• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid online analysis of trace elements in steel using a mobile fiber-optic laserinduced breakdown spectroscopy system

    2020-07-09 04:20:08QingdongZENG曾慶棟GuanghuiCHEN陳光輝XiangangCHEN陳獻剛BoyunWANG王波云BoyangWAN萬博陽MengtianYUAN袁夢甜YangLIU劉洋HuaqingYU余華清LianboGUO郭連波andXiangyouLI李祥友
    Plasma Science and Technology 2020年7期
    關鍵詞:劉洋光輝

    Qingdong ZENG (曾慶棟),Guanghui CHEN (陳光輝),Xiangang CHEN (陳獻剛),Boyun WANG (王波云),Boyang WAN (萬博陽),Mengtian YUAN (袁夢甜),Yang LIU (劉洋),Huaqing YU (余華清),Lianbo GUO (郭連波) and Xiangyou LI (李祥友)

    1 School of Physics and Electronic-information Engineering,Hubei Engineering University,Xiaogan 432000,People’s Republic of China

    2 Wuhan National Laboratory for Optoelectronics (WNLO),Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Faculty of Physics and Electronic Science,Hubei University,Wuhan 430062,People’s Republic of China

    4 Inner Mongolia North Heavy Industries Group Corp.Ltd,Baotou 014033,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,optical fiber,rapid analysis,online detection,steel

    1.Introduction

    The content of trace elements in a steel alloy has a remarkable effect on the performance of the steel [1,2].Accordingly,rapid and accurate detection of the concentration of trace elements is critical to steel performance,production efficiency,and cost reduction of human resource.However,the traditional analytical methods are unsuitable for the direct measurement of large steel tubes,especially in harsh environments.For example,inductively coupled plasma(ICP)is a traditional method of steel analysis that involves cutting of a small piece of steel at the end of the steel tube and then preparing it for analysis through complex sample processing.The analysis processes are labor-intensive and time-consuming due to the complex preparation and extensive analysis cycle.

    Laser-induced breakdown spectroscopy (LIBS) is an effective elemental analytical method that analyzes the composition of substances by detecting the atomic emission spectroscopy of the target sample [3–7].Unlike traditional analytical methods,the LIBS technique is versatile due to its various advantages of minimal sample preparation,fast analysis,and the ability to identify multiple elements at the same time [8–11].LIBS is a promising fast detection technology and regarded as a ‘future superstar’ due to these advantages[12].However,because of its large size,complex structure,and sensitivity to disturbance from the outside environment,the traditional LIBS is only suitable for laboratory research and not practicable for online detection and analysis in the industrial field [13].

    Therefore,the development of a transportable,robust,and cost-effective LIBS system is an urgent requirement for online analysis in the industrial field.Several research groups have devoted their efforts to the development of a robust,cost-effective,and even mobile or portable LIBS system suitable for industrial applications.Gravel et al[14]utilized a compact fiber laser coupled with three different spectrometers to ablate aluminum and copper samples and analyze their elements.They found that,under some given conditions,the compact spectrometer could obtain low limits of detection(LODs) that operate at fast rates.They suggested that the robust fiber laser has great potential for various industrial LIBS applications.Scharun et al [15]developed a mobile LIBS setup utilizing a multi-kHz fiber laser as the light source for metal analysis.The set-up achieved accuracy comparable to or even better than that of spark discharge optical emission spectroscopy within a given concentration range,under corresponding conditions; however,obtaining a single spectrum without continuous background emission using a compact spectrometer and an inexpensive CCD detector is difficult due to the multi-kHz repetition frequency [16].Several specialist LIBS set-ups have been successfully applied in the industrial field.For example,Sturm et al [17]used an automated LIBS device for analyzing the liquid slag in a slag transporter online with temperature ranging from 600 °C to 1400 °C.It should be mentioned that this equipment is large,adapted to a specific situation,and difficult to maneuver unlike a mobile or portable device.Wang et al[18]utilized a handheld micro-LIBS device to analyze different types of steel.They reported that the absolute errors (AEs)and sample-to-sample relative standard deviation(RSD)of Si,Cr,Mn,and Ni are improved by utilizing the partial leastsquares algorithm with spectral standardization.

