• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes

    2020-07-09 04:19:52XiaonaLIU劉曉娜XiaoqingCHE車(chē)曉青KunyuLI李坤玉XiboWANG王喜波ZhaozhouLIN林兆洲ZhishengWU吳志生andQiushengZHENG鄭秋生
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:李坤

    Xiaona LIU (劉曉娜),Xiaoqing CHE (車(chē)曉青),Kunyu LI (李坤玉),Xibo WANG (王喜波),Zhaozhou LIN (林兆洲),Zhisheng WU (吳志生) and Qiusheng ZHENG (鄭秋生),7

    1 College of Integrated Traditional Chinese Medicine and Western Medicine,Binzhou Medical University,Yantai 256603,People’s Republic of China

    2 Shandong Runzhong Pharmaceutical Co.,Ltd,Yantai 256603,People’s Republic of China

    3 Hebei Baicaokangshen Pharmaceutical Co.,Ltd,Shenzhou 053800,People’s Republic of China

    4 Penglai Municipal Bureau of Ocean Development and Fishery,Penglai 265600,People’s Republic of China

    5 Beijing Institute of Clinical Pharmacy,Beijing 100035,People’s Republic of China

    6 Beijing University of Chinese Medicine,Beijing 100102,People’s Republic of China

    7 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:laser-induced breakdown spectroscopy,Mentha haplocalyx,geographical origin,least squares support vector machines,herb authenticity

    1.Introduction

    Mentha haplocalyx Briq.,commonly known as mint,is a vital Chinese herb [1,2].Its aerial parts are prescribed for cold,cough,swollen glands,aphtha,measles,and alleviation of inflammation [3,4].In traditional Chinese medicine (TCM),geo-authentic herb or‘Daodi’herb is a term defining those TCM planted in specific geographical origins (GOs) and meets the highest quality criteria.Due to multiple consumption,many mint cultivation is increasing greatly.Thus,more attention is being paid to the clear GOs of mint products due to the medicinal efficacy and food quality caused by their GOs [5,6].

    Table 1.Analytical methods evaluating the geographical authenticity of herb and food.

    To date,discrimination of GOs has mostly been performed by high performance liquid chromatography (HPLC),gas chromatography (GS),mass spectrum (MS),nuclear magnetic resonance(NMR),inductively coupled plasma atomic emission spectrometry (ICP-AES),and recently genomics,proteomics,metabolomics,etc [7–10].Particularly the multi-elemental techniques combined with multivariate analysis have been successfully applied [11,12].Mineralogical elements of herb and food play significant roles in the biological activity and greatly affect their quality[13,14].Therefore,it is valuable to develop effective methods to certify the authenticity of TCM through elemental fingerprints.

    Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technique,which is widely used for its simplicity and versatility[15–17].This technique is based on the consecutive plasmas formation and optical emission following laser ablation of the target material.Spectral characteristics allow multi-element identification and quantitative analysis.Commonly-used element analytical techniques such as atomic absorption spectrometry (AAS),ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS) are limited by tedious sample preparation and may not meet the need of real-time measurement.The use of LIBS is attractive for assessment of multi-elemental determination in different materials,while the use for in situ measurement can be challenging given the other elemental analysis methods [18].

    Table 1 lists the recent works found regarding geographical authenticity of herb and food using different multivariate analysis methods and diverse analytical techniques.Most of works focus on differentiating samples by various multi-element analytical techniques.For several evaluated methods,analytical accuracy ranged from 77% to 100%,indicating the promising techniques.Compared to other multi-element techniques,LIBS is faster and more environmentally friendly,since it needs minimal sample pretreatment.

    Recently,LIBS has been applied in biomedical fields,notably for plant materials [29–31].Moreover,the numerous spectral peaks necessitate multivariate analysis in LIBS applications [32–34].Liu et al employed the partial leastsquares discriminant analysis (PLS-DA) method to classify the provenance of a medicinal herb(Blumea balsamifera DC)using LIBS[27].Zhan et al applied random forest algorithm,rapid classification method,to identify aluminum alloy based on LIBS [35].

