• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid online analysis of trace elements in steel using a mobile fiber-optic laserinduced breakdown spectroscopy system

    2020-07-09 04:20:08QingdongZENG曾慶棟GuanghuiCHEN陳光輝XiangangCHEN陳獻剛BoyunWANG王波云BoyangWAN萬博陽MengtianYUAN袁夢甜YangLIU劉洋HuaqingYU余華清LianboGUO郭連波andXiangyouLI李祥友
    Plasma Science and Technology 2020年7期
    關鍵詞:劉洋光輝

    Qingdong ZENG (曾慶棟),Guanghui CHEN (陳光輝),Xiangang CHEN (陳獻剛),Boyun WANG (王波云),Boyang WAN (萬博陽),Mengtian YUAN (袁夢甜),Yang LIU (劉洋),Huaqing YU (余華清),Lianbo GUO (郭連波) and Xiangyou LI (李祥友)

    1 School of Physics and Electronic-information Engineering,Hubei Engineering University,Xiaogan 432000,People’s Republic of China

    2 Wuhan National Laboratory for Optoelectronics (WNLO),Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Faculty of Physics and Electronic Science,Hubei University,Wuhan 430062,People’s Republic of China

    4 Inner Mongolia North Heavy Industries Group Corp.Ltd,Baotou 014033,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,optical fiber,rapid analysis,online detection,steel

    1.Introduction

    The content of trace elements in a steel alloy has a remarkable effect on the performance of the steel [1,2].Accordingly,rapid and accurate detection of the concentration of trace elements is critical to steel performance,production efficiency,and cost reduction of human resource.However,the traditional analytical methods are unsuitable for the direct measurement of large steel tubes,especially in harsh environments.For example,inductively coupled plasma(ICP)is a traditional method of steel analysis that involves cutting of a small piece of steel at the end of the steel tube and then preparing it for analysis through complex sample processing.The analysis processes are labor-intensive and time-consuming due to the complex preparation and extensive analysis cycle.

    Laser-induced breakdown spectroscopy (LIBS) is an effective elemental analytical method that analyzes the composition of substances by detecting the atomic emission spectroscopy of the target sample [3–7].Unlike traditional analytical methods,the LIBS technique is versatile due to its various advantages of minimal sample preparation,fast analysis,and the ability to identify multiple elements at the same time [8–11].LIBS is a promising fast detection technology and regarded as a ‘future superstar’ due to these advantages[12].However,because of its large size,complex structure,and sensitivity to disturbance from the outside environment,the traditional LIBS is only suitable for laboratory research and not practicable for online detection and analysis in the industrial field [13].

    Therefore,the development of a transportable,robust,and cost-effective LIBS system is an urgent requirement for online analysis in the industrial field.Several research groups have devoted their efforts to the development of a robust,cost-effective,and even mobile or portable LIBS system suitable for industrial applications.Gravel et al[14]utilized a compact fiber laser coupled with three different spectrometers to ablate aluminum and copper samples and analyze their elements.They found that,under some given conditions,the compact spectrometer could obtain low limits of detection(LODs) that operate at fast rates.They suggested that the robust fiber laser has great potential for various industrial LIBS applications.Scharun et al [15]developed a mobile LIBS setup utilizing a multi-kHz fiber laser as the light source for metal analysis.The set-up achieved accuracy comparable to or even better than that of spark discharge optical emission spectroscopy within a given concentration range,under corresponding conditions; however,obtaining a single spectrum without continuous background emission using a compact spectrometer and an inexpensive CCD detector is difficult due to the multi-kHz repetition frequency [16].Several specialist LIBS set-ups have been successfully applied in the industrial field.For example,Sturm et al [17]used an automated LIBS device for analyzing the liquid slag in a slag transporter online with temperature ranging from 600 °C to 1400 °C.It should be mentioned that this equipment is large,adapted to a specific situation,and difficult to maneuver unlike a mobile or portable device.Wang et al[18]utilized a handheld micro-LIBS device to analyze different types of steel.They reported that the absolute errors (AEs)and sample-to-sample relative standard deviation(RSD)of Si,Cr,Mn,and Ni are improved by utilizing the partial leastsquares algorithm with spectral standardization.

