅外光譜技術(shù)構(gòu)建了黃山毛峰茶鮮葉含水率和粗纖維含量的定量預(yù)測(cè)模型,實(shí)現(xiàn)了摻假茶葉的鑒別分析;吳正敏等[12]提出了基于形態(tài)特征參數(shù)的茶葉等級(jí)評(píng)價(jià)模型,利用茶葉篩選過(guò)程中的形態(tài)特性實(shí)現(xiàn)茶葉精選;武小紅等[13]利用傅里葉光譜分析技術(shù),提出一種基于模糊聚類的茶葉分級(jí)評(píng)價(jià)模型;孫俊等[14]提出一種基于低秩自動(dòng)編碼器及高光譜圖像技術(shù)的茶葉品種鑒別方法,實(shí)現(xiàn)了不同品種的分類鑒別。

      上述方法雖然在一定程度上實(shí)現(xiàn)了較高精度的茶葉品種鑒別和等級(jí)評(píng)價(jià),但是對(duì)于同一產(chǎn)地的不同等級(jí)茶葉,其紅外指紋圖譜和圖像特征信息基本相似,無(wú)法通過(guò)光譜指紋圖譜和高光譜圖像提取有效特征變量[15-19]。因此,應(yīng)用各種化學(xué)分析技術(shù)對(duì)茶葉進(jìn)行化學(xué)品質(zhì)鑒定仍是目前最有效的分析手段,但是化學(xué)方法檢測(cè)繁瑣、周期長(zhǎng)、成本高,而且不利于茶葉市場(chǎng)監(jiān)管[20]。前期研究發(fā)現(xiàn),不同產(chǎn)區(qū)或產(chǎn)地茶葉等級(jí)差異主要取決于主要成分和礦物元素含量[5],但對(duì)于黃山毛峰茶等特定產(chǎn)區(qū)的不同等級(jí)茶葉,其主要成分含量相近,只有少數(shù)特征成分之間存在差異。因此,可通過(guò)選擇特征成分以減少實(shí)際茶葉品質(zhì)分析化學(xué)指標(biāo),降低檢測(cè)成本和檢測(cè)時(shí)間,并提高相應(yīng)模型分析精度。

      本文以黃山毛峰茶為研究對(duì)象,利用Elastic Net分析方法進(jìn)行茶葉中特征成分分析選擇,建立基于特征成分的茶葉等級(jí)評(píng)價(jià)模型,并采用蒙特卡羅法進(jìn)行等級(jí)評(píng)價(jià)建模穩(wěn)定性分析,為黃山毛峰茶實(shí)際等級(jí)評(píng)價(jià)提供理論依據(jù)。

      1 材料與方法

      1.1 材料

      分批在黃山市代表性產(chǎn)區(qū)徽州區(qū)富溪村、楊村和新田村3個(gè)產(chǎn)地采摘茶鮮葉樣品,并使用手工制作工藝制備黃山毛峰茶樣品。工藝主要包括殺青、揉捻和烘焙[21],其中:1)殺青:每批將500 g左右的鮮葉均勻攤放在銅鍋底部,在150 ℃下悶殺2 min;然后在130℃鍋溫下翻炒殺青,翻炒至葉質(zhì)可揉捻成團(tuán)、嫩梗不易折斷。2)揉捻:殺青起鍋后,將殺青葉均勻攤放,待熱氣散失后,反復(fù)揉捻殺青葉1~2 min,使青葉卷曲成條狀。3)烘焙:將青葉按0.5~1.5 cm厚度均勻攤放在烘籠頂部,反復(fù)檢測(cè)干燥程度,烘干到茶葉含水率為4%~6%。

      邀請(qǐng)7名評(píng)茶員對(duì)制備樣品進(jìn)行感官評(píng)審,共選取了96個(gè)黃山毛峰茶標(biāo)準(zhǔn)樣品,每個(gè)標(biāo)準(zhǔn)樣采集1 000 g,不同等級(jí)標(biāo)準(zhǔn)樣品數(shù)量如表1所示,不同等級(jí)按照采摘時(shí)間劃分。

      表1 不同等級(jí)標(biāo)準(zhǔn)樣品數(shù)量

      注:表中特一、特二和特三分別表示茶葉等級(jí)為特級(jí)一等、特級(jí)二等和特級(jí)三等,下同。

      Note: the AD 1stgrade, AD 2ndgrade and AD 3rdgrade in table 1 represent the tea’s grade are advanced first grade, advanced second grade and advanced third grade, respectively, the same below.