    However,many conventional classification approaches used for LIBS analysis are constrained by the underlying linear treatment.While a series of the real-world questions cannot be addressed.For example,the prediction accuracy(sensitivity) is used as the strong criterion to establish and optimize the classification models.Nevertheless,robust classification algorithms were omitted which possess high power in discriminating unknown cases.

    In this work,a nonlinear classification algorithm,named least-squares support vector machines (LS-SVM) was employed to classify GOs of mint,as well as to investigate the sensitivity and robustness of models.LS-SVM,as described by Suykens,is a variant of the SVM with a least squares loss function and equality constraints[36].Dingari et al employed LS-SVM to discriminate nonprescription pharmaceutical samples,compared with PLS-DA,soft independent modeling of class analogy(SIMCA),and other traditional linear pattern recognition methods,LS-SVM addressed the intrinsic curved effects in the acquired LIBS data and provided superior predictions on the classification results [37].In addition,the computational complexity of LS-SVM can be reduced relatively by solving a linear equation instead of quadratic programming method used in traditional SVM [38,39].

    Thus,the aim of this work is to explore the robustness issues and the classification power of a spectroscopic technique combined with advanced chemometric approaches for multi-classification of mint samples from distinct regions.First,PCA was used to explore the data structure of different cases.Subsequently,LS-SVM algorithm including linear and nonlinear classification was applied to evaluate the sensitivity and robustness of the models based on acquired LIBS data.

    2.Materials and methods

    2.1.Experimental setup

    The experimental setup used in the present work has been previously described [27].Briefly,a commercial LIBS system (TSI,ChemRevealTM-3764,USA) equipped with a Q-switched Nd:YAG laser at 1,064 nm was employed in this study.The experimental setup integrates a laser source with maximum of 400 mJ per pulse and a spectrometer.The system is capable of 2 Hz maximum pulse repetition rate with a pulse duration of 3–5 ns.A focal lens and optical fibers were used to collect the plasma which was then fed into the spectrometer coupled with a CCD device to record the spectra.The spectrum is covering continuous wavelength from 167.323 nm to 984.621 nm.A three-dimensional translation stage with stepper motors was applied to ensure the movement of sample to fresh position.The CCD starts collecting spectra at 1 μs after the initiation.The laser energy was about 340 mJ per pulse.A restricted integration time of 1 ms was used.All experiments were carried out at ambient air.

    2.2.Materials

    The aerial parts of mint were collected from Hebei,Anhui,Guangxi,Hubei,and Jilin provinces of China,which were identified by Dr Aijuan Shao (Institute of Chinese Materia Medica,Chinese Academy of Traditional Chinese Medicine,China).All mint samples coming from the harvest season are stored at ambient temperature in a shady,well-ventilated room for about two weeks (mean temperature 22 °C).

    2.3.Data acquisition

    The dried aerial parts of mint were cut into sections of 2–3 cm in length.Spectra were taken along the length of the samples at the surface.Three locations were randomly selected and each one comprised of nine spectra (3×3 (100 μm×100 μm)) for each sample.Thus,27 spectra were averaged.Nineteen representative samples for Hebei group were typically taken,and for the other four GO groups,twenty representative samples were typically taken.Therefore,a total of 99 spectra were obtained.

    2.4.Multivariate analysis

    Figure 1.The normalized LIBS spectra of mint samples.(Hebei,Anhui,Guangxi,Hubei,and Jilin).

    In this present study,multivariate analysis methods are developed for classification of a large number of mint samples from five GOs in China.The challenge is to be able to discriminate the GOs based on elemental fingerprints of mint.To account for pulse-to-pulse variations in the laser energy,the full spectral spectra were performed by mean-centering.PCA is an unsupervised technique of dimensionality reduction without the use of class labels,which was carried out by PLS_toolbox version 6.21 under Matlab version R2009a(MathWorks Inc.,USA) [36].The linear multivariate PCA models was developed by eigenvectors also named principle components.The new coordinates of the independent PC scores can visualize the similarities among spectra.

