李鴻博,鐘 怡,張昊楠,王 鑫,陳 靜,王琳玲,肖勁光,肖 武2,,王 薇
·農(nóng)業(yè)生物環(huán)境與能源工程·
生物炭修復重金屬污染農(nóng)田土壤的機制及應用研究進展
李鴻博1,鐘 怡1,張昊楠1,王 鑫1,陳 靜1,王琳玲1※,肖勁光3,肖 武2,3,王 薇3
(1. 華中科技大學環(huán)境科學與工程學院,武漢 430074;2. 中國電建集團中南勘測設計研究院有限公司,長沙 410014;3. 中電建環(huán)??萍加邢薰?,長沙 410014)
將生物質(zhì)轉(zhuǎn)化為生物炭并用于重金屬污染農(nóng)田土壤修復中,是有效利用生物質(zhì)資源、保障糧食安全的有效途徑之一。然而,生物炭的應用效率受其特性和土壤環(huán)境影響極大。該研究綜述了生物炭特性,并探討了生物質(zhì)和熱解溫度對其影響規(guī)律,闡明了生物炭對重金屬的直接固定作用,以及通過影響土壤pH值、陽離子交換量(Cation Exchange Capacity,CEC)、礦物組分和有機質(zhì)等,進而間接固定重金屬的作用機制。同時,該文系統(tǒng)總結(jié)了國內(nèi)外生物炭在田間試驗中的應用,從土壤重金屬遷移性和生物有效性、作物累積重金屬和作物產(chǎn)量等3個方面闡明了生物炭的應用效果和作用規(guī)律。針對田間試驗條件區(qū)別于室內(nèi)試驗的特殊性,探討了生物炭施撒方式及用量、施肥等田間管理和氣候環(huán)境等現(xiàn)場條件對生物炭應用的影響,并對今后完善生物炭在土壤修復中作用機制、擴大研究尺度和長期土壤監(jiān)測等方面研究進行了展望。
生物炭;農(nóng)田;重金屬;土壤修復;田間應用;進展
土壤是人類賴以生存和發(fā)展的重要基礎,然而隨著工農(nóng)業(yè)迅速發(fā)展,土壤重金屬污染日趨嚴重?!度珖寥牢廴緺顩r調(diào)查公報》顯示,中國農(nóng)田土壤中重金屬等污染物點位超標率達19.4%[1]。經(jīng)調(diào)查,中國湖南、廣東和廣西等地,稻米超標率高達60%~88%[2]。因此,開展重金屬污染農(nóng)田土壤修復,保障農(nóng)產(chǎn)品安全,已十分迫切[3]。生物炭由于具有較強重金屬吸附性和對土壤的改良作用,故被視為優(yōu)良的土壤修復材料[4],從而逐漸被學者關注。
生物炭是農(nóng)林廢棄物、畜禽糞便和污泥等生物質(zhì)材料在無氧或限氧的氣氛條件下,經(jīng)低-中溫熱裂解得到的一種富碳產(chǎn)品[4]。一方面,生物炭具有孔隙度和比表面積大、化學官能團豐富、離子交換能力強等特性[5],對重金屬具有較強的固定作用,能降低土壤中重金屬的有效性,消減其對生態(tài)環(huán)境的危害[6]。另一方面,生物炭含有穩(wěn)定態(tài)有機碳、可溶性有機物及礦物質(zhì)灰分等多種組分[7],可提高土壤有機質(zhì)含量、增加土壤持水量、改善土壤結(jié)構(gòu)和微生物群落生境[8],能提供作物生長所需養(yǎng)分、減少化肥投入、提高作物產(chǎn)量等[5,9]。中國具有豐富的廢棄生物質(zhì)資源,每年僅作物秸稈就有8.27億t[10],污泥產(chǎn)量每年超過625萬t[11]。生物炭的利用可實現(xiàn)大量農(nóng)林、城市固廢的高效資源化,同時避免因秸稈、污泥焚燒處置產(chǎn)生的環(huán)境污染,對于維持農(nóng)田生態(tài)系統(tǒng)平衡與穩(wěn)定具有重要意義和廣闊的應用前景[4]。
生物炭在降低重金屬生物利用度和改善土壤質(zhì)量方面雖然有效,但受其自身特性和土壤性質(zhì)等條件影響較大[12-13]。同時,多數(shù)研究是在實驗室中進行,較少在田間檢驗。與實驗室條件下簡化、均勻和精心管理相比,溫度、降水和農(nóng)藝管理等復雜的現(xiàn)場條件都將影響田間試驗結(jié)果。因此,本文在總結(jié)近年生物炭性質(zhì)及固定重金屬機制的基礎上,分析歸納了近年田間試驗中生物炭在土壤中重金屬有效性、作物重金屬累積和作物產(chǎn)量等方面作用規(guī)律和田間條件影響效應,以期為重金屬污染農(nóng)田土壤修復和未來研究問題提供參考。
本文通過Web of Science數(shù)據(jù)庫對生物炭相關論文進行統(tǒng)計,利用主題詞按照“biochar”,“biochar or HM”,“biochar or soil”和“biochar or HM or soil”等檢索式進行檢索,其中HM為“Cu or Zn or Pb or Ni or Cd or Cr or As or Hg or copper or zinc or lead or nickel or cadmium or chromium or arsenic or mercury or heavy metal”。統(tǒng)計了2008年1月1日—2019年12月31日的所有期刊論文文獻,如圖1所示,自2010年以來,生物炭相關的論文數(shù)量保持較高的年增長率,其中,生物炭與重金屬關聯(lián)的文獻數(shù)占比達63%以上?!吧锾?土壤”主題的文獻數(shù)亦協(xié)同增長,其中與重金屬關聯(lián)的文獻數(shù)近3 a占比更是高達75%。由此表明,生物炭在重金屬污染土壤的修復應用已逐漸成為當前環(huán)境科學領域的研究熱點。
圖1 2008-2019年生物炭相關論文發(fā)表量
生物炭對重金屬的固定作用,與其表面特性密切相關。生物炭比表面積大且疏松多孔,其比表面積一般在幾十到幾百m2/g之間[5],而孔徑可分為微孔(<2 nm)、介孔(2~50 nm)和大孔(>50 nm)。大孔可改善土壤孔隙結(jié)構(gòu),促進微生物附著生長,而微孔或介孔則與污染物、礦物元素等物質(zhì)的吸附遷移有關[14]。生物炭表面豐富的官能團可有效絡合重金屬,主要包括羧基、羰基、(酚)羥基等含氧官能團,氨基、亞氨基等含氮官能團,以及巰基、硫代羰基等含硫官能團。其中,含氧官能團是生物炭吸附重金屬最重要的官能團。
生物炭多呈堿性,pH值多為6~12,灰分和表面官能團是決定其pH值的主要因素?;曳质菬峤庵杏袡C成分逸失后殘留的無機組分,通常以礦物質(zhì)元素(K、Ca、Mg等)的氧化物、碳酸鹽、硅酸鹽或磷酸鹽形式存在,可促進生物炭pH值升高。含氧官能團形成了生物炭良好的吸附特性、親水或疏水的特點以及對酸堿的緩沖能力。此外,含氧官基團使生物炭表面帶有負電荷,從而有較強電負性,使其與陽離子重金屬具有較強的交換能力和靜電吸附能力[15]。
生物炭制備過程中,不同生物質(zhì)來源和熱解溫度等,都將造成生物炭比表面積、pH值、灰分、陽離子交換量(Cation Exchange Capacity, CEC)等特性的差異,從而影響生物炭固定重金屬。此外,H/C可反映生物炭芳香化程度,O/C反映含氧官能團數(shù)目,O/C和N/C可反映生物炭極性,間接體現(xiàn)生物炭性質(zhì),因此本文擇取近5年相關文獻的生物炭特性數(shù)據(jù),總結(jié)繪制了上述6種性質(zhì)與不同生物質(zhì)來源和熱解溫度的相關圖,如圖2所示。