      1.2 試驗(yàn)儀器

      液相色譜四極桿靜電場(chǎng)軌道阱高分辨質(zhì)譜儀(美國(guó)Thermo Fisher公司)、ACQUITY UPLC I-Class超高效液相色譜儀(美國(guó)Waters公司)、S-433D氨基酸分析儀(德國(guó)SYKAM公司)、CEM MARS 5微波萃取儀(德國(guó)LCTech公司)、Mettler-AL204-IC電子天平(瑞士METTLER TOLEDO公司)、HH-6數(shù)顯恒溫水浴鍋(上海浦光公司)、Hettich Universal 320R臺(tái)式離心機(jī)(德國(guó)Hettich公司)、UV2550分光光度計(jì)(日本島津公司)、S40 Seven Multi型pH儀(德國(guó)Mettler公司)、Vottex-Genie 2漩渦混合器(美國(guó)SI儀器公司)、KQ200DE超聲波清洗機(jī)(昆山市超聲儀器有限公司)、Milli-Qgradient超純水儀(美國(guó)密理博公司)、1095樣品磨機(jī)(瑞典FOSS公司)。

      1.3 試驗(yàn)方法

      茶多酚總量按照《GB/T 8313-2018 茶葉中茶多酚和兒茶素類含量的檢測(cè)方法》第4部分“茶葉中茶多酚的檢測(cè)”進(jìn)行測(cè)定。氨基酸總量按照《GB/T 8314-2013茶游離氨基酸總量的測(cè)定》進(jìn)行。利用氨基酸分析儀測(cè)定茶葉中26種氨基酸,利用微波輔助萃取結(jié)合超高效液相色譜-四極桿靜電場(chǎng)軌道阱組合高分辨質(zhì)譜聯(lián)用同時(shí)測(cè)定茶葉中的兒茶素、沒(méi)食子酸和咖啡堿。

      1.3.1 茶葉中兒茶素、沒(méi)食子酸和咖啡堿測(cè)定

      樣品處理:稱取0.2 g磨碎試樣于50 mL試管中,加入10 mL在70 ℃預(yù)熱過(guò)的體積分?jǐn)?shù)為70%甲醇溶液,放入70 ℃水浴鍋中提取10 min(5 min時(shí)震蕩一次)。取出后于3 000 r/min離心10 min,吸取上清液于50 mL容量瓶中。重復(fù)提取2次,合并上清液,用5 mL的70%甲醇洗滌槍頭,用水定容至刻度。

      樣品凈化:取250L的樣品提取液用水稀釋4倍,經(jīng)0.22m水系濾膜過(guò)濾至進(jìn)樣瓶中,供超高效液相色譜(Ultra Performance Liquid Chromatography, UPLC)分析。

      色譜柱,Waters ACQUITY UPLC BEH C18(2.1 mm× 100 mm,1.7m);柱溫,35 ℃;進(jìn)樣量,5L;檢測(cè)器,紫外檢測(cè)器;檢測(cè)波長(zhǎng),278 nm。根據(jù)GB/T 8312-2013中測(cè)定兒茶素的流動(dòng)相作為依據(jù),流動(dòng)相A:2.5%乙酸水溶液,流動(dòng)相B:乙腈,洗脫程序:0~0.8 min,5%~10% B;0.8~2.4 min,10% B;2.4~3.2 min,10%~20% B;3.2~4.0 min,20% B;4.0~4.8 min,20%~10% B,4.8~5.0 min,10%~5% B。

      1.3.2 茶葉中26種氨基酸含量測(cè)定

      樣品處理:稱取2.0 g茶葉磨碎樣品,放入250 mL具塞錐形瓶?jī)?nèi),加入預(yù)先煮沸的沸水100 mL,蓋好蓋子,沸水浴加熱30 min(每5 min震蕩一次)。取出,待茶葉靜置到底部,取上清液5 mL于50 mL離心管中,加入質(zhì)量分?jǐn)?shù)為4%的磺基水楊酸溶液15 mL,渦旋30 s后靜置10 min,5 000 r/min離心5 min(使溶液中的蛋白質(zhì)完全被除去),取上清液1 mL于另一離心管中,用1 mL樣品稀釋液稀釋,渦旋使之混勻,過(guò)0.22m水系膜至進(jìn)樣小瓶,待進(jìn)樣。

      儀器條件:樣量,50L;色譜柱,鋰離子型磺酸基強(qiáng)酸性陽(yáng)離子交換柱;流動(dòng)相A:pH 值2.90,流動(dòng)相B:pH值4.20,流動(dòng)相C:pH值8.00;試劑,茚三酮溶液;洗脫泵流速,0.45 mL/min;衍生泵流速,0.25 mL/min;雙通道光度計(jì)檢測(cè)波長(zhǎng),570 nm和440 nm;反應(yīng)器溫度,130 ℃。