    Furthermore,LS-SVM algorithm was employed to retrieve the class labels,which was performed by a LSSVM MATLAB toolbox under Matlab version R2009a (MathWorks Inc.,USA)[36].The linear kernel and radial basis function (RBF) kernel were used for linear and nonlinear classification as mentioned in references,respectively [30,40].

    The sensitivity analysis and robustness analysis were applied to screen the mint samples.In the‘sensitivity test’,the rate of correct classification,misclassification and unclassification are computed when all classes of pharmaceutical samples are included in the training data.While,the abovementioned methods are evaluated to determine the rate of correct allocation,unallocation and misclassification when each class is alternately removed from the training set but is included in the test data in the ‘robustness test’ as mentioned in [34].Robustness (a positive identification) was also significant for classification test in multivariate models.In this case,‘robust’ implies the ability to detect unknown samples correctly,while not comprising on the prediction accuracy of the known samples.Two separate tests were used,one test was for sensitivity and the other was for robustness [37,41].

    Specially,the performance indicators including ‘correct classification’,‘misclassification’,and ‘unclassification’ were adopted in the multi-class cases.The ‘correct classification’categories referred to all correctly classified spectra and all correctly unclassified spectra.Incorrect classification fallen under the category of ‘misclassification’.In addition,an unclassification criterion labeled incorrect unallocation of the spectra from the known samples to prevent misclassification.

    The input variables for LS-SVM computations were the full-spectral.Classic Kennard–Stone (KS) approach was implemented to separate the datasets into training and test sets[42].Leave-one-out (LOO) cross-validation paradigm was employed in both algorithms.

    Figure 2.The typical normalized LIBS spectrum obtained from a mint sample.

    In the sensitivity tests,99 datasets were randomly splitting into 66 for training and 33 for test,respectively.Especially,the 33 test samples consist of 5 randomly selected samples from each of the five regions.Additionally,100 iterations are executed in the screening process.

    In this investigation,the robustness tests follow a similar way to the sensitivity tests with a key difference.One mint region class is removed from the calibration set at one time.Meanwhile,this process is alternated for each region class.Moreover,the size of the test set maintains the same as sensitivity tests.Similarly,100 independent iterations for each removed class were also applied to get a representative result.

    3.Results and discussion

    3.1.Construction of ‘elemental fingerprints’spectra

    Figures 1 and 2 depict the representative LIBS spectra of mint samples.Macro-elements(Ca,K,Ba,Na,Mg)dominated the LIBS spectra.The peaks corresponding to lithium(Li),silicon(Si) and aluminum (Al) with lower intensities also appear in the spectra.Simultaneously,light organic elements such as carbon (C),oxygen (O),hydrogen (H) and nitrogen (N)together with molecular band C–N are monitored in the stem.Table 2 shows the elements detected in the spectra.

    Figure 3 is an average per GO of such intensities.Each bar is an average of 20 or 19(Hebei group)such intensity and the error bars were standard deviation.Figure 3 shows higher intensities for Ca (393.3 nm; 396.8 nm),K (766.523 nm;769.959 nm),and Mg(279.418 nm; 285.080 nm).The lowest intensities of mint samples for K (766.523 nm; 769.959 nm)and Na (588.952 nm) show in Anhui and Hebei provinces,respectively.Hubei and Jilin provinces are high in C,N and K(247.725 nm; 746.918 nm; 766.523 nm; 769.959 nm).However,figure 3 reveals the high standard deviation reflecting the significant fluctuation in the intensities of spectral emission lines from mint samples.Obviously,it is not easy to discriminate the GOs by the single element.

    3.2.Multivariate analysis

    3.2.1.Identifcation geographical origins by PCA.PCA was first applied on the total 99 dataset to probe the critical spectral features in the LIBS dataset [43,44].In PCA,a 99 (objects)×13204 (variables) data matrix was submitted for PCA.The first five principal components(PC1–5)demonstrate 91.07%of the total variability in the original data.Figure 4 displays the projection of the LIBS spectral database for the principal components.The first three principal components(PCs)explain 80.51% of the total variance in the dataset.Clearly,the large dispersion and local overlapping classes are present along the PC directions,which may attribute to the mineralogical variability of each class.Due to the unsupervised nature,PCA cannot provide classification automatically.Yet PCA is a valuable technique for exploring similarities among classes.