注:基于文獻[5,7,9,14,16-24]中數(shù)據(jù)繪制本圖。圖中的H/C、O/C和N/C均為元素原子比。
熱解溫度的影響:如圖2a所示,隨著熱解溫度升高,揮發(fā)性物質(zhì)釋放增多,產(chǎn)生更多孔隙[25],比表面積得以增大。但當熱解溫度過高時,孔隙內(nèi)部結(jié)構(gòu)被破壞,孔徑增大,導致比表面積不增反降[26]。如圖2b和2c所示,生物炭灰分含量和pH值隨熱解溫度升高而增加,主要由于生物炭中有機酸等在更高熱解溫度下轉(zhuǎn)化成更多灰分,碳酸鹽總量提高,使得生物炭pH值增大[27]。然而,生物炭表面官能團含量和CEC與熱解溫度呈負相關[28]。隨著熱解溫度升高,生物炭H/C降低(圖2d),表明其芳香化增強,原因是高溫會破壞一些官能團內(nèi)部的分子鍵[29],使得烷烴基團、羥基、羧基和氨基等基團減少[30]。同時,圖2e顯示熱解溫度的升高引起O/C降低,表明生物炭的含氧官能團被逐漸去除,從而導致CEC的降低。
生物質(zhì)原料的影響:生物質(zhì)原料來源可大體分為秸稈、木屑等植物源生物質(zhì),畜禽糞便等動物源和污泥生物質(zhì)。如圖2b所示,植物源生物炭因含碳量高,故其灰分含量較低,多在18.1%~36.7%(質(zhì)量分數(shù),下同),小于動物源生物炭(42.7%~54.5%)和污泥生物炭(63.6%~86.4%)。更高的灰分產(chǎn)生更高的陽離子交換量(CEC),這可能是由于生物質(zhì)中堿和堿金屬促進了表面含氧官能團的形成[31]。如圖2e,污泥源生物炭的O/C要高于植物源生物炭,而生物炭O/C與CEC呈正相關[25],故前者CEC一般高于后者。如Pariyar等[32]分別用稻殼、松木屑、餐廚垃圾和污泥為原料在550 ℃下熱解,所得生物炭的CEC分別為29.59、47.43、17.35和48.43 cmol/kg。
不同來源生物炭的比表面積大小往往和灰分含量情況相反,如圖2a,植物源生物炭(6.77~70 m2/g)普遍大于動物源生物炭(0.47~13.93 m2/g),這可能是由于后者含碳量較低和高H/C、O/C所致[33]。污泥生物炭(14.37~192.97 m2/g)受其原料組分影響,差異較大。對于生物炭pH值而言,如圖2c所示,植物源生物炭普遍高于動物源和污泥,原因可能與纖維素、木質(zhì)素含量和含氧官能團有關[25]。
2.2.1 化學活化改性
化學活化改性是使用酸、堿和氧化劑等活化劑改性生物炭,可去除生物炭表面雜質(zhì),改變其表面化學結(jié)構(gòu),從而具有更多官能團、微孔結(jié)構(gòu)和更大的比表面積,以增強其對重金屬的吸附能力。鹽酸、硫酸、硝酸和磷酸被廣泛用于酸改性。使用硝酸(25%)改性生物炭可引入羧基和羰基,增加電負性[34]。氫氧化鉀和氫氧化鈉可有效增多含氧官能團[35],是常用的堿改性劑。將H2O2或KMnO4等氧化劑改性生物炭,可顯著增加其比表面積和含氧官能團。KMnO4改性生物炭的比表面積從101增至205 m2/g,對Pb、Cu和Cd的吸附能力顯著增強。
化學活化劑的濃度對其改性生物炭性能影響顯著,如磷酸濃度(10%~50%)的升高使得生物炭的比表面積和pH值下降,但在30%下的酸性官能團更為豐富,對Pb的吸附量也最高[36]。Sheng等[37]研究發(fā)現(xiàn),當KOH與生物炭質(zhì)量比為3:1時,制得的生物炭性能最優(yōu)。Zuo等[38]使用不同濃度(10%~30%,體積分數(shù))H2O2處理的生物炭吸附Cu,其中,20%的H2O2浸漬的生物炭對Cu的吸附量最大。因此,活化劑量的優(yōu)化在進行改性研究時需要特別考慮。
2.2.2 有機改性
羧基、氨基、巰基等對重金屬有較強吸附能力的官能團,可以通過表1中所述海藻酸鈉、聚乙烯亞胺、巰基乙醇等醇類或聚合物等向生物炭表面引入,可顯著增強表面絡合沉淀作用,提高改性生物炭對重金屬的選擇吸附能力和結(jié)合力[39]。草酸、檸檬酸和氨基磺酸[40]等有機酸可以通過酯化作用等將官能團轉(zhuǎn)移至生物炭表面,使生物炭O/C增大,含氧官能團增多,重金屬的吸附量增加[15]。但有機酸由于沒有無機酸的強腐蝕性,故難以增大生物炭比表面積,甚至略有降低[41]。
盡管有機改性劑可定向引入有機官能團,但成本過高而限制了其使用,促進其循環(huán)利用或是降低成本的一種方法。此外,制備原始生物炭的熱解溫度也影響有機改性性能。使用丙烯腈改性不同熱解溫度(350、450、550 ℃)制得生物炭,發(fā)現(xiàn)僅350 ℃時生物炭被成功引入了氰基,提高了對Cd的吸附量(28.2增至85.7 mg/g),其余溫度下,吸附量無顯著提高甚至降低[42]。
2.2.3 金屬鹽或氧化物改性
金屬鹽或氧化物改性生物炭可改善孔結(jié)構(gòu),增加生物炭CEC、含氧官能團和吸附位點,增強與重金屬的結(jié)合能力。如表1所示,此改性方法亦能提升對As、Cr等陰離子重金屬的吸附能力。常使用的金屬鹽或氧化物主要有FeCl2、FeCl3、Fe(NO3)3、AlCl3、MgCl2、MnCl2、CaCl2、CaO和Fe2O3等。金屬鹽或氧化物改性可通過2種方式改性:1)金屬鹽或氧化物與生物質(zhì)混合,然后共熱解;2)生物質(zhì)熱解生成生物炭后,再與金屬鹽或氧化物通過浸漬或再熱解等手段改性[43]。第1種方法簡單、成本低,適于大規(guī)模生產(chǎn),但金屬粒子的大小、形狀和組成類型不易控制。第2種方法可較易控制金屬納米顆粒,甚至可以在生物炭上合成多層金屬納米顆粒,但該方法相對復雜和昂貴。
除鐵錳外的其他過渡金屬元素改性亦有研究。ZnO改性生物炭的比表面積從2.39增至18.53 m2/g,表面官能團增多,對Cu的最大吸附量可達216.37 mg/g,同時可降低土壤中有效態(tài)Cu含量[44]。Zhu等[45]使用硝酸鉍改性生物炭,改善了微孔結(jié)構(gòu),有效催化還原土壤中氧化鐵,從而加快固定土壤中砷,降低其可生物利用率。使用金屬鹽改性生物炭的方法,操作復雜且成本較高。選用天然礦物等低成本原料參與改性,開始被大家關注。如使用蒙脫土改性生物炭,引入了硅醇基和鎂、鋁氧化物等,對Zn的吸附量增長了3.3倍[46]。Zou等[47]使用紅泥改性生物炭,增加了比表面積,施用于污染土壤后,增強了土壤微生物活性,促使生物炭表面生成含鐵次生礦物,從而使As得到有效固定。
表1 改性生物炭的制備及其對重金屬污染土壤的修復效果
生物炭可利用其高比表面積、CEC、有機碳含量和活性官能團等特性,通過物理吸附、靜電吸附、離子交換、絡合、沉淀和氧化還原等作用直接吸附重金屬離子[54,57],同時,生物炭特殊組分可通過影響土壤性質(zhì)(如pH、CEC、有機碳、礦物組成等)間接影響土壤中重金屬有效態(tài)或作物對重金屬的累積,基于上述作用,本文繪制了相關機制示意圖,如圖3。