      氨基酸定性和定量檢測(cè):通過(guò)氨基酸保留時(shí)間進(jìn)行定性檢測(cè),利用標(biāo)準(zhǔn)物質(zhì)外標(biāo)法定量。在色譜條件下進(jìn)行標(biāo)準(zhǔn)溶液外標(biāo)法定量時(shí),除了茶氨酸決定系數(shù)為0.998之外,其他氨基酸的決定系數(shù)均大于0.999。

      本文將兒茶素苦澀味指數(shù)作為成分變量進(jìn)行分析,因此最終獲取的黃山毛峰成分變量數(shù)為19。

      1.4 特征選擇方法

      化學(xué)分析數(shù)據(jù)含有19個(gè)成分變量,但是黃山毛峰茶的品質(zhì)源于特定茶葉產(chǎn)區(qū)的特有成分,不同等級(jí)之間品質(zhì)差異只取決于少數(shù)特征成分,因此選擇特征成分不僅能夠減少檢測(cè)時(shí)間、降低檢測(cè)成本,而且能夠有效提高檢測(cè)結(jié)果,對(duì)于實(shí)際檢測(cè)分析過(guò)程十分重要。

      設(shè)多變量回歸模型為:

      式中為懲罰系數(shù),表示回歸向量范數(shù)。

      當(dāng)=1時(shí),式(3)為最小絕對(duì)收斂和選擇算子(Least Absolute Shrinkage and Selection Operator, LASSO),LASSO方法以1(1范數(shù))作為懲罰項(xiàng)實(shí)現(xiàn)回歸系數(shù)壓縮,使絕對(duì)值較小的系數(shù)為0,從而實(shí)現(xiàn)特征變量選擇和稀疏系數(shù)估計(jì),其表達(dá)式為[23-25]:

      可知,當(dāng)=0和=1時(shí),Elastic Net分別為嶺回歸和LASSO回歸分析[24,26]。可通過(guò)變換將其轉(zhuǎn)換為L(zhǎng)ASSO的形式進(jìn)行求解,對(duì)于給定數(shù)據(jù)(*,*)和參數(shù)(1,2),定義數(shù)據(jù)集(,),滿足[27]:

      即:

      經(jīng)過(guò)數(shù)據(jù)變換后樣本維度變成了+而*秩為,故Elastic Net可實(shí)現(xiàn)全變量選擇,克服了LASSO的特征變量維度和共線性限制。

      1.5 模型評(píng)價(jià)指標(biāo)

      采用預(yù)測(cè)準(zhǔn)確率評(píng)價(jià)模型性能:

      式中為分析數(shù)據(jù)集樣本數(shù),N為預(yù)測(cè)準(zhǔn)確樣本數(shù),為模型預(yù)測(cè)精度。

      2 結(jié)果與分析

      2.1 成分分析

      試驗(yàn)采集茶葉成分分析如表2所示,不同茶葉成分測(cè)試基準(zhǔn)之間存在差異,導(dǎo)致所獲取的分析數(shù)據(jù)數(shù)量級(jí)差異較大,為避免因數(shù)據(jù)量綱差異而導(dǎo)致特征變量丟失現(xiàn)象,在下一步分析之前需對(duì)所有茶葉成分?jǐn)?shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化數(shù)據(jù)處理。

      表2 黃山毛峰茶成分分析表

      標(biāo)準(zhǔn)化處理后的成分相關(guān)性矩陣如表3所示,大部分成分之間相關(guān)性小于0.6,僅有GA與ECG(0.90)、咖啡堿與兒茶素總量(0.92)、ECG與精氨酸(0.78)、ECG與兒茶素苦澀味指數(shù)(0.73)、天冬氨酸與谷氨酸(0.82)、天冬氨酸與茶氨酸(0.80)、天冬氨酸與精氨酸(0.74)及谷氨酸與精氨酸(0.83)之間存在較強(qiáng)相關(guān)性,因此有必要分析特征成分,為實(shí)際毛峰等級(jí)評(píng)價(jià)提供指導(dǎo)。

      表3 黃山毛峰茶成分相關(guān)性分析表

      2.2 Elastic Net變量選擇

      由式(6)可知,Elastic net的優(yōu)化函數(shù)()包含系數(shù)(0<<1)和正則化系數(shù)(0<)。為確定模型參數(shù),本試驗(yàn)首先通過(guò)10次交叉驗(yàn)證確定系數(shù),然后基于最小均方誤差(Mean Squared Error, MSE)準(zhǔn)則確定正則化系數(shù)[26]。當(dāng)交叉驗(yàn)證確定參數(shù)=0.2時(shí),不同正則化系數(shù)MSE變化曲線如圖1所示,圖中箭頭所指為最小MSE點(diǎn)。由圖可知,基于MSE準(zhǔn)則的最佳正則化系數(shù)為=0.6。