    Figure 3.Bar plots representing major emission lines in the LIBS spectra of mint samples.Each bar is an average of 20(or 19)such intensity and the error bars were their standard deviation.

    Table 2.Elemental emission lines used in the spectral fingerprinting of the mint samples.

    Figure 4.PC scores plot of the three principal components for the spectral dataset acquired from the five GOs of mint samples.

    Table 3.Sensitivity test results of mint sample from five GOs.

    3.2.2.Distinguishing geographical origins by LS-SVM.Table 3 lists the results of sensitivity test for LS-SVM classification analysis with linear kernel and RBF kernel,respectively.Two models exhibit excellent performance in the sensitivity test.The correct allocation rate in linear metric increases marginally over the corresponding nonlinear one(except for samples from Hebei),but the improvement has no statistical significance in both tests(p > 0.05).Furthermore,the unclassification rate was lower as well.The average rates of correct allocation and unclassification are 96.10%and 1.85%in linear kernel model,94.38% and 4.10% in RBF kernel model.

    Table 4 exhibits the performance of LS-SVM in robustness test when each sample is alternately removed from the training set.linear kernel LS-SVM algorithm shows good performance over RBF kernel LS-SVM among Anhui and Guangxi(a highercorrect classification rate as well as a lower misclassification rate).Similar to sensitivity analysis,results of samples from Hebei are prominent in both models.Evidently,RBF kernel LSSVM algorithm shows a fairly high correct classification rate(ca.99.2%) in robustness test of Hebei cases.The result of samples from Hubei and Jilin provides acceptable sensitivity performance(table 3),while the robustness performance is not desirable(table 4).Ominously,samples of Hubei and Jilin still have the highest rate of misclassification or unclassification.Generally,linear kernel shows better performance than RBF kernel in the robustness analysis,in terms of average correct allocation (ca.88% versus ca.86%),but the improvement is not statistically significant(p > 0.05).In summary,these results seem to indicate that LS-SVM presents good performance in dealing with samples of unknown classes,though the correct discrimination rates are still lower than those in sensitivity analysis.

    Table 4.Robustness test results of mint sample from five GOs.

    Due to massive data reduction,LS-SVM needs only short calculation time.Previous investigators have also noted the advantage of reduced computation time for LS-SVM,in comparison with SIMCA,thus making it valuable screening tool for large LIBS datasets [45,46].Combined LIBS with a suitable nonlinear classification method such as LS-SVM may provide an important tool for GOs classification.Further investigations in a variety of herbs (e.g.herbs and mineral herbs) by LIBS are underway in our lab.

    4.Conclusion

    Spectral fingerprints of mint obtained by LIBS were applied to discriminate samples according to their GOs.Mineralogical elements of TCM are considered to be more feasible elemental markers for discriminating GOs owing to the biological activity and relatively coming from soil.Common elemental and molecular species such as Ca,Mg,Na,Ba,and CN were identified from LIBS spectra of the sampled mint.However,the similar spectra of various mint samples made classification very difficult by direct visual inspection.Thus multivariate analysis was performed by the LIBS elemental fingerprints to evaluate GO discrimination of the considered mint samples.Findings demonstrated that combined with LS-SVM classification algorithm,LIBS can provide a sensitive and robust tool in GOs discrimination and classification of mint.The LS-SVM method exhibited excellent prediction accuracy in discrimination of blind cases despite the unsatisfactory performance of samples from Hubei and Jilin provinces.