圖3 生物炭在土壤中固定重金屬的可能機制示意圖
3.1.1 物理吸附
生物炭能將重金屬吸附在其表面或擴散進孔道內(nèi),通過范德華力等作用固定重金屬。通常較大比表面積和孔隙度,利于生物炭對重金屬的物理吸附。Deng等[19]研究了水稻秸稈在400和700 ℃下制得生物炭對Cd和Ni的吸附能力,表明比表面積較大的700 ℃下制得生物炭對重金屬具有更高吸附能力。
3.1.2 靜電吸附
生物炭表面電荷通過靜電作用吸附重金屬,從而達到固定目的。生物炭與重金屬的靜電吸附取決于環(huán)境pH值和生物炭的零電荷點(pHPZC)。當介質(zhì)pH值>pHPZC時,生物炭表面呈負電,可與陽離子重金屬發(fā)生靜電吸附;當介質(zhì)pH值<pHPZC時,生物炭則與陰離子重金屬發(fā)生靜電吸附[56]。同時,pH值的升高可增加生物炭對重金屬的吸附。靜電吸附也會隨著重金屬初始濃度的增加而增強[58]。
3.1.3 離子交換
生物炭表面鹽基離子可與重金屬離子發(fā)生置換而固定重金屬。同時,羧基等含氧官能團也可以通過離子交換途徑吸附金屬離子[15]。生物炭表面的強電負性使其具有較高的陽離子交換量,并能釋放Ca2+和Mg2+等陽離子,從而可在生物炭表面與重金屬離子交換[59]。動物源生物炭比植物源生物炭含有更高Ca2+,因此離子交換在動物源生物炭固定Cd和Cu占主導地位[60]。
3.1.4 絡合作用
生物炭表面官能團提供重金屬結(jié)合位點以形成絡合物,從而固定重金屬[19]。絡合作用在礦物含量低的生物炭中體現(xiàn)尤為顯著。例如,由作物殘渣制得生物炭主要通過形成表面絡合物來吸附重金屬[61]。而相較于羥基而言,高硫生物炭表面的巰基對Hg、Cd等的絡合能力更強[62]。利用巰基乙醇通過催化酯化法可制備巰基改性水稻秸稈生物炭,其對Cd吸附量提高3倍(45.13 mg/g),Cd可形成穩(wěn)定的鎘硫絡合物而不易被解吸下來,而未改性生物炭吸附的Cd中,57%可被解吸下來[53]。
3.1.5 沉淀作用
生物炭灰分中的礦物成分可與重金屬發(fā)生沉淀反應等,從而實現(xiàn)重金屬的固定。稻稈生物炭中的C2O42-和CO32-可與Pb分別形成PbC2O4和Pb3(CO3)2(OH)2沉淀,是固定Pb的主要機制[9],此外Pb也可與生物炭含有的其他礦物形成氯化物、磷酸鹽、硫酸鹽沉淀等[63]。Xu等[64]研究了牛糞生物炭吸附Cd時沉淀作用的貢獻,結(jié)果表明沉淀作用占總吸附量的88%,并且可溶性CO23?的貢獻率要大于PO34?。Zhang等[65]使用磷酸鉀改性生物炭,可有效促進土壤中Cu和Cd從酸溶態(tài)向更穩(wěn)定態(tài)轉(zhuǎn)化,重金屬遷移率降低2~3倍,其中改性生物炭中的含磷化合物與Cu、Cd形成沉淀物在此起主要作用。
3.1.6 氧化還原作用
生物炭含有醌和酚羥基等多種官能團,使其具備存儲和傳遞電子的能力[66],可以氧化As(III)或還原Cr(VI)從而有效固定重金屬。生物炭表面芳香環(huán)含有的醌、酚羥基等多種分子結(jié)構(gòu)上的某些原子發(fā)生電子離域,引起原子軌道出現(xiàn)未成對孤電子,即形成持久性自由基(Persistent Free Radicals,PFRs)[67]。Mohan等[68]研究發(fā)現(xiàn),生物炭的酚羥基可充當Cr(VI)的電子供體,隨后自身被氧化成醌基并與吸附態(tài)Cr(VI)發(fā)生絡合反應。Zhong等[69]研究發(fā)現(xiàn),生物炭PFRs在堿性條件下可直接氧化As(III),而在中性和酸性條件下,生物炭PFRs將O2還原為O2·?,進而轉(zhuǎn)化為·OH和H2O2,實現(xiàn)對As(III)的氧化。
3.2.1 生物炭對土壤pH值的影響
隨著生物炭施用量的增加,可明顯增加土壤pH值,特別是對酸性土壤[70-71],隨之重金屬的水解得以增加,從而提高土壤對其吸附,并加速土壤重金屬形態(tài)向可氧化態(tài)和殘渣態(tài)轉(zhuǎn)化[13]。土壤pH值的增大也可能增加重金屬的絡合,減少重金屬從土壤的解吸[72],故能降低重金屬的生物有效性。
3.2.2 生物炭對土壤CEC的影響
生物炭施用于土壤可有效增加土壤CEC[73]。隨著生物炭大量施用,土壤中溶解性和可遷移性重金屬濃度明顯降低,其中主要歸因于生物炭表面大量的陽離子交換位點[74]。例如,Jiang等[72]的研究中加入生物炭30 d后,土壤CEC增加的同時,生物炭對Pb的固定顯著增強。對于低CEC或酸性土壤,生物炭可明顯提高其CEC,但在堿性土壤中,這種影響并不明顯[75]。
3.2.3 生物炭對土壤礦物組分的影響
隨著生物炭的加入,生物炭表面存在的大量礦物質(zhì)可能在土壤中釋放,釋放的礦物質(zhì)可能在生物炭表面形成礦物相并從土壤溶液中吸附金屬[76]。如,土壤中磷的濃度隨著生物炭投加量的增加而增高,從而與Pb形成穩(wěn)定礦物相而留在土中[63]。Bian等[77]使用激光刻蝕技術(shù)對修復后的生物炭進行分析,發(fā)現(xiàn)Cu和Pb顯著增加,而K、Mg和P顯著減少,表明生物炭可能通過釋放礦物到土壤中來增強其對重金屬的固定。同樣地,生物炭中的Ca、Si和Mn氧化物也可能部分溶解,從而為土壤中重金屬離子提供活性吸附位點[76]。
3.2.4 生物炭對土壤有機質(zhì)含量的影響
生物炭在土壤中可以釋放溶解性有機質(zhì),進而增加土壤有機質(zhì)含量。由于重金屬和含氧官能團的絡合作用,可以減小重金屬遷移能力和生物有效性[3]。土壤有機質(zhì)的增加會將不穩(wěn)定態(tài)Pb轉(zhuǎn)化為較穩(wěn)定的有機結(jié)合態(tài)[78],從而減少植物對重金屬的吸收。然而土壤有機質(zhì)的增加對不同重金屬可能有不同作用。在加入生物炭后,使溶解有機質(zhì)和土壤pH值升高,孔隙水中的Cu和As濃度增加了30多倍,但孔隙水中的Zn和Cd卻顯著減少了[79-80]。
生物炭通過降低土壤中重金屬遷移性和生物有效性,削弱對作物毒害,使作物保質(zhì)增產(chǎn)。但囿于土壤環(huán)境的復雜性,使得生物炭在不同田間試驗中的應用效果差異較大,生物炭的種類和田間管理對其修復效率也存在一定影響。
生物炭具有的高礦物含量(碳酸鹽、磷酸鹽、二氧化硅等)、pH和陽離子交換能力等,可以快速絡合沉淀重金屬,此外,具有較大孔隙和特定結(jié)合位點的生物炭可有效固定重金屬[81]。多數(shù)試驗表明生物炭的施用會使活性態(tài)重金屬含量下降。Zhang等[54]在農(nóng)田施用1.6%生物炭材料后,土壤中有效態(tài)Cd含量(質(zhì)量分數(shù))由0.88降至0.66 mg/kg。然而,重金屬的種類、濃度和形態(tài)等會導致生物炭對土壤修復產(chǎn)生不同結(jié)果。Khan等[81]研究表明,生物炭可顯著降低田間Pb和Cd的生物有效態(tài)濃度,但對Zn卻沒有影響,這可能是由于不同重金屬的不同活性導致。在復合重金屬污染土壤中,多種重金屬的競爭吸附可能使某一重金屬具有更強活性,如Pb在生物炭表面比Cd更易形成絡合物,同時錳氧化物對Pb的吸附能力明顯強于Cd[82]。