    The aforementioned works provided versatile approaches and obtained progress in LIBS application from the laboratory to industrial sites; however,the majority of these LIBS systems have difficulty in obtaining satisfactory results in terms of volume and performance.Decreased robustness and low accuracy and precision are the major drawbacks of LIBS systems in quantitative analysis.Using special fibers can conveniently deliver the laser beam to the target by avoiding the complex optical path systems and interferences from the outside,which improves the anti-interference ability of the system; several researchers have utilized special fibers to deliver the laser beam and build a fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) system [13,19–22].It is worth mentioning that Thornton et al [22]developed and successfully deployed a deep-sea LIBS instrument(Chemi-Cam) to study the chemical composition of seawater and mineral deposits at depths of over 1000 m.They utilized a 4 m long fiber-optic cable to deliver a laser beam to the target surface and the whole device was mounted on a remotely operated vehicle(ROV).Limited methods can be used for the online quantitative analysis of trace elements of large-diameter steel tubes in industrial sites.

    Figure 1.FO-LIBS system.(a) Schematic and (b) prototype.

    In this study,a mobile FO-LIBS prototype is developed and applied to the online quantitative analysis of a largediameter steel pipe in a steel mill.The Mn,Cr,Ni,V,Cu,and Mo in the steel are quantitatively analyzed.Polynomial fitting and linear fitting are performed to establish calibration curves,and their results are compared to improve the analysis accuracy.The AE,relative error(RE),and LOD of each element in the large-diameter steel pipe are measured.

    2.Experimental set-up and methodology

    2.1.Experimental set-up

    The schematic of the proposed FO-LIBS system is illustrated in figure 1(a).A compact Q-switch Nd:YAG laser (Model:Ultra 50; Bigsky Co.,Ltd; United States) with stability and robustness in tolerating harsh conditions is utilized as the light source.This laser has a wavelength of 532 nm,repetition rate of 10 Hz,and maximum output laser energy per pulse ofapproximately 29 mJ.After coupling with the optical fiber,with core diameter of 1 mm,via a coupling model,the laser beam leaves the fiber and is collimated by a collimating lens.The laser beam is then reflected by a dichroic mirror.The laser beam is focused onto the sample surface for producing plasma.The emission line of the plasma is acquired using a compact time-integrated spectrometer (AvaSpec-2048-USB2,10 μm slit,2400 lines/mm (VE) grating).The spectral range of the spectrometer is from approximately 295 nm to 1020 nm split jointed by six channels,with a spectral resolution of 0.08–0.11 nm.The spectrometer is coupled with a gated 2048 pixel CCD array detector (model Sony 554).The detector in charge of receiving the plasma spectrum converts the optical signal into an electrical signal.The spectral signal is subsequently transmitted through the USB interface and displayed on a laptop.In this work,the integration time of each acquisition was set to 1.1 ms and the delay time was 1.3 μs after the laser pulse.Every sample was measured 30 times unless specified,and each measurement was averaged by 10 spectra.

    Table 1.Reference concentrations of the six trace elements in six carbon steel samples (wt%).

    The prototype of the FO-LIBS system is shown in figure 1(b).The equipment consists of two parts,namely,the main case and the probe.The main case,containing the compact laser,spectrometer,circuit system,optical system,control system,and power system,is approximately 40 cm×50 cm×70 cm in size and 50 kg in weight.The probe,composed of a mini lens and the optical fiber,is approximately 20 cm in length.The system is equipped with a laptop and self-developed LIBSystemX software,which is applied for qualitative and quantitative analyses,database building,spectral data extraction,and other functions.The entire equipment is supplied with 220 V AC electricity and designed with wheels for easy mobility.

    2.2.Samples

    Six standard carbon steel samples (GBW01211-01216; purchased from Fushun Steel Shares Co.,Ltd),seven standard samples of microalloy steel (GSB 03-2453-2008-1-7),and eleven standard samples of low-alloy steel (purchased from the National Institute of Standards and Technology [NIST]),are used to build the calibration curve models in this work.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in all calibration samples is listed in tables 1–3.Five special steel materials,including large-diameter steel tubes,weredetected and analyzed.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in the detection target is presented in table 4.

    Table 2.Reference concentrations of the six trace elements in the microalloy steel samples (wt%).