    The aforementioned works provided versatile approaches and obtained progress in LIBS application from the laboratory to industrial sites; however,the majority of these LIBS systems have difficulty in obtaining satisfactory results in terms of volume and performance.Decreased robustness and low accuracy and precision are the major drawbacks of LIBS systems in quantitative analysis.Using special fibers can conveniently deliver the laser beam to the target by avoiding the complex optical path systems and interferences from the outside,which improves the anti-interference ability of the system; several researchers have utilized special fibers to deliver the laser beam and build a fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) system [13,19–22].It is worth mentioning that Thornton et al [22]developed and successfully deployed a deep-sea LIBS instrument(Chemi-Cam) to study the chemical composition of seawater and mineral deposits at depths of over 1000 m.They utilized a 4 m long fiber-optic cable to deliver a laser beam to the target surface and the whole device was mounted on a remotely operated vehicle(ROV).Limited methods can be used for the online quantitative analysis of trace elements of large-diameter steel tubes in industrial sites.

    Figure 1.FO-LIBS system.(a) Schematic and (b) prototype.

    In this study,a mobile FO-LIBS prototype is developed and applied to the online quantitative analysis of a largediameter steel pipe in a steel mill.The Mn,Cr,Ni,V,Cu,and Mo in the steel are quantitatively analyzed.Polynomial fitting and linear fitting are performed to establish calibration curves,and their results are compared to improve the analysis accuracy.The AE,relative error(RE),and LOD of each element in the large-diameter steel pipe are measured.

    2.Experimental set-up and methodology

    2.1.Experimental set-up

    The schematic of the proposed FO-LIBS system is illustrated in figure 1(a).A compact Q-switch Nd:YAG laser (Model:Ultra 50; Bigsky Co.,Ltd; United States) with stability and robustness in tolerating harsh conditions is utilized as the light source.This laser has a wavelength of 532 nm,repetition rate of 10 Hz,and maximum output laser energy per pulse ofapproximately 29 mJ.After coupling with the optical fiber,with core diameter of 1 mm,via a coupling model,the laser beam leaves the fiber and is collimated by a collimating lens.The laser beam is then reflected by a dichroic mirror.The laser beam is focused onto the sample surface for producing plasma.The emission line of the plasma is acquired using a compact time-integrated spectrometer (AvaSpec-2048-USB2,10 μm slit,2400 lines/mm (VE) grating).The spectral range of the spectrometer is from approximately 295 nm to 1020 nm split jointed by six channels,with a spectral resolution of 0.08–0.11 nm.The spectrometer is coupled with a gated 2048 pixel CCD array detector (model Sony 554).The detector in charge of receiving the plasma spectrum converts the optical signal into an electrical signal.The spectral signal is subsequently transmitted through the USB interface and displayed on a laptop.In this work,the integration time of each acquisition was set to 1.1 ms and the delay time was 1.3 μs after the laser pulse.Every sample was measured 30 times unless specified,and each measurement was averaged by 10 spectra.

    Table 1.Reference concentrations of the six trace elements in six carbon steel samples (wt%).

    The prototype of the FO-LIBS system is shown in figure 1(b).The equipment consists of two parts,namely,the main case and the probe.The main case,containing the compact laser,spectrometer,circuit system,optical system,control system,and power system,is approximately 40 cm×50 cm×70 cm in size and 50 kg in weight.The probe,composed of a mini lens and the optical fiber,is approximately 20 cm in length.The system is equipped with a laptop and self-developed LIBSystemX software,which is applied for qualitative and quantitative analyses,database building,spectral data extraction,and other functions.The entire equipment is supplied with 220 V AC electricity and designed with wheels for easy mobility.

    2.2.Samples

    Six standard carbon steel samples (GBW01211-01216; purchased from Fushun Steel Shares Co.,Ltd),seven standard samples of microalloy steel (GSB 03-2453-2008-1-7),and eleven standard samples of low-alloy steel (purchased from the National Institute of Standards and Technology [NIST]),are used to build the calibration curve models in this work.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in all calibration samples is listed in tables 1–3.Five special steel materials,including large-diameter steel tubes,weredetected and analyzed.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in the detection target is presented in table 4.

    Table 2.Reference concentrations of the six trace elements in the microalloy steel samples (wt%).