      圖1 不同正則化系數(shù)均方誤差變化曲線(α=0.2)

      基于所選最佳系數(shù)(=0.2,=0.6),Elastic Net方法通過(guò)最小角回歸算法(Least Angle Regression, LAR)迭代計(jì)算19個(gè)成分變量稀疏系數(shù)[26],非零稀疏系數(shù)對(duì)應(yīng)成分變量即為特征成分變量。根據(jù)所得稀疏系數(shù),本文共選擇了9個(gè)特征成分變量(GA、ECG、C、EC、GCG、EGC、谷氨酸、精氨酸和兒茶素苦澀味指數(shù)),根據(jù)各變量貢獻(xiàn)率大小最終所選特征成分如圖2所示,可知選擇特征成分按貢獻(xiàn)率大小依次是ECG、GA、EC、精氨酸、EGC、兒茶素苦澀味指數(shù)、C、谷氨酸和GCG。

      圖2 特征成分貢獻(xiàn)率

      為驗(yàn)證Elastic Net變量選擇的有效性,對(duì)不同等級(jí)之間特征成分分布進(jìn)行可視化分析(圖3)。由圖可知不同等級(jí)之間選擇特征成分含量存在明顯差異??傮w上樣品等級(jí)越高,ECG、GA、谷氨酸、精氨酸和兒茶素苦澀味指數(shù)含量平均值越高,但是EC、EGC、GCG含量平均值越低。按照貢獻(xiàn)率大小選擇的前三特征成分ECG、GA、EC呈現(xiàn)出明顯的等級(jí)差異,但其他變量之間存在交叉現(xiàn)象,由此可知,Elastic Net能夠有效選擇具有等級(jí)差異化分布的特征成分。

      注:ECG、GA、EC、EGC、C、GCG分別為表兒茶素沒(méi)食子酸酯、沒(méi)食子酸、表兒茶素、表沒(méi)食子兒茶素、兒茶素、沒(méi)食子酸兒茶素沒(méi)食子酸酯。

      2.3 建模分析

      將黃山毛峰茶等級(jí)特一(#1)、特二(#2)、特三(#3)、一級(jí)(#4)、二級(jí)(#5)和三級(jí)(#6)依次進(jìn)行標(biāo)記,以GA、ECG、C、EC、GCG、EGC、谷氨酸、精氨酸和兒茶素苦澀味指數(shù)作為輸入變量,相應(yīng)等級(jí)屬性作為輸出,并將全部樣本隨機(jī)分為訓(xùn)練集(67, 70%)和預(yù)測(cè)集(29, 30%)進(jìn)行建模分析。預(yù)測(cè)結(jié)果分布如圖4所示,可知基于Elastic Net選擇特征成分所建模型的預(yù)測(cè)準(zhǔn)確率為79.31%,能夠?qū)崿F(xiàn)較高精度等級(jí)評(píng)價(jià),其中6個(gè)預(yù)測(cè)錯(cuò)誤樣本主要分布在相鄰等級(jí)屬性之間,其原因可能是不同等級(jí)茶葉樣品采集于同一產(chǎn)地,相同或相似的地理環(huán)境條件導(dǎo)致成分含量基本相同。

      2.4 模型對(duì)比

      為驗(yàn)證Elastic Net特征變量選擇的有效性,以原始數(shù)據(jù)為基準(zhǔn),采用相同的訓(xùn)練集和預(yù)測(cè)集樣本,分別對(duì)PCA(2個(gè)主成分,累計(jì)貢獻(xiàn)率99.42%)和Elastic Net回歸模型進(jìn)行100次蒙特卡羅試驗(yàn)[28]。為確保模型對(duì)比有效性,僅選擇前8個(gè)特征變量(累計(jì)貢獻(xiàn)率99.35%)進(jìn)行蒙特卡羅試驗(yàn)。所建模型的訓(xùn)練集和測(cè)試集預(yù)測(cè)準(zhǔn)確率結(jié)果如表4所示,測(cè)試結(jié)果表明,相比于基于原始數(shù)據(jù)的預(yù)測(cè)集準(zhǔn)確率平均值(69.55%),PCA未能有效提高模型預(yù)測(cè)準(zhǔn)確率(70.79%),而基于Elastic Net的模型預(yù)測(cè)性能得到明顯提高,其模型訓(xùn)練集和預(yù)測(cè)集預(yù)測(cè)準(zhǔn)確率平均值分別從70.92%、69.55%提高到77.48%、78.72%。此外,由預(yù)測(cè)集精度標(biāo)準(zhǔn)差可知,基于Elastic Net選擇變量所建模型穩(wěn)定性更高,能夠?qū)崿F(xiàn)較高精度的黃山毛峰茶等級(jí)評(píng)價(jià)。