    In general,the present study demonstrated the potential of LIBS in future applications of herbal medicine,especially for in situ monitoring applications of geographical authenticity rapidly.Due to the complex matrix composition of herbal medicine,a large number of instances are still being the need to train models.Furthermore,plant samples should be grinded and then made pressed pellets to minimize matrix effects.More comprehensive SVM applications in LIBS measurements are necessary to improve robust performance of current results.The perspective LIBS application to GOs study of medical and food,especially TCM will need a hybrid of chemometric algorithms to exploit the best feature.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.81903796,81603396 and 31870338),the National Key Research and Development Program of China(No.2019YFC1711200),Major new drug innovation project of the ministry of science and technology (2018ZX09201011),Scientific and Technological Planning Projects of Colleges and Universities of Shandong Province (No.J18KA287) and Binzhou Medical University Research Startup Fund Project (No.BY2016KYQD02).The authors declare that they have no conflict of interest.

    猜你喜歡
    李坤
    菲菲生氣了
    菲菲生氣了
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    因果
    漫畫(huà)四則
    神算
    国产免费男女视频| 国产高清视频在线播放一区| 精品久久久久久,| 美女高潮喷水抽搐中文字幕| 国产精品女同一区二区软件 | 在线播放国产精品三级| 国产成人一区二区在线| 午夜福利18| 亚州av有码| 亚洲精华国产精华精| 韩国av在线不卡| 欧美最黄视频在线播放免费| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 亚洲经典国产精华液单| 黄色女人牲交| 久久久久国内视频| 国产高清不卡午夜福利| 精品一区二区三区人妻视频| 久久这里只有精品中国| 国产伦人伦偷精品视频| 亚洲精品456在线播放app | 欧美zozozo另类| 免费看av在线观看网站| 欧美精品啪啪一区二区三区| 91av网一区二区| 18禁在线播放成人免费| 免费看日本二区| 亚洲精华国产精华液的使用体验 | 老熟妇乱子伦视频在线观看| 黄色女人牲交| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 日韩欧美 国产精品| 亚洲av免费在线观看| 日韩高清综合在线| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 国产精品,欧美在线| www.www免费av| 亚洲图色成人| 波野结衣二区三区在线| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 亚洲欧美精品综合久久99| 搞女人的毛片| 久久亚洲精品不卡| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 波多野结衣高清作品| 毛片女人毛片| 亚洲人成网站高清观看| 亚洲专区中文字幕在线| 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月| 国产精品伦人一区二区| 国产精品98久久久久久宅男小说| 亚洲av美国av| 99在线视频只有这里精品首页| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 国产伦人伦偷精品视频| 久久精品国产鲁丝片午夜精品 | 亚洲国产色片| 亚洲无线观看免费| 一区福利在线观看| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 久久精品影院6| 国产欧美日韩一区二区精品| 午夜免费男女啪啪视频观看 | 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 一级黄色大片毛片| 国产男人的电影天堂91| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 国产免费一级a男人的天堂| 免费高清视频大片| 国内精品久久久久久久电影| 黄色配什么色好看| 日韩欧美三级三区| 久久精品国产亚洲网站| 成人永久免费在线观看视频| 