    3.Results and discussion

    3.1.Establishment of calibration curve

    The spectrum signal obtained using the mobile FO-LIBS prototype is shown in figure 2.The spectra are acquired from carbon steel sample C-1.The calibration curve models are established prior to the quantitative analysis.Twenty-four standard steel samples are used for broadening the concentration range,and improving the analytical accuracy and building the calibration curve models of Mn,Cr,Ni,V,Cu,and Mo.Describing the relation between the spectral line intensity and element concentration via linear fitting was difficult due to the large concentration range of elements in the samples.Therefore,the calibration curve models were established through polynomial fitting.In general,the majority of spectral data can be successfully fitted through quadratic or cubic polynomial fitting.However,in a few special cases,quadratic or cubic polynomial fitting in the calibration curve model of Cu is difficult due to the selfabsorption effect [11].In view of the above-mentioned reasons,the fourth-order polynomial curve fitting method was adopted in this study to establish the calibration curve model for Cu.According to the NIST atomic spectral database and considering the absence of or minimal interference,the spectral lines of Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm were chosen as the analytical spectral lines.Considering little or no selfabsorption,no interference from other elements,and proximity to the analytical spectral lines,the matrices spectral Fe 426.05 nm,Fe 430.79 nm,Fe 426.05 nm,Fe 358.12 nm,Fe 358.12 nm and Fe 387.85 nm were adopted as the reference lines for Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm,respectively.In this work,the polynomial and linear fitting methods were performed to establish calibration curve models.The calibration curves for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm,Cr 434.45 nm/Fe 430.79 nm,Ni 346.17nm/Fe 358.12 nm,V 440.85 nm/Fe 426.05 nm,Cu 327.40 nm/Fe358.12 nm,and Mo 386.41 nm/Fe 387.85 nm were established and are shown in figures 3(a)–(f).

    Table 3.Reference concentrations of the six trace elements in the low-alloy steel samples (wt%).

    Table 4.Reference concentrations of the six trace elements in the special steel materials (wt%).

    In general,when the coefficients of determination (R2factors) of a calibration curve are above 0.98,such a curve can be used for quantitative analysis.The R2factors of the calibration curves established by polynomial fitting and linear fitting for Mn,Cr,Ni,V,Cu,and Mo are presented in figure 3.As shown in figures 3(a)–(f),the R2factors of the calibration curves are improved with the use of polynomial fitting,and most are above 0.99,except for Cu (R2=0.98),indicating the elements’strong self-absorption effect[11].As shown in figure 3,the R2factors in the polynomial fitting method are obviously better than those in the linear fitting method,which is mainly due to the nonlinearity in the calibration curve caused by the self-absorption effect.In order to broaden the measuring range of this FO-LIBS prototype,the number of samples was increased and the concentration range of elements was broadened.It is acknowledged that the selfabsorption effect of the spectrum is different at different concentrations.When the element’s concentration is low,the self-absorption effect is small and the intensity of the spectral line changes closer to the linear relationship with the concentration; however,when the concentration is high or a strong line is employed to pursue high sensitivity,the selfabsorption is difficult to avoid,and the calibration curve is nonlinear.To improve the analysis accuracy,employing more samples and a polynomial fitting method can better approach the actual data points of the spectrum intensity in calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the self-absorption effect.

    In addition,RSD is improved in this mobile LIBS system.For example,the average RSD for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm was about 4.6%.The results suggest that the precision of this prototype is slightly better than that of most LIBS systems [23–26].

    3.2.Quantitative analysis

    After obtaining the calibration curves for the elements,the spectrum data of the measured materials were inputted into the calibration curve equation to calculate the concentration of each trace element.In this work,five special steel materials(including large-diameter steel pipes) were rapidly and quantitatively analyzed via the mobile FO-LIBS prototype.Thirty spectra were obtained for each measured material,and each spectrum was acquired by taking the average of ten separate measurements.The predicted concentration value of each element was calculated according to its calibration curve equations.In addition,the AEs and REs of Mn,Cr,and V are listed in table 5(a),and those of Ni,Cu,and Mo in table 5(b).

    Figure 3.Calibration curves of trace elements:(a) Mn,(b) Cr,(c) Ni,(d) V,(e) Cu,and (f) Mo.