      注:主對(duì)角數(shù)值表示預(yù)測(cè)正確等級(jí)樣本數(shù),其他數(shù)值表示預(yù)測(cè)錯(cuò)誤樣本數(shù)。

      表4 蒙特卡羅試驗(yàn)結(jié)果對(duì)比

      3 結(jié) 論

      本研究基于茶葉品質(zhì)化學(xué)檢測(cè)分析過(guò)程,結(jié)合Elastic Net特征選擇方法,提出基于Elastic Net特征變量選擇的黃山毛峰茶等級(jí)評(píng)價(jià)方法,在6個(gè)不同等級(jí)共96個(gè)樣品數(shù)據(jù)集上進(jìn)行等級(jí)測(cè)試,試驗(yàn)結(jié)果表明:

      1)茶葉特征成分選擇能夠減少茶葉化學(xué)檢測(cè)指標(biāo)并提高相應(yīng)等級(jí)評(píng)價(jià)模型分析性能,為簡(jiǎn)化實(shí)際茶葉檢測(cè)分析過(guò)程提供重要指導(dǎo)。

      2)Elastic Net算法作為一種特征選擇方法,能夠更好地選擇特征變量。相比于實(shí)際化學(xué)檢測(cè)成分變量有19種,Elastic Net能夠有效選擇黃山毛峰茶等級(jí)評(píng)價(jià)特征成分減少至9種。

      3)相比于原始數(shù)據(jù)準(zhǔn)確率(69.55%)和PCA降維數(shù)據(jù)(70.79%),基于Elastic Net選擇特征的黃山毛峰茶等級(jí)評(píng)價(jià)模型準(zhǔn)確率更高(78.72%)、穩(wěn)定性更好,在減少化學(xué)分析指標(biāo)的同時(shí)有效地提高了模型分析性能。

      4)基于Elastic Net選擇的特征變量,易于構(gòu)建黃山毛峰茶的特征成分雷達(dá)圖,實(shí)現(xiàn)黃山毛峰茶等級(jí)多變量綜合評(píng)價(jià)的可視化。

      [1] 陳波,靳保輝,顏治,等. 有機(jī)成分與元素分析相結(jié)合鑒別6種中國(guó)名茶[J]. 食品科學(xué),2014,35(18):119-123.

      Chen Bo, Jin Baohui, Yan Zhi, et al. Discrimination of 6 kinds of chinese tea by combination of organic components and multielement analysis[J]. Food Science, 2014, 35(18): 119-123. (in Chinese with English abstract)

      [2] 任廣鑫,寧井銘,吳衛(wèi)國(guó),等. 黃山毛峰茶連續(xù)化生產(chǎn)線加工工藝參數(shù)的研究[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,40(1):124-129.

      Ren Guangxin, Ning Jingming, Wu Weiguo, et al. Investigation of the technological parameters for processing line of Huangshan Maofeng green tea[J]. Journal of Anhui Agricultural Univesity, 2013, 40(1): 124-129. (in Chinese with English abstract)

      [3] 薛大為,孔慧芳,楊春蘭. 主成分分析與神經(jīng)網(wǎng)絡(luò)結(jié)合的黃山毛峰茶品質(zhì)檢測(cè)[J]. 計(jì)算機(jī)與應(yīng)用化學(xué),2014,31(5):578-582.

      Xue Dawei, Kong Huifang, Yang Chunlan. Huangshan Maofeng tea quality detection based on principal component analysis and netrual network[J]. Computers and Applied Chenistry, 2014, 31(5): 578-582. (in Chinese with English abstract)

      [4] 王淑慧,龍立梅,宋沙沙,等. 3種名優(yōu)綠茶的特征滋味成分研究及種類判別[J]. 食品科學(xué),2016,37(2):128-131.

      Wang Shuhui, Long Limei, Song Shasha, et al. Analysis of characteristic flavor components and cultivar discrimination of three varieties of famous green tea[J]. Food Science, 2016, 37(2): 128-131. (in Chinese with English abstract)

      [5] 程煥,賀瑋,趙鐳,等. 紅茶與綠茶感官品質(zhì)與其化學(xué)組分的相關(guān)性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(1):375-380.