少妇被粗大猛烈的视频| 国产精华一区二区三区| 啦啦啦韩国在线观看视频| 国产爱豆传媒在线观看| 深爱激情五月婷婷| 校园春色视频在线观看| 国产极品精品免费视频能看的| 长腿黑丝高跟| 免费看av在线观看网站| 黄色日韩在线| 少妇的逼好多水| bbb黄色大片| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 超碰av人人做人人爽久久| 国产精品久久久久久久久免| 亚洲成人免费电影在线观看| 亚洲精品色激情综合| 亚洲美女视频黄频| 亚洲熟妇熟女久久| 久久久久九九精品影院| 久久久精品大字幕| 国产精品福利在线免费观看| 99国产精品一区二区蜜桃av| 成人综合一区亚洲| 日韩欧美精品v在线| 欧美zozozo另类| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 少妇的逼好多水| aaaaa片日本免费| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 国产成人影院久久av| 欧美最黄视频在线播放免费| 婷婷色综合大香蕉| 久久久色成人| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 成人无遮挡网站| 黄色欧美视频在线观看| 久久国产乱子免费精品| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 精品国产三级普通话版| 国产麻豆成人av免费视频| 伦精品一区二区三区| 一区福利在线观看| 无人区码免费观看不卡| 看十八女毛片水多多多| 五月玫瑰六月丁香| 99久国产av精品| 日本成人三级电影网站| 天堂√8在线中文| 在线看三级毛片| 国产毛片a区久久久久| 热99在线观看视频| 国产麻豆成人av免费视频| 欧美绝顶高潮抽搐喷水| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 亚洲最大成人中文| 国产精品国产三级国产av玫瑰| 午夜激情欧美在线| 99久久九九国产精品国产免费| 国产精品免费一区二区三区在线| 美女高潮的动态| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 中出人妻视频一区二区| 亚洲成人久久性| 国产精品女同一区二区软件 | 有码 亚洲区| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 久久久久久大精品| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 91在线精品国自产拍蜜月| 国产高清三级在线| 国产 一区精品| 97热精品久久久久久| 窝窝影院91人妻| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 国产午夜精品论理片| 日韩欧美一区二区三区在线观看| 少妇人妻精品综合一区二区 | 久久久久久久久久久丰满 | 桃红色精品国产亚洲av| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 别揉我奶头 嗯啊视频| 成人av一区二区三区在线看| 最近最新免费中文字幕在线| 色5月婷婷丁香| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 成年女人看的毛片在线观看| 极品教师在线免费播放| 成人综合一区亚洲| 久久精品国产自在天天线| 真人一进一出gif抽搐免费| 国产午夜精品论理片| 免费电影在线观看免费观看| 91精品国产九色| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 高清在线国产一区| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看 | 国内精品宾馆在线| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 国产精品久久电影中文字幕| ponron亚洲| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 欧美精品国产亚洲| 校园春色视频在线观看| av中文乱码字幕在线| 99riav亚洲国产免费| 91在线观看av| 亚洲熟妇熟女久久| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 国产精华一区二区三区| 日韩国内少妇激情av| 久久精品影院6| 女的被弄到高潮叫床怎么办 | 成年女人毛片免费观看观看9| 亚洲电影在线观看av| 免费大片18禁| 看片在线看免费视频| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器| 亚洲成人免费电影在线观看| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 国产精品人妻久久久影院| 99久国产av精品| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 在线播放无遮挡| 草草在线视频免费看| 久99久视频精品免费| 精品福利观看| 天美传媒精品一区二区| 日韩欧美在线乱码| 有码 亚洲区| 久久久久久久久久久丰满 | 简卡轻食公司| 欧美三级亚洲精品| 午夜福利在线观看吧| 91在线观看av| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美| 国产av在哪里看| 午夜精品在线福利| 免费无遮挡裸体视频| 淫秽高清视频在线观看| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 两人在一起打扑克的视频| 免费观看在线日韩| 日韩高清综合在线| 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 