    As shown in tables 5(a)and(b),the average AEs of Mn,Cr,V,Ni,Cu,and Mo in the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,whereas their average REs were 10.7%,11.0%,9.0%,15.7%,2.9%,and 7.8%,respectively.The accuracy of analysis in the field was slightly inferior to that in the laboratory due to the harsh environment and interference in the steel mill.However,the on-site performance analysis of the mobile LIBS prototype is similar to that of most traditional LIBS systems [27–29].The accuracy results of this study were slightly inferior to those detected via ICP-optical emission spectrometry (ICP-OES).Nevertheless,the results of the prototype analysis could be used for the preliminary detection of trace elements in steel material.Furthermore,the ambiguous results could be sent to the laboratory for further chemical analysis.

    3.3.LOD

    LOD is used to evaluate the sensitivity of an instrument or method.LOD indicates the minimum concentration of an element that can be detected with the appropriate confidence level.As shown in equation(1),the 3σ principle was applied to calculate the LOD of each element according to the stipulation of the International Union of Pure and AppliedChemistry.

    Table 5.(a).AEs and REs of Mn,Cr,and V in five special steel materials using FO-LIBS(wt%).(b).AEs and REs of Ni,Cu,and Mo in five special steel materials using FO-LIBS (wt%).

    whereσBrepresents the standard deviation of background noise and k denotes the slope of the calibration curve.In this work,the wavelength region of 409.45–409.87 nm was chosen as the background noise.The LODs of the six trace elements in steel are calculated using equation(1)and shown in table 6.

    As shown in table 6,the LODs of elements detected by the mobile FO-LIBS prototype were slightly better than those obtained in the laboratory in our previous work,likely because the cylindrical cavity wall (2 mm in diameter) of the muzzle of the probe is equivalent to a space-constraining cavity,which can restrict plasma.Therefore,improved LOD values in the space-constraining cavity could enhance the intensity of the spectral line and detection sensitivity[30–32].

    4.Conclusions

    In summary,a mobile FO-LIBS prototype was developed and used in the online quantitative analysis of trace elements in steel materials.The polynomial fitting method and linear fitting method were compared and used to establish calibration curve models for Mn,Cr,V,Ni,Cu,and Mo.The R2factors in the polynomial fitting method are obviously better than those in the linear fitting method.In the polynomial fitting method,most of the R2factors of calibration curves were above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.The average AEs of Mn,Cr,V,Ni,Cu,and Mo of the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,respectively,and their average REs were within the range of 2.9%–15.7%.The results suggest that polynomial fitting can better approach the actual data points of the intensity in the calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the selfabsorption effect and improving the analysis accuracy.The LODs of these elements were 39,31,36,89,131,and 290 ppm,respectively.These results suggest that the on-site performance analysis of the mobile LIBS prototype is similar to or even slightly better than that of most traditional LIBS systems.Hence,the FO-LIBS prototype could be used for the preliminary detection of trace elements in industrial sites due to its advantages of flexibility and robustness.Moreover,FO-LIBS provides a feasible approach for promoting LIBS from the laboratory to industry.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.61705064,11647122),the Natural Science Foundation of Hubei Province (Nos.2018CFB773,2018CFB672),and the Project of the Hubei Provincial Department of Education (No.T201617).