Zheng等[83]研究表明,生物炭的施用使得Cd、Zn和Pb的有效態(tài)含量大幅降低,而As卻有所增加。生物炭會促進As(V)還原為As(III),導致As毒性和遷移性在污染田中增加[84]。因此,Cd等陽離子型重金屬和As的不同地球化學行為使得他們難以被共同固定。Tang等[13]使用硫酸亞鐵改性生物炭在田間施用2 a,有效態(tài)Cd和As分別下降了74%和14%,鐵基生物炭通過提升土壤pH值,釋放鐵離子與As形成鐵砷沉淀等,從而達到同時固定Cd和As的目的。
生物炭可以通過降低重金屬在土壤中的遷移性和生物有效性,減少重金屬在植物中的積累。在許多田間試驗中,生物炭可有效降低農(nóng)作物中重金屬的積累(如表2),但也有例外。如Zheng等[83]的研究表明,施用豆桿和稻稈生物炭后,稻米中Cd含量明顯降低,但Zn的含量差異卻不顯著。這可能是因為水稻植株中有大量的Zn轉(zhuǎn)運體專門負責Zn的吸收和轉(zhuǎn)運,而生物炭添加對元素轉(zhuǎn)運的限制并不顯著[85]。植物中重金屬的積累也與污染狀況有關。如Zhang等[73]發(fā)現(xiàn)Cd重度污染土壤經(jīng)生物炭處理后,生菜組織中的濃度并未降低,可能是土壤有機質(zhì)濃度過高,施用生物炭量不足以使有機質(zhì)固定在土壤中。此外,針對中國南方稻田Cd和As共污染普遍的問題,于煥云等[86]將零價鐵改性生物炭應用于稻田中,零價鐵的溶蝕產(chǎn)物和生物炭分別對As和Cd具較強固定能力,在2.25 t/hm2零價鐵改性生物炭處理下,大米中的Cd和As分別減少了48%和24%。
生物炭可通過固定污染土壤中重金屬,以減少植物中重金屬含量,降低毒性以提高稻田的生產(chǎn)力[83]。Zhang等[87]研究表明,添加1.5和3.0 t/hm2污泥生物炭,糧食產(chǎn)量分別提高1.1和1.8倍。同時,生物炭可提高土壤持水能力,增加養(yǎng)分和微量營養(yǎng)素的含量[4]。杜彩艷等[88]研究發(fā)現(xiàn)生物炭可以顯著提升土壤酸堿度和有機質(zhì)含量,Cd、Cu和Zn含量分別顯著降低37.46%、12.03%、21.63%,玉米產(chǎn)量顯著提高18.92%~27.67%。
生物炭可改變土壤微生物和土壤酶活性,改善作物生長的根區(qū)環(huán)境,促進作物增產(chǎn)。王彩云等[89]研究發(fā)現(xiàn),生物炭可抑制土壤真菌生長,保持土壤細菌群落結(jié)構(gòu),增加細菌和真菌含量比值,使黃瓜增產(chǎn)11.4%~26.8%。李新宇等[90]研究發(fā)現(xiàn),生物炭可改善土壤酶結(jié)構(gòu),降低土壤重金屬活性,從而增加番茄產(chǎn)量。
除了生物炭本身的影響外,土壤質(zhì)地對作物產(chǎn)量也具有重要影響。生物炭效應的聚類分析表明,生物炭對作物產(chǎn)量的增長效應多發(fā)生在質(zhì)地較重的土壤中,而不是在質(zhì)地較輕和中等質(zhì)地的土壤中[12]。Bian等[77]研究表明,生物炭在施用后的第1年,對作物產(chǎn)量沒有影響,第2年和第3年方有顯著增產(chǎn)效果。因此,需要對生物炭在重金屬污染土壤中的應用進行長期的研究。
4.4.1 生物炭施撒方式的影響
生物炭在工程應用中一般通過表層撒施、機械點施等方式將生物炭翻耕于15~30 cm土層內(nèi)。研究顯示,增加施用深度可顯著提高作物產(chǎn)量,但作物對重金屬的積累量也有提高[91]。Düring等[92]發(fā)現(xiàn)翻耕后的菠菜幼苗中重金屬濃度與未翻耕相比顯著升高。這可能是由于深耕使生物炭改善了作物根際環(huán)境的pH值和養(yǎng)分等條件,促進了作物的生長,但深耕可能使得重金屬下移,以及稀釋生物炭而削弱對重金屬的固定,從而增加作物對重金屬的吸收。
4.4.2 生物炭用量和種類的影響
生物炭在田間試驗施用比例通常為1.5~40 t/hm2。一般而言,隨著生物炭施用量的提高,土壤有效態(tài)重金屬和作物中重金屬降低量增加,作物增產(chǎn)率提高[3]。Houben等[93]使用不同生物炭用量(1%、5%、10%)修復比利時某鎘、鋅和鉛污染土壤,經(jīng)56 d培育后,土壤中CaCl2提取態(tài)重金屬隨生物炭用量的增加而降低。然而,Bian等[71]使用較高用量生物炭(40 t/hm2)修復污染土壤后,小麥反而減產(chǎn)1.81%。有研究表明,生物炭用量較高時,與植物生長發(fā)育呈負相關[94],可能是因為生物炭較強的吸附能力,使得土壤中有效性養(yǎng)分降低[95]。如施用生物炭后,由于生物炭具有很高的C/N以及不穩(wěn)定碳分解導致氮的固定,從而顯著降低土壤堿解氮[96]。
生物炭來源不同對土壤修復效率的影響亦有不同。Moore等[97]在田間試驗中使用雞糞生物炭和燕麥殼生物炭修復Cu污染土壤,結(jié)果表明,5%的雞糞生物炭減少了90%可交換態(tài)Cu含量,而燕麥殼生物炭僅降低了68%。
4.4.3 施用化肥的影響
為了保證農(nóng)作物產(chǎn)量一般需要施用化肥,故統(tǒng)計了文中提及的田間試驗中肥料施用情況,如表3所示,磷肥和鉀肥在51~100和>100~150 kg/hm2的使用量較為頻繁。而氮肥用量差別較大,但多在150 kg/hm2以上,用量較多。一方面,土壤有機碳含量增加,會使得有效氮降低[98];另一方面,生物炭與氮肥配施效果處理重金屬污染土壤可顯著提高水稻產(chǎn)量,降低稻米中重金屬濃度[99]。
Moreno-Jimenez等[100]研究發(fā)現(xiàn)在僅加入生物炭或者礦質(zhì)肥料時,土壤溶液中的Pb和Cd濃度均明顯升高。而在同時使用生物炭和礦質(zhì)肥料時,Pb和Cd在土壤中有效態(tài)和作物中的含量均有所降低。施用肥料后,土壤中Pb和Cd的生物有效性明顯提高歸因于銨化后土壤瞬間酸化。
施用生物炭后,因其石灰化效應可有效緩沖土壤酸化,從而減輕了對生物有效性的影響。過多地使用肥料,使得土壤酸化,有效態(tài)重金屬含量升高,但生物炭可有效蓄水保肥。因此,田間試驗條件下如何合理施用化肥,以平衡好生物炭和肥料的關系需要特別考慮。
表2 生物炭修復重金屬污染農(nóng)田田間試驗總結(jié)
表3 各肥料在不同用量在文獻中出現(xiàn)頻次
注:由文獻[3,6,70-71,73,77,83,88,96,99-103,105]中數(shù)據(jù)整理得到。
Note: This table is sorted out based on the data in literature [3,6,70-71,73,77,83,88,96,99-103,105].