    3.Results and discussion

    3.1.Establishment of calibration curve

    The spectrum signal obtained using the mobile FO-LIBS prototype is shown in figure 2.The spectra are acquired from carbon steel sample C-1.The calibration curve models are established prior to the quantitative analysis.Twenty-four standard steel samples are used for broadening the concentration range,and improving the analytical accuracy and building the calibration curve models of Mn,Cr,Ni,V,Cu,and Mo.Describing the relation between the spectral line intensity and element concentration via linear fitting was difficult due to the large concentration range of elements in the samples.Therefore,the calibration curve models were established through polynomial fitting.In general,the majority of spectral data can be successfully fitted through quadratic or cubic polynomial fitting.However,in a few special cases,quadratic or cubic polynomial fitting in the calibration curve model of Cu is difficult due to the selfabsorption effect [11].In view of the above-mentioned reasons,the fourth-order polynomial curve fitting method was adopted in this study to establish the calibration curve model for Cu.According to the NIST atomic spectral database and considering the absence of or minimal interference,the spectral lines of Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm were chosen as the analytical spectral lines.Considering little or no selfabsorption,no interference from other elements,and proximity to the analytical spectral lines,the matrices spectral Fe 426.05 nm,Fe 430.79 nm,Fe 426.05 nm,Fe 358.12 nm,Fe 358.12 nm and Fe 387.85 nm were adopted as the reference lines for Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm,respectively.In this work,the polynomial and linear fitting methods were performed to establish calibration curve models.The calibration curves for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm,Cr 434.45 nm/Fe 430.79 nm,Ni 346.17nm/Fe 358.12 nm,V 440.85 nm/Fe 426.05 nm,Cu 327.40 nm/Fe358.12 nm,and Mo 386.41 nm/Fe 387.85 nm were established and are shown in figures 3(a)–(f).

    Table 3.Reference concentrations of the six trace elements in the low-alloy steel samples (wt%).

    Table 4.Reference concentrations of the six trace elements in the special steel materials (wt%).

    In general,when the coefficients of determination (R2factors) of a calibration curve are above 0.98,such a curve can be used for quantitative analysis.The R2factors of the calibration curves established by polynomial fitting and linear fitting for Mn,Cr,Ni,V,Cu,and Mo are presented in figure 3.As shown in figures 3(a)–(f),the R2factors of the calibration curves are improved with the use of polynomial fitting,and most are above 0.99,except for Cu (R2=0.98),indicating the elements’strong self-absorption effect[11].As shown in figure 3,the R2factors in the polynomial fitting method are obviously better than those in the linear fitting method,which is mainly due to the nonlinearity in the calibration curve caused by the self-absorption effect.In order to broaden the measuring range of this FO-LIBS prototype,the number of samples was increased and the concentration range of elements was broadened.It is acknowledged that the selfabsorption effect of the spectrum is different at different concentrations.When the element’s concentration is low,the self-absorption effect is small and the intensity of the spectral line changes closer to the linear relationship with the concentration; however,when the concentration is high or a strong line is employed to pursue high sensitivity,the selfabsorption is difficult to avoid,and the calibration curve is nonlinear.To improve the analysis accuracy,employing more samples and a polynomial fitting method can better approach the actual data points of the spectrum intensity in calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the self-absorption effect.

    In addition,RSD is improved in this mobile LIBS system.For example,the average RSD for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm was about 4.6%.The results suggest that the precision of this prototype is slightly better than that of most LIBS systems [23–26].

    3.2.Quantitative analysis

    After obtaining the calibration curves for the elements,the spectrum data of the measured materials were inputted into the calibration curve equation to calculate the concentration of each trace element.In this work,five special steel materials(including large-diameter steel pipes) were rapidly and quantitatively analyzed via the mobile FO-LIBS prototype.Thirty spectra were obtained for each measured material,and each spectrum was acquired by taking the average of ten separate measurements.The predicted concentration value of each element was calculated according to its calibration curve equations.In addition,the AEs and REs of Mn,Cr,and V are listed in table 5(a),and those of Ni,Cu,and Mo in table 5(b).

    Figure 3.Calibration curves of trace elements:(a) Mn,(b) Cr,(c) Ni,(d) V,(e) Cu,and (f) Mo.

    As shown in tables 5(a)and(b),the average AEs of Mn,Cr,V,Ni,Cu,and Mo in the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,whereas their average REs were 10.7%,11.0%,9.0%,15.7%,2.9%,and 7.8%,respectively.The accuracy of analysis in the field was slightly inferior to that in the laboratory due to the harsh environment and interference in the steel mill.However,the on-site performance analysis of the mobile LIBS prototype is similar to that of most traditional LIBS systems [27–29].The accuracy results of this study were slightly inferior to those detected via ICP-optical emission spectrometry (ICP-OES).Nevertheless,the results of the prototype analysis could be used for the preliminary detection of trace elements in steel material.Furthermore,the ambiguous results could be sent to the laboratory for further chemical analysis.

    3.3.LOD

    LOD is used to evaluate the sensitivity of an instrument or method.LOD indicates the minimum concentration of an element that can be detected with the appropriate confidence level.As shown in equation(1),the 3σ principle was applied to calculate the LOD of each element according to the stipulation of the International Union of Pure and AppliedChemistry.