    猜你喜歡
    劉洋光輝
    光輝的學習榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    春在飛
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    劉洋作品
    小新筆記
    一次路遇
    亚洲国产精品一区二区三区在线| 精品一区二区免费观看| 亚洲精品国产av成人精品| 亚洲av.av天堂| 国产白丝娇喘喷水9色精品| 亚洲精品中文字幕在线视频| 日本爱情动作片www.在线观看| 精品国产乱码久久久久久男人| 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 一级片免费观看大全| videosex国产| 亚洲国产欧美日韩在线播放| 国产一区二区 视频在线| 日韩av在线免费看完整版不卡| 成年动漫av网址| 国产精品久久久久久精品电影小说| 日本wwww免费看| 国产成人一区二区在线| 一区二区三区激情视频| 人人妻人人添人人爽欧美一区卜| 日本午夜av视频| 国产一区二区激情短视频 | 国产片内射在线| 久久久亚洲精品成人影院| 久久精品熟女亚洲av麻豆精品| 丝袜脚勾引网站| 色哟哟·www| 亚洲精品国产一区二区精华液| 777米奇影视久久| 99久久中文字幕三级久久日本| 99热网站在线观看| 老司机影院毛片| 黑人巨大精品欧美一区二区蜜桃| 精品少妇内射三级| 日韩不卡一区二区三区视频在线| 国产精品无大码| 男女啪啪激烈高潮av片| 日韩视频在线欧美| 高清欧美精品videossex| 大片电影免费在线观看免费| 交换朋友夫妻互换小说| 国产午夜精品一二区理论片| 亚洲精品成人av观看孕妇| 91在线精品国自产拍蜜月| 丝袜人妻中文字幕| videos熟女内射| 国产精品女同一区二区软件| 久久久久精品久久久久真实原创| 亚洲精品美女久久久久99蜜臀 | 国产成人精品福利久久| 国产日韩欧美亚洲二区| 国产精品99久久99久久久不卡 | 一级片'在线观看视频| 五月伊人婷婷丁香| www.av在线官网国产| 日本91视频免费播放| 国产欧美日韩一区二区三区在线| 9色porny在线观看| 国产麻豆69| 制服丝袜香蕉在线| a级片在线免费高清观看视频| 欧美成人午夜免费资源| 咕卡用的链子| 熟女少妇亚洲综合色aaa.| av免费观看日本| 大陆偷拍与自拍| 国产淫语在线视频| 妹子高潮喷水视频| 亚洲欧美清纯卡通| 最近中文字幕高清免费大全6| 日本wwww免费看| 亚洲av欧美aⅴ国产| 久久鲁丝午夜福利片| 美女中出高潮动态图| 丰满饥渴人妻一区二区三| 精品卡一卡二卡四卡免费| 男女免费视频国产| 亚洲欧美成人精品一区二区| 熟妇人妻不卡中文字幕| 老司机亚洲免费影院| 我的亚洲天堂| 大片电影免费在线观看免费| 哪个播放器可以免费观看大片| 狠狠婷婷综合久久久久久88av| 在线观看免费视频网站a站| 国产成人欧美| 热99国产精品久久久久久7| 丰满乱子伦码专区| 国产精品无大码| 男女啪啪激烈高潮av片| 五月天丁香电影| 午夜福利,免费看| 日韩,欧美,国产一区二区三区| 女性生殖器流出的白浆| 天堂中文最新版在线下载| 在线天堂最新版资源| 亚洲精品aⅴ在线观看| 街头女战士在线观看网站| 少妇人妻 视频| 免费少妇av软件| 亚洲精品一区蜜桃| 韩国精品一区二区三区| 国产精品久久久av美女十八| 99re6热这里在线精品视频| 寂寞人妻少妇视频99o| 天天操日日干夜夜撸| 亚洲激情五月婷婷啪啪| 日韩不卡一区二区三区视频在线| 久久99蜜桃精品久久| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 老熟女久久久| 国产在线一区二区三区精| 亚洲图色成人| 国产在线一区二区三区精| 新久久久久国产一级毛片| 国产精品蜜桃在线观看| 国产无遮挡羞羞视频在线观看| 欧美97在线视频| 一区二区日韩欧美中文字幕| 涩涩av久久男人的天堂| 国产精品久久久av美女十八| 18+在线观看网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美视频二区| 激情视频va一区二区三区| 亚洲精品国产av蜜桃| 国产在线免费精品| www.av在线官网国产| 一级毛片黄色毛片免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 久久99一区二区三区| 最近最新中文字幕大全免费视频 | 国产av国产精品国产| 日本猛色少妇xxxxx猛交久久| 国产精品欧美亚洲77777| 桃花免费在线播放| 精品一区二区免费观看| 久久久久精品久久久久真实原创| 99久久中文字幕三级久久日本| 中文精品一卡2卡3卡4更新| 搡老乐熟女国产| 少妇猛男粗大的猛烈进出视频| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 超碰成人久久| 九色亚洲精品在线播放| 激情视频va一区二区三区| 中文字幕制服av| 亚洲av在线观看美女高潮| tube8黄色片| 国产色婷婷99| 国产成人午夜福利电影在线观看| 国产精品.