4.4.4 氣候環(huán)境的影響
溫度和降水是影響田間試驗重要因素,會影響生物炭改良后農(nóng)作物的重金屬積累。例如,Ge等[109]研究表明氣候變暖可以逐漸降低土壤孔隙水的pH值,增強水溶性Cd和Cu的濃度,從而增加糧食中的重金屬濃度。在淹水土壤中,生物炭降低植物體內(nèi)Pb和Cd累積量的作用大于旱地土壤,這是因為水可以改變重金屬組分的有效性[110]。Wagner等[108]通過2 a的田間試驗研究了施用芒草生物炭后果園草的生長情況,發(fā)現(xiàn)在氣溫很低的冬季(?2~4 ℃),生物炭用量與作物產(chǎn)量呈負相關,而在夏、秋季時(6~24 ℃),作物產(chǎn)量與生物炭用量呈正相關。Sui等[3]對施用了20 t/hm2生物炭的農(nóng)田開展了長達3 a的監(jiān)測,結(jié)果表明土壤中Cd和Pb的遷移率和生物有效性僅在第1年和第3年有所下降,推測可能是氣候?qū)е?,例如交替干旱和洪水等,影響了動態(tài)氧化還原過程,從而降低了生物炭在堿性土壤中對Cd和Pb遷移性影響[3]。值得注意的是,有很多生物炭田間試驗設計未考慮區(qū)域土壤類型、水文等田間試驗位置的影響因素,同時也缺乏在干旱和半干旱地區(qū)進行生物炭田間試驗的數(shù)據(jù)。
生物炭作為重金屬污染土壤修復材料具有價格低廉、環(huán)境友好、效果明顯等優(yōu)勢。生物炭在進行土壤污染治理的同時,也有效實現(xiàn)了固廢資源化,因此其技術(shù)潛力和應用前景巨大。通過文獻分析和綜合研究,得出如下結(jié)論:
1)生物炭具有較高pH值,較大比表面積和豐富表面官能團等特性,因而對重金屬具有較強固定能力。通過酸堿、氧化劑、有機溶劑和金屬鹽或氧化物增強生物炭特性,而改性劑的種類或濃度會影響改性效果。
2)生物炭通過物理吸附、靜電吸附、絡合沉淀、氧化還原等直接固定重金屬,對不同的重金屬的主要吸附固定機理不同,可以據(jù)此確定生物炭的改性方向;生物炭通過對土壤pH值、陽離子交換量(Cation Exchange Capacity, CEC)、礦物組成和有機質(zhì)含量影響,間接固定重金屬。
3)在多數(shù)田間試驗中,出于經(jīng)濟性考慮,水稻和小麥秸稈被廣泛選用。生物炭的施用降低了污染土壤中重金屬的遷移率和生物有效性,降低了植物對重金屬的吸收,同時,可通過改善物化條件,提高土壤微生物和酶活性,從而提高作物產(chǎn)量。但不同的田間現(xiàn)場條件和氣候環(huán)境影響,可能造成加入生物炭前后作物重金屬積累量與作物產(chǎn)量無顯著差異。
綜上,考慮到生物炭特性和土壤介質(zhì)的復雜性,在進行土壤修復前,應綜合考慮生物炭的性質(zhì)、施用量、土壤污染狀況以及生物炭、重金屬與土壤之間可能存在的相互作用等多種因素。故生物炭在實際修復應用中仍有一些待進一步解決的問題:
1)生物炭主要通過吸附、共沉淀等作用,達到降低土壤中重金屬的生物有效性和移動性,其修復效果的長效性有待進一步研究;同時將土壤與生物炭分離很難,生物炭所吸附的重金屬離子是否會因土壤環(huán)境的改變而重新釋放到土壤環(huán)境中產(chǎn)生二次污染也值得進一步探討。
2)生物炭對重金屬污染土壤的修復機理缺乏全面系統(tǒng)的研究。生物炭不僅通過自身特性直接影響重金屬和土壤性質(zhì),還通過影響土壤中的其他要素來間接影響其性質(zhì)。生物炭對重金屬的吸附固定由多種機理共同控制,目前學界對不同機理的貢獻率的認識仍存在較大差異。同時,生物炭對土壤重金屬作用機制的認識仍未到微納尺度水平,尤其是生物炭施用條件下與土壤礦物和有機質(zhì)等組分的相互作用的認識仍不深入。
3)通過尋找合適的化學或生物改性劑,以期增強生物炭固定重金屬的能力。如生物炭結(jié)合微生物共同修復污染土壤,生物炭負載微生物,利用微生物固定重金屬或促進重金屬的氧化、還原作用;利用生物炭特有的層狀晶形結(jié)構(gòu),選擇合適的聚合物、單體等進行層間嵌套,制備納米復合型生物炭材料。
4)生物炭的田間應用研究多集中在亞熱帶季風氣候地區(qū),針對不同氣候類型下生物炭的修復效果需作進一步研究。同時當前田間試驗規(guī)模均較小,需擴大生物炭應用于重金屬污染土壤修復的研究尺度,長期定位監(jiān)測生物修復效果評估,對生物炭的大規(guī)模工業(yè)應用需要深入評估。
5)預防生物炭在應用過程中的環(huán)境風險。生物炭在制備過程中,除了會使得它本身含有的重金屬在環(huán)境中富集,同時也會產(chǎn)生新的污染物,這些污染物進入土壤環(huán)境中對土壤性質(zhì)和土壤微生物群落等的影響,及其所引起的環(huán)境風險需要考慮。
[1] 中華人民共和國生態(tài)環(huán)境部和中華人民共和國自然資源部. 全國土壤污染狀況調(diào)查公報[EB/OL]. 2014-04-17 [2020-07-01]. http://www.mee.gov.cn/gkml/sthjbgw/qt/ 201404/ t20140417_270670.htm.