      Chen Huan, He Wei, Zhao Lei, et al. Correlation between sensoty attributes and chemical components of black and green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 375-380. (in Chinese with English abstract)

      [6] Yang Xingbin, Cui Yanmang, Lu Xinshan, et al. Protective effects of polyphenols-enriched extract from Huangshan Maofeng green tea against CCl4-induced liver injury in mice[J]. Chemico-Biological Interactions, 2014, 220(5): 75-83.

      [7] 董春旺,梁高震,安霆,等. 紅茶感官品質(zhì)及成分近紅外光譜快速檢測(cè)模型建立[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):306-313.

      Dong Chunwang, Liang Gaozhen, An Ting, et al. Near-infrared spectroscopy detection model for sensory quality and chemical constituents of black tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 306-313. (in Chinese with English abstract)

      [8] 張陽(yáng),肖衛(wèi)華,紀(jì)冠亞,等. 機(jī)械超微粉碎與不同粒度常規(guī)粉碎對(duì)紅茶理化特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):295-301.

      Zhang Yang, Xiao Weihua, Ji Guanya, et al. Effects on physicochemical properities of black tea by machanical superfine and general grinding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 295-301. (in Chinese with English abstract)

      [9] 文韜,鄭立章,龔中良,等. 基于近紅外光譜技術(shù)的茶油原產(chǎn)地快速鑒別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):293-299.

      Wen Tao, Zheng Lizhang, Gong Zhongliang, et al. Rapid identification of geographical origin of camellia oil based on near infrared spectroscopy technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 293-299. (in Chinese with English abstract)

      [10] 李曉麗,魏玉震,徐劼,等. 基于高光譜成像的茶葉中EGCG分布可視化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):180-186.

      Li Xiaoli, Wai Yuzhen, Xu Jie, et al. EGCG distribution visualization in tea leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 180-186. (in Chinese with English abstract)

      [11] 王曼,張正竹,寧井銘,等. 基于近紅外光譜的黃山毛峰茶鮮葉品質(zhì)分析及等級(jí)快速評(píng)價(jià)[J]. 食品工業(yè)科技,2014,35(22):57-60.

      Wang Man, Zhang Zhengzhu, Ning Jingming, et al. Study on quality and class rapid evaluation of tea leaf materials based on near infrared spectroscopy[J]. Science and Technology of Food Industry, 2014, 35(22): 57-60. (in Chinese with English abstract)

      [12] 吳正敏,曹成茂,王二銳,等. 基于形態(tài)特征參數(shù)的茶葉精選方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):315-321.

      Wu Zhengmin, Cao Chengmao, Wang Errui, et al. Tea selection method based on morphology feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 315-321. (in Chinese with English abstract)

      [13] 武小紅,翟艷麗,武斌,等. 模糊非相關(guān)鑒別C均值聚類的茶葉傅里葉紅外光譜分類[J]. 光譜學(xué)與光譜分析,2018,38(6):1719-1723.

      Wu Xiaohong, Zhai Yanli, Wu Bin, et al. Classification of tea varietied via ftir spectroscopy based on fuzzy uncorrelated discriminant C-means clustering[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1719-1723. (in Chinese with English abstract)

      [14] 孫俊,靳海濤,武小紅,等. 基于低秩自動(dòng)編碼器及高光譜圖像的茶葉品種鑒別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):316-322.

      Sun Jun, Jin Haitao, Wu Xiaohong, et al. Tea variety identification based on low-rank stacked auto-encoder and hyperspectral image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 316-322. (in Chinese with English abstract)

      [15] 寧井銘,張正竹,方世輝,等. 指紋圖譜技術(shù)及其在茶葉品質(zhì)控制中的應(yīng)用[J]. 中國(guó)茶葉加工,2009,3(14):39-41.

      [16] 寧井銘,李姝寰,王玉潔,等. 基于高光譜成像技術(shù)的工夫紅茶數(shù)字化拼配[J]. 食品科學(xué),2019,40(4):318-323.

      Ning Jingming, Li Shuhuan, Wang Yujie, et al. Hyperspectral imaging for quality prediction model in digital blending of congou black tea[J]. Food Science, 2019, 40(4): 318-323. (in Chinese with English abstract)

      [17] 陳全勝,趙杰文,蔡健榮,等. 基于近紅外光譜和機(jī)器視覺(jué)的多信息融合技術(shù)評(píng)判茶葉品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(3):5-10.