久久久| 国产av精品麻豆| 电影成人av| 99热网站在线观看| 黄片播放在线免费| 久久久久精品性色| 亚洲欧美精品综合一区二区三区 | 十八禁高潮呻吟视频| 咕卡用的链子| 免费观看性生交大片5| 日韩大片免费观看网站| 高清黄色对白视频在线免费看| 亚洲人成网站在线观看播放| 亚洲国产日韩一区二区| 国产av码专区亚洲av| 捣出白浆h1v1| 亚洲图色成人| 久久久久久人人人人人| 最近手机中文字幕大全| 欧美精品亚洲一区二区| 在线 av 中文字幕| 亚洲精品成人av观看孕妇| 丰满饥渴人妻一区二区三| 在线亚洲精品国产二区图片欧美| 一级爰片在线观看| 久久久欧美国产精品| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线观看99| 久久久国产精品麻豆| 日本免费在线观看一区| 久久久久久久久久久久大奶| 欧美人与性动交α欧美精品济南到 | 人妻少妇偷人精品九色| 国产老妇伦熟女老妇高清| 侵犯人妻中文字幕一二三四区| 亚洲精品第二区| 三级国产精品片| 国产精品久久久久久精品古装| 亚洲国产精品成人久久小说| 欧美 亚洲 国产 日韩一| 春色校园在线视频观看| 咕卡用的链子| 久久国内精品自在自线图片| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 久久青草综合色| 丰满少妇做爰视频| 一区二区三区乱码不卡18| 日韩免费高清中文字幕av| 一本久久精品| 9热在线视频观看99| 下体分泌物呈黄色| 久热久热在线精品观看| tube8黄色片| 国产毛片在线视频| 你懂的网址亚洲精品在线观看| 最新的欧美精品一区二区| 国产麻豆69| 国产日韩一区二区三区精品不卡| 高清欧美精品videossex| 在线 av 中文字幕| 久久国内精品自在自线图片| 曰老女人黄片| 欧美 日韩 精品 国产| 一个人免费看片子| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区| 伦理电影大哥的女人| 国产熟女欧美一区二区| 亚洲一区二区三区欧美精品| 五月伊人婷婷丁香| 桃花免费在线播放| 亚洲情色 制服丝袜| 午夜日韩欧美国产| 黄网站色视频无遮挡免费观看| 日本91视频免费播放| 亚洲图色成人| 国产精品香港三级国产av潘金莲 | 91aial.com中文字幕在线观看| 色网站视频免费| 成年美女黄网站色视频大全免费| 亚洲精品美女久久av网站| 久久久欧美国产精品| 亚洲视频免费观看视频| 国产一区有黄有色的免费视频| 午夜福利一区二区在线看| 日日啪夜夜爽| 中文字幕人妻丝袜制服| 国产成人精品福利久久| 亚洲av电影在线进入| 国产福利在线免费观看视频| 99香蕉大伊视频| 日韩av免费高清视频| 人人妻人人添人人爽欧美一区卜| 久久国内精品自在自线图片| 超碰97精品在线观看| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 精品久久蜜臀av无| 精品少妇久久久久久888优播| 男人爽女人下面视频在线观看| 亚洲美女搞黄在线观看| 天天影视国产精品| 亚洲在久久综合| 午夜福利网站1000一区二区三区| 国产精品国产三级专区第一集| 视频在线观看一区二区三区| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 欧美少妇被猛烈插入视频| 有码 亚洲区| 亚洲精品av麻豆狂野| 欧美日韩国产mv在线观看视频| 亚洲少妇的诱惑av| 捣出白浆h1v1| 精品国产乱码久久久久久男人| 国产黄色免费在线视频| 国产精品秋霞免费鲁丝片| 色哟哟·www| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 国产精品久久久久久久久免| 男人添女人高潮全过程视频| 国产在线免费精品| 欧美精品一区二区大全| 日本wwww免费看| 女人精品久久久久毛片| 久久影院123| 久久久久网色| 国产亚洲精品第一综合不卡| 成人午夜精彩视频在线观看| 国产高清不卡午夜福利| 日本av免费视频播放| 免费久久久久久久精品成人欧美视频| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 日本免费在线观看一区| 精品一区二区免费观看| 91精品国产国语对白视频| 国产精品99久久99久久久不卡 | 国产成人av激情在线播放| 国产黄色视频一区二区在线观看| 999久久久国产精品视频| 国产成人午夜福利电影在线观看| 男女下面插进去视频免费观看| 国产视频首页在线观看| 狂野欧美激情性bbbbbb| 国产乱人偷精品视频| 