    Table 5.(a).AEs and REs of Mn,Cr,and V in five special steel materials using FO-LIBS(wt%).(b).AEs and REs of Ni,Cu,and Mo in five special steel materials using FO-LIBS (wt%).

    whereσBrepresents the standard deviation of background noise and k denotes the slope of the calibration curve.In this work,the wavelength region of 409.45–409.87 nm was chosen as the background noise.The LODs of the six trace elements in steel are calculated using equation(1)and shown in table 6.

    As shown in table 6,the LODs of elements detected by the mobile FO-LIBS prototype were slightly better than those obtained in the laboratory in our previous work,likely because the cylindrical cavity wall (2 mm in diameter) of the muzzle of the probe is equivalent to a space-constraining cavity,which can restrict plasma.Therefore,improved LOD values in the space-constraining cavity could enhance the intensity of the spectral line and detection sensitivity[30–32].

    4.Conclusions

    In summary,a mobile FO-LIBS prototype was developed and used in the online quantitative analysis of trace elements in steel materials.The polynomial fitting method and linear fitting method were compared and used to establish calibration curve models for Mn,Cr,V,Ni,Cu,and Mo.The R2factors in the polynomial fitting method are obviously better than those in the linear fitting method.In the polynomial fitting method,most of the R2factors of calibration curves were above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.The average AEs of Mn,Cr,V,Ni,Cu,and Mo of the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,respectively,and their average REs were within the range of 2.9%–15.7%.The results suggest that polynomial fitting can better approach the actual data points of the intensity in the calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the selfabsorption effect and improving the analysis accuracy.The LODs of these elements were 39,31,36,89,131,and 290 ppm,respectively.These results suggest that the on-site performance analysis of the mobile LIBS prototype is similar to or even slightly better than that of most traditional LIBS systems.Hence,the FO-LIBS prototype could be used for the preliminary detection of trace elements in industrial sites due to its advantages of flexibility and robustness.Moreover,FO-LIBS provides a feasible approach for promoting LIBS from the laboratory to industry.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.61705064,11647122),the Natural Science Foundation of Hubei Province (Nos.2018CFB773,2018CFB672),and the Project of the Hubei Provincial Department of Education (No.T201617).