欧美色视频一区免费| 特级一级黄色大片| 狂野欧美激情性xxxx在线观看| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 久久草成人影院| 亚洲专区中文字幕在线| 精品一区二区三区视频在线| 一区二区三区激情视频| 欧美xxxx黑人xx丫x性爽| 亚洲无线观看免费| 亚洲狠狠婷婷综合久久图片| 99久久精品一区二区三区| 99热网站在线观看| 久久精品国产99精品国产亚洲性色| 99久久久亚洲精品蜜臀av| 性插视频无遮挡在线免费观看| netflix在线观看网站| 国产精品人妻久久久影院| 精品久久久久久成人av| 美女免费视频网站| 欧美3d第一页| 日韩精品青青久久久久久| 午夜老司机福利剧场| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 久久久久久久亚洲中文字幕| 在线免费观看的www视频| 午夜福利成人在线免费观看| 美女免费视频网站| 亚洲精品456在线播放app | 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 桃红色精品国产亚洲av| 国产熟女欧美一区二区| 久久午夜福利片| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人爽人人爽人人片va| 在线播放国产精品三级| 久久久成人免费电影| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 国产免费男女视频| 一个人免费在线观看电影| 小蜜桃在线观看免费完整版高清| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| 亚洲av成人av| 十八禁国产超污无遮挡网站| 亚洲av.av天堂| 免费黄网站久久成人精品| 午夜福利18| 一级黄片播放器| 人妻夜夜爽99麻豆av| 午夜免费激情av| 亚洲色图av天堂| 天美传媒精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 校园人妻丝袜中文字幕| 欧美日本视频| 欧美一区二区亚洲| 色5月婷婷丁香| 久久6这里有精品| 欧美3d第一页| av中文乱码字幕在线| 狂野欧美白嫩少妇大欣赏| 国产免费一级a男人的天堂| 男插女下体视频免费在线播放| .国产精品久久| 亚洲黑人精品在线| 看免费成人av毛片| 两个人视频免费观看高清| 伦精品一区二区三区| 国产精品自产拍在线观看55亚洲| 在线国产一区二区在线| 狂野欧美激情性xxxx在线观看| 免费一级毛片在线播放高清视频| 久久久久久久午夜电影| 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 国产精品三级大全| 看片在线看免费视频| 国产成人福利小说| 真人做人爱边吃奶动态| 精品久久久久久久久av| 少妇的逼水好多| 少妇的逼好多水| 黄色欧美视频在线观看| 国产一区二区在线av高清观看| 精品久久久噜噜| 久久久久久久久久黄片| 成人综合一区亚洲| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久精免费| 亚洲av美国av| 啦啦啦韩国在线观看视频| 十八禁网站免费在线| 久久人妻av系列| 我的女老师完整版在线观看| 99热这里只有是精品50| 88av欧美| 日韩一区二区视频免费看| 长腿黑丝高跟| 亚洲中文日韩欧美视频| a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 中文字幕久久专区| 国产一区二区激情短视频| 老司机深夜福利视频在线观看| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 一级毛片久久久久久久久女| 黄色配什么色好看| 色精品久久人妻99蜜桃| 在线天堂最新版资源| 美女cb高潮喷水在线观看| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 成人av一区二区三区在线看| 一级黄片播放器| 日本五十路高清| 两人在一起打扑克的视频| 午夜影院日韩av| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 天堂影院成人在线观看| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜添小说| 欧美性猛交黑人性爽| 在线播放无遮挡| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看 | 长腿黑丝高跟| 免费av观看视频| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | 悠悠久久av| 国产成人aa在线观看| 亚洲精品在线观看二区| 婷婷丁香在线五月| 久久久久久久久大av| 精品久久久久久久久久免费视频| 成年女人永久免费观看视频| 国产午夜精品论理片| 亚洲七黄色美女视频| 白带黄色成豆腐渣| 99久久精品国产国产毛片| 两个人的视频大全免费| xxxwww97欧美| 少妇丰满av| 国内久久婷婷六月综合欲色啪| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 亚洲熟妇熟女久久| av在线亚洲专区| 岛国在线免费视频观看| 在线观看免费视频日本深夜| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| eeuss影院久久| 直男gayav资源| 又爽又黄a免费视频| 亚洲美女视频黄频| 亚洲欧美日韩高清在线视频| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 欧美在线一区亚洲| 亚洲第一区二区三区不卡| 