[2] 汪鵬,王靜,陳宏坪,等. 我國稻田系統(tǒng)鎘污染風險與阻控[J]. 農(nóng)業(yè)環(huán)境科學學報,2018,37(7):1409-1417.
Wang Peng, Wang Jing, Chen Hongping, et al. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 2018, 37(7): 1409-1417. (in Chinese with English abstract )
[3] Sui F, Zuo J, Chen D, et al. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study[J]. Environmental Science and Pollution Research, 2018, 25(4): 3368-3377.
[4] 陳溫福,張偉明,孟軍. 生物炭與農(nóng)業(yè)環(huán)境研究回顧與展望[J]. 農(nóng)業(yè)環(huán)境科學學報,2014,33(5):821-828.
Chen Wenfu, Zhang Weiming, Meng Jun, et al. Biochar and agro-ecological environment: Review and prospect[J]. Journal of Agro-Environment Science, 2014, 33(5): 821-828. (in Chinese with English abstract)
[5] Kwak J H, Islam M S, Wang S, et al. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation[J]. Chemosphere, 2019, 231: 393-404.
[6] Zhang C, Yu Z, Zeng G, et al. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd[J]. Chemical Engineering Journal, 2016, 284: 247-259.
[7] Qin J, Qian S, Chen Q, et al. Cow manure-derived biochar: Its catalytic properties and influential factors[J]. Journal of Hazardous Materials, 2019, 371: 381-388.
[8] Zhang M, Shan S, Chen Y, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level[J]. Environmental Geochemistry and Health, 2019, 41(1): 43-52.
[9] Shen Z, Hou D, Jin F, et al. Effect of production temperature on lead removal mechanisms by rice straw biochars[J]. Science of the Total Environment, 2019, 655: 751-758.
[10]叢宏斌,姚宗路,趙立欣,等. 中國農(nóng)作物秸稈資源分布及其產(chǎn)業(yè)體系與利用路徑[J]. 農(nóng)業(yè)工程學報,2019,35(22):132-140.
Cong Hongbin , Yao Zonglu , Zhao Lixin , et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 132-140. (in Chinese with English abstract)
[11] Yang G, Zhang G, Wang H. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73.
[12] Awad Y M, Wang J, Igalavithana A D, et al. Biochar effects on rice paddy: Meta-analysis[J]. Advances in Agronomy, 2018, 148: 1-32.
[13]Tang X, Shen H, Chen M, et al. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study[J]. Science of the Total Environment, 2020, 706: 135898.
[14]Yang X, Ng W, Wong B S E, et al. Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions[J]. Journal of Hazardous Materials, 2019, 365: 178-185.
[15]Nazari S, Rahimi G, Khademi Jolgeh Nezhad A. Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103064.
[16]Wang X, Zhou W, Liang G, et al. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil[J]. Science of the Total Environment, 2015, 538: 137-144.
[17]Jin J, Li Y, Zhang J, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426.
[18]Subedi R, Taupe N, Pelissetti S, et al. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type[J]. Journal of Environmental Management, 2016, 166: 73-83.
[19]Deng Y, Huang S, Laird D A, et al. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single-and binary-metal systems[J]. Chemosphere, 2019, 218: 308-318.
[20] Wang X, Li C, Li Z, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52.
[21]Huang H, Yao W, Li R, et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue[J]. Bioresource Technology, 2018, 249: 487-493.
[22]Yuan H, Lu T, Huang H, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 284-289.
[23] Jin J, Wang M, Cao Y, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226.
[24]Veksha A, Giannis A, Liang Y N, et al. Insights into the speciation of heavy metals during pyrolysis of industrial sludge[J]. Science of The Total Environment, 2019, 691: 232-242.
[25]Ronsse F, van Hecke S, Dickinson D, et al. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions[J]. GCB Bioenergy, 2013, 5(2): 104-115.
[26]Homagain K, Shahi C, Luckai N, et al. Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review[J]. Journal of Forestry Research, 2014, 25(4): 737-748.
[27]兗少鋒,陳瑾,王麗喬,等. 雷竹落葉生物炭對微囊藻毒素的吸附性能[J]. 環(huán)境化學,2014,33(4):617-623.
Yan Shaofeng, Chen Jin, Wang Liqiao, et al. Adsorption of microcystin-LR on the leaves-phyllostachys praecox-derived biochar[J]. Environmental Chemistry, 2014, 33(4): 617-623. (in Chinese with English abstract)
[28]Gul S, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206: 46-59.
[29] Li H, Dong X, Da Silva E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[30]Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19-33.
[31]Tag A T, Duman G, Ucar S, et al. Effects of feedstock type and pyrolysis temperature on potential applications of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 200-206.
[32]Pariyar P, Kumari K, Jain M K, et al. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application[J]. Science of the Total Environment, 2020, 713: 136433.
[33]Lu H, Zhang W, Yang Y, et al. Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862.
[34]Jin J, Li S, Peng X, et al. HNO3modified biochars for uranium(VI) removal from aqueous solution[J]. Bioresource Technology, 2018, 256: 247-253.
[35]Cazetta A L, Vargas A M M, Nogami E M, et al. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption[J]. Chemical Engineering Journal, 2011, 174(1): 117-125.
[36]Zhou N, Chen H, Feng Q, et al. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels[J]. Journal of Cleaner Production, 2017, 165: 221-230.
[37]Shen Y, Zhang N. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption[J]. Bioresource Technology, 2019, 282: 294-300.
[38]Zuo X, Liu Z, Chen M. Effect of H2O2concentrations on copper removal using the modified hydrothermal biochar[J]. Bioresource Technology, 2016, 207: 262-267.
[39]Deng J, Li X, Liu Y, et al. Alginate-modified biochar derived from Ca(II)-impregnated biomass: Excellent anti-interference ability for Pb(II) removal[J]. Ecotoxicology and Environmental Safety, 2018, 165: 211-218.
[40]Deng J, Li X, Wei X, et al. Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism[J]. Bioresource Technology, 2019, 290: 121765.
[41]Sun L, Chen D, Wan S, et al. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids[J]. Bioresource Technology, 2015, 198: 300-308.
[42]Luo M, Lin H, Li B, et al. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J]. Bioresource Technology, 2018, 259: 312-318.
[43]Tan X, Wei W, Xu C, et al. Manganese-modified biochar for highly efficient sorption of cadmium[J]. Environmental Science and Pollution Research, 2020, 27: 9126-9134.
[44]Wang Y, Wang L, Deng X, et al. A facile pyrolysis synthesis of biochar/ZnO passivator: Immobilization behavior and mechanisms for Cu (II) in soil[J]. Environmental Science and Pollution Research, 2020, 27: 1888-1897.
[45]Zhu N, Qiao J, Yan T. Arsenic immobilization through regulated ferrolysis in paddy field amendment with bismuth impregnated biochar[J]. Science of the Total Environment, 2019, 648: 993-1001.
[46]Song J, Zhang S, Li G, et al. Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal[J]. Journal of Hazardous Materials, 2020, 391: 121692.
[47]Zou Q, An W, Wu C, et al. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition[J]. Environmental Chemistry Letters, 2018, 16(2): 615-622.
[48]Hemavathy R, Kumar P S, Kanmani K, et al. Adsorptive separation of Cu (II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar[J]. Journal of Cleaner Production, 2020, 249: 119390.
[49]Jin H, Capareda S C, Chang Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629.
[50]Wu W, Li J, Lan T, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation[J]. Science of the Total Environment, 2017, 576: 766-774.