      Chen Quansheng, Zhao Jiewen, Cai Jianrong, et al. Inspection of tea quality by using multi-sensor information fusion based on NIR spectroscopy and machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 5-10. (in Chinese with English abstract)

      [18] 鄒小波,張俊俊,黃曉瑋,等. 基于音頻和近紅外光譜融合技術(shù)的西瓜成熟度判別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(9):301-307.

      Zou Xiaobo, Zhang Junjun, Huang Xiaowei, et al. Distinguishing watermelon maturity based on acoustic characterstics and near infrared spectroscopy fusion technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 301-307. (in Chinese with English abstract)

      [19] 朱瑤迪,鄒小波,石吉勇,等. 高光譜圖像技術(shù)快速預(yù)測(cè)發(fā)酵醋醅總酸分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):320-327.

      Zhu Yaodi, Zou Xiaobo, Shi Jiyong, et al. Rapidly detecting total acid distribution of vinegar culture based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 320-327. (in Chinese with English abstract)

      [20] 寧井銘,孫京京,朱小元,等. 基于圖像和光譜信息融合的紅茶萎凋程度量化判別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):303-308.

      Ning Jingming, Sun Jingjing, Zhu Xiaoyuan, et al. Discriminant of withering quality of Keemum black tea based on information fusion of image and spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 303-308. (in Chinese with English abstract)

      [21] 滑金杰,袁海波,尹軍峰,等. 綠茶電磁滾筒-熱風(fēng)耦合殺青工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):260-267.

      Hua Jinjie, Yuan Haibo, Yin Junfeng, et al. Optimization of fixation process by electromagnetic roller-hot air coupling machine for green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 260-267. (in Chinese with English abstract)

      [22] 施兆鵬,劉仲華. 夏茶苦澀味實(shí)質(zhì)的數(shù)學(xué)模型探討[J]. 茶葉科學(xué),1987,7(2):7-12.

      Shi Zhaopeng, Liu Zhonghua. Probe into mathematical model of chemical essence of bitterness and astringency in summer green tea[J]. Journal of Tea Science, 1987, 7(2): 7-12. (in Chinese with English abstract)

      [23] Zou Hui. The adaptive lasso and its oracle properties[J]. Journal of Industrial and Management Optimization (JIMO), 2006, 101(476): 1418-1429.

      [24] 李魚(yú)強(qiáng),潘天紅,李浩然,等. 近紅外光譜LASSO特征選擇方法及其聚類分析應(yīng)用研究[J]. 光譜學(xué)與光譜分析,2019,39(12):3809-3815.

      Li Yuqiang, Pan Tianhong, Li Haoran, et al. NIR spectral feature selection using LASSO method and its application in the classification analysis[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3809-3815. (in Chinese with English abstract)

      [25] Li Yuqaing, Pan Tianhong, Li Haoran, et al. Near infrared spectroscopy quantitative analysis for Tricholoma matsutake based on information extraction by using the elastic net[J]. Journal of Near Infrared Spectroscopy, 2020, 28(3): 125-132.

      [26] Zou Hui, Hastie Trevor. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(5): 768-768.

      [27] 趙安新,湯曉君,宋婭,等. 光譜分析中Elastic Net變量選擇與降維方法[J]. 紅外與激光工程,2014,43(6):1977-1981.

      Zhao Anxin, Tang Xiaojun, Song Ya, et al. Spectral wavelength selection and dimension reduction using Elastic Net in spectroscopy analysis[J]. Infrared and Laser Engineering, 2014, 43(6): 1977-1981. (in Chinese with English abstract)

      [28] 溫泉,溫志渝. 一種基于蒙特卡羅方法的近紅外波長(zhǎng)選擇算法[J]. 光學(xué)學(xué)報(bào),2012,30(12):3637-3642.

      Wen Quan, Wen Zhiyu. New near infrared wavelength selection algorithm based on monte-carlo method[J]. Acta Optic Sinica, 2012, 30(12): 3637-3642. (in Chinese with English abstract)

      Evaluation of Huangshan Maofeng tea grades based on feature variable selection using Elastic Net

      Pan Tianhong1,2, Li Yuqiang2, Chen Qi3, Chen Shan2

      (1.230061;2.212013;3.,245000)