可以在线观看的亚洲视频| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 亚洲av免费在线观看| 看片在线看免费视频| 日韩欧美免费精品| 一级黄色大片毛片| 午夜爱爱视频在线播放| 亚洲国产精品sss在线观看| 色av中文字幕| 日本精品一区二区三区蜜桃| 亚洲成av人片在线播放无| 69人妻影院| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器| 久久国产乱子免费精品| 日韩欧美国产在线观看| 久久久久久久午夜电影| 看免费成人av毛片| 给我免费播放毛片高清在线观看| 亚洲 国产 在线| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av| 国产精品野战在线观看| 天美传媒精品一区二区| 在线天堂最新版资源| 国产精品美女特级片免费视频播放器| 91av网一区二区| 精品一区二区三区av网在线观看| 国产精品三级大全| 波多野结衣巨乳人妻| 嫩草影院新地址| 国产亚洲精品久久久久久毛片| 午夜爱爱视频在线播放| 婷婷色综合大香蕉| 国产精品一区二区免费欧美| 听说在线观看完整版免费高清| 欧美不卡视频在线免费观看| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱 | 国产私拍福利视频在线观看| 波多野结衣巨乳人妻| а√天堂www在线а√下载| 小说图片视频综合网站| 热99re8久久精品国产| av国产免费在线观看| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 亚洲,欧美,日韩| 国模一区二区三区四区视频| 中文字幕av成人在线电影| 精品午夜福利视频在线观看一区| 国产精品人妻久久久影院| 日日摸夜夜添夜夜添av毛片 | 久久久久久九九精品二区国产| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 国产精品人妻久久久久久| 欧美激情在线99| 亚洲一区二区三区色噜噜| 麻豆av噜噜一区二区三区| 色综合亚洲欧美另类图片| 亚洲av中文字字幕乱码综合| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 欧美bdsm另类| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 国产精品电影一区二区三区| 欧美性感艳星| 国产视频一区二区在线看| 日本一二三区视频观看| 日本黄大片高清| 一本久久中文字幕| 午夜影院日韩av| 中文在线观看免费www的网站| 国产一区二区激情短视频| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 午夜影院日韩av| 国产 一区 欧美 日韩| 欧美日韩中文字幕国产精品一区二区三区| 成人国产综合亚洲| 国产精品一区www在线观看 | 成人一区二区视频在线观看| а√天堂www在线а√下载| 999久久久精品免费观看国产| 女人被狂操c到高潮| 97超视频在线观看视频| 国产精品亚洲美女久久久| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 精品久久久久久久久久免费视频| 观看美女的网站| 欧美三级亚洲精品| 成年女人毛片免费观看观看9| 亚洲自偷自拍三级| 日韩国内少妇激情av| 国产精品嫩草影院av在线观看 | 最近在线观看免费完整版| 五月伊人婷婷丁香| 久久久久久久亚洲中文字幕| 一夜夜www| 身体一侧抽搐| 特大巨黑吊av在线直播| 亚洲精品粉嫩美女一区| 精品福利观看| 久久精品国产亚洲网站| 99久久中文字幕三级久久日本| 色播亚洲综合网| 黄色日韩在线| 国产麻豆成人av免费视频| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 午夜福利在线观看吧| 国产av在哪里看| 久久人妻av系列| 一个人免费在线观看电影| 身体一侧抽搐| 中文字幕免费在线视频6| 久久精品综合一区二区三区| 国产精品98久久久久久宅男小说| 免费在线观看成人毛片| 在线免费观看的www视频| 内射极品少妇av片p| 国产欧美日韩一区二区精品| 久久精品夜夜夜夜夜久久蜜豆| 麻豆一二三区av精品| 精品久久久久久久末码| 精品人妻1区二区| 国产综合懂色| 最近中文字幕高清免费大全6 | www.www免费av| 亚洲自拍偷在线| 午夜精品一区二区三区免费看| 女人十人毛片免费观看3o分钟| 中文字幕av成人在线电影| 乱码一卡2卡4卡精品| 观看美女的网站| 99久久久亚洲精品蜜臀av| 亚洲美女搞黄在线观看 | 99热这里只有是精品在线观看| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜添小说| 最近最新免费中文字幕在线| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 亚洲第一区二区三区不卡| 日韩,欧美,国产一区二区三区 | 国产主播在线观看一区二区| 嫁个100分男人电影在线观看| 日本与韩国留学比较| 极品教师在线免费播放| 国产av一区在线观看免费| 午夜福利在线观看免费完整高清在 | 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 美女黄网站色视频| 又爽又黄无遮挡网站| 一区二区三区激情视频| 国内毛片毛片毛片毛片毛片| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 很黄的视频免费| 一进一出抽搐gif免费好疼| 欧美成人性av电影在线观看| 99热精品在线国产| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 日韩欧美国产一区二区入口| 午夜福利视频1000在线观看| 黄色一级大片看看| 成年女人永久免费观看视频|