[51]Wang H, Gao B, Wang S, et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362.
[52]Xia Y, Luo H, Li D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261: 114217.
[53]Fan J, Cai C, Chi H, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar[J]. Journal of Hazardous Materials, 2020, 388: 122037.
[54]Zhang J, Zhou H, Gu J, et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (L.)[J]. Environmental Pollution, 2020, 260: 113970.
[55]Lin L, Li Z, Liu X, et al. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil[J]. Environmental Pollution, 2019, 244: 600-607.
[56]Dong H, Deng J, Xie Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86.
[57]Zhou N, Chen H, Feng Q, et al. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels[J]. Journal of Cleaner Production, 2017, 165: 221-230.
[58]Tong X J, Li J Y, Yuan J H, et al. Adsorption of Cu (II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834.
[59]Li M, Lou Z, Wang Y, et al. Alkali and alkaline earth metallic (AAEM) species leaching and Cu (II) sorption by biochar[J]. Chemosphere, 2015, 119: 778-785.
[60]Lei S, Shi Y, Qiu Y, et al. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals[J]. Science of the Total Environment, 2019, 646: 1281-1289.
[61]Wu W, Li J, Lan T, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation[J]. Science of the Total Environment, 2017, 576: 766-774.
[62] Liu P, Ptacek C J, Elena K M, et al. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 2018, 347: 114-122.
[63]Liang Y, Cao X, Zhao L, et al. Biochar- and phosphate- induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater[J]. Environmental Science and Pollution Research, 2014, 21(6): 4665-4674.
[64]Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368.
[65]Zhang H, Shao J, Zhang S, et al. Effect of phosphorus- modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil[J]. Journal of Hazardous Materials, 2020, 390: 121349.
[66]Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.
[67]Yang J, Pignatello J J, Pan B, et al. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char[J]. Environmental Science & Technology, 2017, 51(16): 8972-8980.
[68]Mohan D, Rajput S, Singh V K, et al. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 319-333.
[69]Zhong D, Jiang Y, Zhao Z, et al. pH dependence of arsenic oxidation by rice-husk-derived biochar: Roles of redox-active moieties[J]. Environmental Science & Technology, 2019, 53(15): 9034-9044.
[70]Chen D, Guo H, Li R, et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice: A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment, 2016, 541: 1489-1498.
[71] Bian R, Li L, Bao D, et al. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar[J]. Environmental Science and Pollution Research, 2016, 23(10): 10028-10036.
[72]Jiang T Y, Jiang J, Xu R K, et al. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89(3): 249-256.
[73]Zhang R H, Li Z G, Liu X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188.
[74] Li Z, Qi X, Fan X, et al. Amending the seedling bed of eggplant with biochar can further immobilize Cd in contaminated soils[J]. Sci Total Environ, 2016, 572: 626-633.
[75]Hilber I, Wyss G S, M?der P, et al. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers[J]. Environmental Pollution, 2009, 157(8/9): 2224-2230.
[76]Rees F, Simonnot M O, Morel J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1): 149-161.
[77] Bian R, Joseph S, Cui L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128.
[78]Abdelhafez A A, Li J, Abbas M H. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil[J]. Chemosphere, 2014, 117: 66-71.
[79]Beesley L, Dickinson N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris[J]. Soil Biology and Biochemistry, 2011, 43(1): 188-196.
[80]Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282-2287.
[81]Khan S, Reid B J, Li G, et al. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China[J]. Environment International, 2014, 68: 154-161.
[82]Ming H, Naidu R, Sarkar B, et al. Competitive sorption of cadmium and zinc in contrasting soils[J]. Geoderma, 2016, 268: 60-68.
[83]Zheng R, Chen Z, Cai C, et al. Mitigating heavy metal accumulation into rice () using biochar amendment: A field experiment in Hunan, China[J]. Environmental Science and Pollution Research, 2015, 22(14): 11097-11108.
[84] Vithanage M, Herath I, Joseph S, et al. Interaction of arsenic with biochar in soil and water: A critical review[J]. Carbon, 2017, 113: 219-230.
[85]Ishimaru Y, Bashir K, Nishizawa N K. Zn uptake and translocation in rice plants[J]. Rice, 2011, 4(1): 21-27.
[86]于煥云,崔江虎,喬江濤,等. 稻田鎘砷污染阻控原理與技術(shù)應用[J]. 農(nóng)業(yè)環(huán)境科學學報,2018,37(7):1418-1426.
Yu Huanyun, Cui Jianghu, Qiao Jiangtao, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of Agro-Environment Science, 2018, 37(7): 1418-1426. (in Chinese with English abstract)
[87]Zhang Y, Chen T, Liao Y, et al. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): A field study[J]. Environmental Pollution, 2016, 216: 819-825.
[88]杜彩艷,王攀磊,杜建磊,等. 生物炭、沸石與膨潤土混施對玉米生長和吸收Cd、Pb、Zn 的影響研究[J]. 生態(tài)環(huán)境學報,2019,28(1):190-198.
Du Caiyan, Wang Panlei, Du Jianlei, et al. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize[J]. Ecology and Environmental Sciences, 2019, 28(1): 190-198. (in Chinese with English abstract)
[89] 王彩云,武春成,曹霞,等. 生物炭對溫室黃瓜不同連作年限土壤養(yǎng)分和微生物群落多樣性的影響[J]. 應用生態(tài)學報,2019,30(4):1359-1366.
Wang Caiyun, Wu Chuncheng, Cao Xia, et al. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse[J]. The Journal of Applied Ecology, 2019, 30(4): 1359-1366. (in Chinese with English abstract)
[90] 李新宇,孟康,李小英,等. 生物炭對元謀燥紅壤土壤肥力與番茄生長的影響[J]. 西部林業(yè)科學,2019,48(2):114-120.
Li Xinyu, Meng Kang, Li Xiaoying, et al. Effects of biochar on boil fertility and tomato growth in yuanmou dry red soil[J]. Journal of West China Forestry Science, 2019, 48(2): 114-120. (in Chinese with English abstract)
[91] Xu M, Wu J, Luo L, et al. The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications[J]. Chemistry and Ecology, 2018, 34(2): 177-197.
[92]Düring R A, Ho? T, G?th S. Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes[J]. Science of the Total Environment, 2003, 313(1/2/3): 227-234.
[93] Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11): 1450-1457.
[94]Petelina E, Klyashtorin A, Yankovich T. 38th British Columbia Mine Reclamation Symposium, September 22-25, 2014[C]//British Columbia: University of British Columbia Press, 2014.
[95] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282.
[96] 呂波,王宇函,夏浩,等. 不同改良劑對黃棕壤和紅壤上白菜生長及土壤肥力影響的差異[J]. 中國農(nóng)業(yè)科學,2018,51(22):4306-4315.
Lü Bo, Wang Yuhan, Xia Hao, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. (in Chinese with English abstract)
[97] Moore F, Gonzalez M E, Khan N, et al. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J]. Science of the Total Environment, 2018, 616/617: 960-969.
[98]叢日環(huán),張麗,魯艷紅,等. 長期秸稈還田下土壤銨態(tài)氮的吸附解吸特征[J]. 植物營養(yǎng)與肥料學報,2017,23(2):380-388.
Cong Rihuan, Zhang Li, Lu Yanhong, et al. Adsorption-desorption characteristics of soil ammonium under long-term straw returning condition[J]. Plant Nutrition and Fertilizer Science, 2017, 23(2): 380-388. (in Chinese with English abstract)
[99] 陳少毅,許超,張文靜,等. 生物質(zhì)炭與氮肥配施對污染稻田田面水中無機氮及Cu、Zn、Cd含量的影響[J]. 水土保持學報,2014,28(3):253-258.