      Huangshan Maofeng tea has become one of the most famous Chinese tea due to its amazing orchid fragrance and fresh, sweet taste. However, different quality grades of Huangshan Maofeng tea vary greatly in price. The quality evaluation of tea has posed a great challenge in the tea market. The quality grades of variant tea are also related to the different microelements and concentrations. Traditional sensory evaluation methods cannot achieve fast and accurate discrimination, particularly depending on the manual experience. Alternatively, the chemical analysis can serve as an essential method for the quality evaluation of tea. But the chemical analysis for all microelements was confined to its complexity and time-consuming in a large-scale production under gradually refined detection standards with the fast expansion of tea market. Previous studies reveal that the samples collected from the same production or origin places have the similar microelement compositions and concentrations, indicating that the variation of tea grades depends only on a few types of microelements. Therefore, it is reasonable to select the typical microelements for the distinguishing performance, thereby to optimize the traditional chemical analysis. In this work, a new method was proposed based on the feature extraction using the Elastic Net, in order to simplify the procedure of conventional chemical analysis, while to improve the grade evaluation. First, 96 samples of Huangshan Maofeng tea were collected from three original places (Fuxi, Yangcun, and Xintian village) with 6 quality grades (advance 1-3 grades, and 1-3 grades) using the traditional manual process. The chemical analysis was used to analyze the types and contents of 19 microelements. Second, a cross-validation method was used to determine the optimal parameters in the Elastic Net, and 9 feature microelements (Gallic Acid, Epicatechin Gallate, Catechin, Epicatechin, Gallocatechin Gallate, Epigallocatechin, Glutamate, Arginine and catechins bitterness index) were selected when the cost function was minimized. Third, the radar chart was used to visualize the selected 9 microelements, indicating the tea grade evaluation. To quantify the classification, a quality grade evaluation model of Huangshan Maofeng tea was established on the selected feature microelements using partial least squares regression. Monte-Carlo method with 100 times was chosen to evaluate the stability and robustness of the presented model. The proposed method can reduce the number of microelements from 19 to 9, and thereby to improve the identification accuracy of quality grade evaluation from 69.55% to 79.31%, compared with the traditional chemical analysis. A principal component analysis (PCA) was also taken for comparison. The recognition accuracies of PCA and the proposed method for validation set were 70.79% and 78.72% respectively in the Monte-Carlo experiment. The experimental results demonstrated that the selection of feature microelements was feasible to simply the traditional chemical analysis, and improve the prediction performance. The analysis model based on the typical microelements can simplify the current chemical process, and thereby provide a flexible selection to the quality identification of tea.

      models; quality control; Elastic Net; feature variables selection; Huangshan Maofeng tea; grade evaluation

      潘天紅,李魚(yú)強(qiáng),陳琦,等. 基于Elastic Net特征變量選擇的黃山毛峰茶等級(jí)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):264-271.doi:10.11975/j.issn.1002-6819.2020.13.031 http://www.tcsae.org

      Pan Tianhong, Li Yuqiang, Chen Qi, et al. Evaluation of Huangshan Maofeng tea grades based on feature variable selection using Elastic Net[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 264-271. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.031 http://www.tcsae.org

      2020-03-19

      2020-05-31

      國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFF0211301);安徽省高校協(xié)同創(chuàng)新項(xiàng)目(GXXT-2019-012)

      潘天紅,博士,教授,博士生導(dǎo)師,主要從事檢測(cè)技術(shù)與自動(dòng)化轉(zhuǎn)置、農(nóng)業(yè)電氣化與自動(dòng)化研究。Email:thpan@live.com

      10.11975/j.issn.1002-6819.2020.13.031

      TP391.41

      A

      1002-6819(2020)-13-0264-08

      猜你喜歡
      兒茶素黃山茶葉
      《茶葉通訊》簡(jiǎn)介
      茶葉通訊(2022年2期)2022-11-15 08:53:56
      超高效液相色譜法測(cè)定茶葉中的兒茶素
      黃山日落
      《登江陰黃山要塞》
      藏族對(duì)茶葉情有獨(dú)鐘
      創(chuàng)造(2020年5期)2020-09-10 09:19:22
      黃山冬之戀
      金橋(2019年2期)2019-09-18 13:03:17
      香噴噴的茶葉
      黃山
      全甲基化沒(méi)食子兒茶素沒(méi)食子酸酯的制備
      兒茶素酶促制備茶黃素的研究進(jìn)展
      茶葉通訊(2014年2期)2014-02-27 07:55:38
      枣阳市| 闵行区| 邵阳县| 长岭县| 五常市| 边坝县| 金塔县| 阜新| 藁城市| 鹿邑县| 涿州市| 海盐县| 丹阳市| 农安县| 图们市| 沁源县| 永清县| 汉沽区| 汉中市| 安顺市| 电白县| 清远市| 全州县| 云阳县| 莱阳市| 和龙市| 雅江县| 南昌市| 平山县| 河源市| 翁源县| 东乡县| 板桥市| 凌云县| 永嘉县| 和田县| 望江县| 祥云县| 海宁市| 上栗县| 临朐县|