亚洲,欧美,日韩| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 少妇人妻精品综合一区二区| 成年人免费黄色播放视频| 午夜日本视频在线| 欧美国产精品一级二级三级| 国产 精品1| 99久久人妻综合| h视频一区二区三区| 免费大片黄手机在线观看| 男女啪啪激烈高潮av片| 精品一区二区三区四区五区乱码 | 亚洲精品久久午夜乱码| 美国免费a级毛片| 妹子高潮喷水视频| 在线观看一区二区三区激情| 黄色一级大片看看| 亚洲av中文av极速乱| 视频区图区小说| 久久影院123| 亚洲精品国产av成人精品| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 老汉色av国产亚洲站长工具| 欧美精品一区二区大全| 日韩不卡一区二区三区视频在线| 一级毛片电影观看| 亚洲综合精品二区| 国产成人欧美| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 国产一区二区三区av在线| 在线观看三级黄色| 性色avwww在线观看| 女的被弄到高潮叫床怎么办| 成年女人在线观看亚洲视频| 国产成人精品在线电影| 国产精品成人在线| 精品一区在线观看国产| 日韩免费高清中文字幕av| 欧美av亚洲av综合av国产av | 国产有黄有色有爽视频| 欧美国产精品一级二级三级| av线在线观看网站| 只有这里有精品99| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| 69精品国产乱码久久久| 亚洲国产欧美网| 亚洲国产看品久久| freevideosex欧美| 日本av手机在线免费观看| 99久久人妻综合| 亚洲av欧美aⅴ国产| 人人妻人人添人人爽欧美一区卜| 老熟女久久久| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 十八禁高潮呻吟视频| 男女边摸边吃奶| 国产免费福利视频在线观看| 日韩精品有码人妻一区| 丰满饥渴人妻一区二区三| 国产精品av久久久久免费| 久久影院123| 麻豆乱淫一区二区| 国产精品久久久久久精品古装| 五月开心婷婷网| 日韩av免费高清视频| 久久久久久免费高清国产稀缺| 看十八女毛片水多多多| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 亚洲激情五月婷婷啪啪| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 1024视频免费在线观看| 精品少妇久久久久久888优播| www.自偷自拍.com| 交换朋友夫妻互换小说| 看免费av毛片| 国产淫语在线视频| 最黄视频免费看| 亚洲精品成人av观看孕妇| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 久热这里只有精品99| 亚洲欧洲国产日韩| 亚洲欧美中文字幕日韩二区| 捣出白浆h1v1| 亚洲综合色网址| 成人二区视频| 肉色欧美久久久久久久蜜桃| 黄片播放在线免费| 国产又爽黄色视频| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 国产一区二区三区综合在线观看| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 精品久久蜜臀av无| 亚洲三级黄色毛片| 黑人猛操日本美女一级片| 午夜福利一区二区在线看| 欧美另类一区| 国产毛片在线视频| 久久97久久精品| 大香蕉久久网| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 水蜜桃什么品种好| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 亚洲综合色惰| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 熟女av电影| 观看美女的网站| 亚洲国产日韩一区二区| 国产1区2区3区精品| 国产成人精品福利久久| 天天躁日日躁夜夜躁夜夜| 国产av精品麻豆| 欧美人与性动交α欧美软件| 在线天堂最新版资源| 亚洲国产欧美在线一区| av在线app专区| 日韩大片免费观看网站| 久久婷婷青草| 久久热在线av| 欧美日本中文国产一区发布| av卡一久久| 精品国产露脸久久av麻豆| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区国产| 中文欧美无线码| 18禁动态无遮挡网站| 一区二区av电影网| 一级爰片在线观看| 男女高潮啪啪啪动态图| 亚洲在久久综合| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 两个人看的免费小视频| 精品酒店卫生间| 99久久综合免费| 国产av码专区亚洲av| 