Chen Shaoyi, Xu Chao, Zhang Wenjing, et al. Influences of combined application of biochar and nitrogen fertilizers on concentrations of inorganic nitrogen and Cu, Zn and Cd in surface water of paddy soils[J]. Journal of Soil and Water Conservation, 2014, 28(3): 253-258. (in Chinese with English abstract)
[100] Moreno-Jiménez E, Fernández J M, Puschenreiter M, et al. Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers[J]. Agriculture, Ecosystems & Environment, 2016, 219: 171-178.
[101] Cui L, Pan G, Li L, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering, 2016, 93: 1-8.
[102] Cui H, Fan Y, Fang G, et al. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment[J]. Ecotoxicology and Environmental Safety, 2016, 134: 148-155.
[103] Xing Y, Wang J, Shaheen S M, et al. Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation[J]. Journal of Hazardous Materials, 2019, 388: 121747.
[104] 李衍亮,黃玉芬,魏嵐,等. 施用生物炭對重金屬污染農(nóng)田土壤改良及玉米生長的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,2017,36(11):2233-2239.
Li Yanliang, Huang Yufen, Wei Lan, et al. Impacts of biochar application on amelioration of heavy metal-polluted soil and maize growth[J]. Journal of Agro-Environment Science, 2017, 36(11): 2233-2239. (in Chinese with English abstract)
[105]Nie C, Yang X, Niazi N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study[J]. Chemosphere, 2018, 200: 274-282.
[106]Pan D, Liu C, Yu H, et al. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together[J]. Environmental Science and Pollution Research, 2019, 26(24): 24979-24987.
[107]Karer J, Zehetner F, Dunst G, et al. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments[J]. Environmental Science and Pollution Research, 2018, 25(3): 2506-2516.
[108]Wagner A, Kaupenjohann M. Biochar addition enhanced growth of D actylis glomerata L. and immobilized Zn and Cd but mobilized Cu and Pb on a former sewage field soil[J]. European Journal of Soil Science, 2015, 66(3): 505-515.
[109]Ge L, Cang L, Ata-Ul-Karim S T, et al. Effects of various warming patterns on Cd transfer in soil-rice systems under Free Air Temperature Increase (FATI) conditions[J]. Ecotoxicology and Environmental Safety, 2019, 168: 80-87.
[110]李富榮,李敏,朱娜,等. 水作和旱作施用改良劑對蕹菜-土壤系統(tǒng)中鉛鎘生物有效性的影響差異[J]. 農(nóng)業(yè)環(huán)境科學學報,2017,36(8):1477-1483.
Li Furong, Li Min, Zhu Na, et al. Comparing the effects of soil amendments on Pb and Cd bioavailability in water spinach under water submer-sion cultivation and dry farming conditions[J]. Journal of Agro-Environment Science, 2017, 36(8): 1477-1483. (in Chinese with English abstract)
Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances
Li Hongbo1, Zhong Yi1, Zhang Haonan1, Wang Xin1, Chen Jing1,Wang Linling1※, Xiao Jinguang3, Xiao Wu2,3, Wang Wei3
(1.430074;2.410014;3.410014)
Heavy metals contaminated soils pose a serious risk to human beings and animals via direct exposure and food chain. Biochar, a carbon-rich material, is used to remediate heavy metals contaminated farmland. Thisstrategy provides an effective method for utilizing biomass resources and ensuring food safety. With increasing attention, the number of published articles concerning biochar has been increasing in the recent ten years, therefore providing researchers with a large amount of evidence and insights. In this study, the latest studies of biochar in the remediation of heavy metals contaminated farmland were reviewed, with the focus on possible mechanisms of biochar-heavy-metal interactions, related impact factors, and in-situ application of biochar at the field scale. Biochar showed a strong sorption ability, attributed to its physiochemical properties such as large specific surface area, abundant functional groups and high cation exchange capacity. The application effect of biochar was greatly influenced by its characteristics. After summarizing biochar’s physiochemical property data in recent years, the study discussed the changing law of biochar’s properties with the alteration of feedstocks and pyrolysis temperature, respectively. To modulate the properties of biochar for soil remediation, various modifiers with different concentrations were adopted, including acids, bases, oxidizing agents, organic solvents and metal salts or oxidizing agents. In general, the purposes of modification were to enlarge the surface area, to change the functional groups, and to increase the adsorption performance and catalytic capacity. Furthermore, the immobilization mechanisms of heavy metals by biochar were illustrated. The direct immobilization could be achieved through physical absorption, electrostatic attraction, ion exchange, complexation, precipitation, and redox reaction. Besides, the indirect effects of biochar on heavy-metal mobility and bioavailability, which could be achieved via impacting soil characteristics and thus heavy-metal-soil complexation, were less understood and could be largely underestimated. Biochar addition could alter many soil properties including pH value, dissolved organic carbon, mineral composition, and cation exchange capacity. These changes would affect heavy-metal-soil interactions and thus heavy-metal mobility and bioavailability. Many laboratory studies had demonstrated biochar’s effectiveness in decreasing the bioavailability of heavy metals as well as improving soil quality. However, the value of biochar in the remediation of contaminated land had not been well tested in the field. In different field trials, distinct results (beneficial, neutral or adverse effects) had been reported due to wide variations in field conditions and biochar characteristics. To better understand whether biochar application could provide a promising direction for soil remediation, this review was undertaken to assess the published field trial. The results of most previous field trials indicated that biochar could potentially reduce heavy-metal bioavailability in the field. Meanwhile, a significant decrease in the heavy-metal enrichment of the crops was observed. It was found that the use of biochar may help increase crop yields on polluted farmland and reduce the amount of mineral fertilizer used in the field. The application of biochar could inactivate heavy metals through improving soil physicochemical properties (pH, cation exchange capacity, water retention capacity etc.). In addition, it also could be used to enhance the uptake of soil nutrients for plant growth. However, according to a majority of studies, biochar’s effectiveness in reducing the impacts of heavy metals depended on a myriad of factors in the field, including biocharapplying process (variety and dosage rate of the biochar, mixing depth), agronomic measure (nitrogen-phosphorus-potassium fertilizer application) and climatic conditions (air temperature and precipitation). In the last part, future research on the perfection of the mechanisms of soil remediation using biochar, the expansion of the scale, and the long-term monitoring on soil was prospected.
biochars; farmland; heavy metals; soil remediation; field application; advance
李鴻博,鐘 怡,張昊楠,等. 生物炭修復重金屬污染農(nóng)田土壤的機制及應用研究進展[J]. 農(nóng)業(yè)工程學報,2020,36(13):173-185.doi:10.11975/j.issn.1002-6819.2020.13.021 http://www.tcsae.org
Li Hongbo, Zhong Yi, Zhang Haonan, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 173-185. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.021 http://www.tcsae.org
2020-02-17
2020-06-21
湖南省重點研發(fā)計劃項目(2016SK2057);水利部公益性行業(yè)科研專項(201501019);污染控制與資源化研究國家重點實驗室開放課題(PCRRF18027)
李鴻博,博士生,主要從事農(nóng)田土壤重金屬污染修復技術(shù)研究。Email:hblee@hust.edu.cn
王琳玲,博士,副教授,主要從事固廢資源化與污染土壤修復研究。Email:wanglinling@hust.edu.cn
10.11975/j.issn.1002-6819.2020.13.021
X53; X712
A
1002-6819(2020)-13-0173-13