女性被躁到高潮视频| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 999精品在线视频| 亚洲欧美成人综合另类久久久| 丁香六月天网| 欧美国产精品一级二级三级| 99re6热这里在线精品视频| 91在线精品国自产拍蜜月| 亚洲成色77777| 免费在线观看视频国产中文字幕亚洲 | 看十八女毛片水多多多| 又黄又粗又硬又大视频| 亚洲精品自拍成人| 午夜激情av网站| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 丰满迷人的少妇在线观看| 国产日韩欧美在线精品| 亚洲av男天堂| 天天躁夜夜躁狠狠躁躁| 亚洲四区av| 天堂中文最新版在线下载| 男女国产视频网站| 久久国产精品男人的天堂亚洲| 日本wwww免费看| 精品少妇一区二区三区视频日本电影 | 精品亚洲成a人片在线观看| 男女啪啪激烈高潮av片| 不卡av一区二区三区| 亚洲av电影在线进入| 亚洲色图综合在线观看| 最近手机中文字幕大全| 建设人人有责人人尽责人人享有的| 欧美+日韩+精品| 各种免费的搞黄视频| 女人被躁到高潮嗷嗷叫费观| 2022亚洲国产成人精品| 在现免费观看毛片| 大陆偷拍与自拍| 9191精品国产免费久久| 久久久久久久久久久免费av| 青春草视频在线免费观看| 免费在线观看黄色视频的| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 亚洲四区av| 在线天堂最新版资源| 咕卡用的链子| 久久久国产精品麻豆| 91在线精品国自产拍蜜月| 国产伦理片在线播放av一区| 91久久精品国产一区二区三区| 久久精品国产综合久久久| 国产欧美亚洲国产| 看免费av毛片| 在线精品无人区一区二区三| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 少妇人妻久久综合中文| www.自偷自拍.com| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 日本色播在线视频| 美女视频免费永久观看网站| 午夜av观看不卡| 少妇人妻精品综合一区二区| 纵有疾风起免费观看全集完整版| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 丝袜在线中文字幕| 久久久久国产一级毛片高清牌| 免费看不卡的av| 国产成人a∨麻豆精品| 最近最新中文字幕大全免费视频 | 亚洲美女黄色视频免费看| 国产日韩欧美亚洲二区| 久久久久人妻精品一区果冻| 国产白丝娇喘喷水9色精品| 曰老女人黄片| 美女主播在线视频| 美女午夜性视频免费| 两个人看的免费小视频| 国产有黄有色有爽视频| 国产精品一二三区在线看| 亚洲av.av天堂| 18+在线观看网站| 亚洲国产欧美网| 一级片免费观看大全| 飞空精品影院首页| 2018国产大陆天天弄谢| 久久久久国产网址| 亚洲精品日本国产第一区| 亚洲人成电影观看| videos熟女内射| 成人漫画全彩无遮挡| 老司机影院毛片| 精品少妇一区二区三区视频日本电影 | 欧美激情高清一区二区三区 | 国产免费又黄又爽又色| 国产综合精华液| 成年美女黄网站色视频大全免费| 亚洲av综合色区一区| 中国三级夫妇交换| kizo精华| 精品久久久精品久久久| 大香蕉久久成人网| 国产精品麻豆人妻色哟哟久久| 国产一区二区 视频在线| 熟女电影av网| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 国产片特级美女逼逼视频| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看| 99久久综合免费| 18在线观看网站| 国产亚洲av片在线观看秒播厂| 久久综合国产亚洲精品| 亚洲欧美一区二区三区黑人 | 日韩大片免费观看网站| 深夜精品福利| 色婷婷久久久亚洲欧美| 欧美bdsm另类| 少妇被粗大的猛进出69影院| 99久久综合免费| 免费高清在线观看视频在线观看| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 高清黄色对白视频在线免费看| 三上悠亚av全集在线观看| 黑人猛操日本美女一级片| 夫妻性生交免费视频一级片| 国产精品一二三区在线看| 日韩中文字幕视频在线看片| 看免费成人av毛片| 777久久人妻少妇嫩草av网站| 成人国产麻豆网| 亚洲精华国产精华液的使用体验| 亚洲精品国产av成人精品| 欧美日韩视频精品一区| 成年动漫av网址| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 日本欧美视频一区| 午夜福利视频精品| 超色免费av| 久久久久久久亚洲中文字幕| 日日爽夜夜爽网站| 视频在线观看一区二区三区| 丝袜喷水一区| 高清不卡的av网站| 男女啪啪激烈高潮av片| 在线观看人妻少妇|