    猜你喜歡
    劉洋光輝
    光輝的學習榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    春在飛
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    劉洋作品
    小新筆記
    一次路遇
    男男h啪啪无遮挡| 国产亚洲一区二区精品| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡| 丰满人妻熟妇乱又伦精品不卡| 大香蕉久久网| 免费看av在线观看网站| 性少妇av在线| 国产又爽黄色视频| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡人人看| 国产一区二区三区综合在线观看| 在线 av 中文字幕| 亚洲熟女精品中文字幕| 80岁老熟妇乱子伦牲交| 高清欧美精品videossex| av又黄又爽大尺度在线免费看| 香蕉丝袜av| 在线亚洲精品国产二区图片欧美| 国产激情久久老熟女| 色94色欧美一区二区| 国产精品久久久久久精品古装| 50天的宝宝边吃奶边哭怎么回事| 欧美精品人与动牲交sv欧美| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 99久久人妻综合| 9色porny在线观看| 在线观看免费日韩欧美大片| 免费在线观看完整版高清| 日韩 亚洲 欧美在线| 免费日韩欧美在线观看| 亚洲中文字幕日韩| 国产欧美日韩一区二区三区在线| 青春草视频在线免费观看| 亚洲第一青青草原| 91字幕亚洲| 免费一级毛片在线播放高清视频 | 国产日韩欧美在线精品| 男男h啪啪无遮挡| 69精品国产乱码久久久| 久久av网站| 免费在线观看影片大全网站 | 欧美乱码精品一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 国产爽快片一区二区三区| 国产精品免费大片| 国产亚洲精品久久久久5区| 亚洲少妇的诱惑av| 亚洲午夜精品一区,二区,三区| 一级a爱视频在线免费观看| 97精品久久久久久久久久精品| 黄色a级毛片大全视频| 国产精品人妻久久久影院| 日本黄色日本黄色录像| 不卡av一区二区三区| 亚洲色图 男人天堂 中文字幕| 18禁国产床啪视频网站| 丝袜在线中文字幕| 最近中文字幕2019免费版| 老司机影院成人| 国产精品亚洲av一区麻豆| 黑丝袜美女国产一区| 国产免费又黄又爽又色| 九色亚洲精品在线播放| 成人三级做爰电影| 国产女主播在线喷水免费视频网站| 一区二区日韩欧美中文字幕| 国产一级毛片在线| 免费在线观看日本一区| 国产极品粉嫩免费观看在线| 成年人免费黄色播放视频| 久久久国产欧美日韩av| 手机成人av网站| 高清av免费在线| 老鸭窝网址在线观看| 国产免费现黄频在线看| 午夜影院在线不卡| 亚洲自偷自拍图片 自拍| 久久影院123| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| 人人妻,人人澡人人爽秒播 | av线在线观看网站| 国产淫语在线视频| 精品视频人人做人人爽| 少妇被粗大的猛进出69影院| 国产欧美日韩一区二区三 | 久久鲁丝午夜福利片| 美女主播在线视频| 日韩免费高清中文字幕av| 国产在线观看jvid| 国产黄频视频在线观看| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 日韩一区二区三区影片| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久精品古装| 成年人免费黄色播放视频| 日本一区二区免费在线视频| 在现免费观看毛片| 精品人妻在线不人妻| a级毛片在线看网站| 国产高清videossex| 韩国高清视频一区二区三区| 视频区欧美日本亚洲| 国产成人免费观看mmmm| a 毛片基地| 午夜福利一区二区在线看| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 亚洲九九香蕉| 欧美少妇被猛烈插入视频| 亚洲欧美激情在线| 亚洲人成77777在线视频| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 黄色一级大片看看| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 一本一本久久a久久精品综合妖精| 别揉我奶头~嗯~啊~动态视频 | 精品亚洲乱码少妇综合久久| 电影成人av| 成人18禁高潮啪啪吃奶动态图| 婷婷色av中文字幕| 免费观看av网站的网址| 国产日韩一区二区三区精品不卡| 精品亚洲乱码少妇综合久久| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多 | 精品欧美一区二区三区在线| 亚洲精品在线美女| 亚洲第一青青草原| 老鸭窝网址在线观看| 美女主播在线视频| 亚洲免费av在线视频| 精品久久蜜臀av无| 国产高清国产精品国产三级| 久久国产亚洲av麻豆专区| 丝袜美足系列| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 极品人妻少妇av视频| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 大片免费播放器 马上看| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 高潮久久久久久久久久久不卡| 日韩制服丝袜自拍偷拍| 日韩av不卡免费在线播放| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 久久久亚洲精品成人影院| 亚洲精品久久午夜乱码| 精品视频人人做人人爽| 亚洲欧美成人综合另类久久久| 超碰成人久久| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 美女扒开内裤让男人捅视频| 国产爽快片一区二区三区| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 国产在线一区二区三区精| 交换朋友夫妻互换小说| 99久久99久久久精品蜜桃| 青春草视频在线免费观看| 亚洲精品久久午夜乱码| 午夜免费观看性视频| 免费观看a级毛片全部| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看性视频| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡| 久久久久精品人妻al黑| 中文精品一卡2卡3卡4更新| 久久久久久免费高清国产稀缺| 成人亚洲欧美一区二区av| 欧美少妇被猛烈插入视频| 男人舔女人的私密视频| 欧美亚洲 丝袜 人妻 在线| netflix在线观看网站| 精品一品国产午夜福利视频| 一区二区av电影网| 一边摸一边抽搐一进一出视频| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 老汉色∧v一级毛片| 色网站视频免费| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o | 丝袜美腿诱惑在线| 男女国产视频网站| 搡老岳熟女国产| 久久精品亚洲av国产电影网| 免费一级毛片在线播放高清视频 | 亚洲伊人色综图| 天天躁夜夜躁狠狠久久av| 真人做人爱边吃奶动态| 人妻 亚洲 视频| 一区二区av电影网| 亚洲中文字幕日韩| 亚洲黑人精品在线| av不卡在线播放| 男女无遮挡免费网站观看| 日本午夜av视频| 欧美精品啪啪一区二区三区 | 色网站视频免费| 中文字幕最新亚洲高清| av在线app专区| 欧美日韩成人在线一区二区| 欧美人与性动交α欧美软件| videosex国产| www.熟女人妻精品国产| 午夜影院在线不卡| 99久久精品国产亚洲精品| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 黄片播放在线免费| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| 亚洲图色成人| 成人黄色视频免费在线看| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 黄色a级毛片大全视频| 国产免费又黄又爽又色| 免费不卡黄色视频| 少妇粗大呻吟视频| 亚洲av国产av综合av卡| 9热在线视频观看99| 大香蕉久久网| 我的亚洲天堂| 亚洲视频免费观看视频| 亚洲综合色网址| 久久久久久人人人人人| 香蕉国产在线看| 99国产精品一区二区三区| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 狠狠精品人妻久久久久久综合| 老鸭窝网址在线观看| 亚洲国产最新在线播放| 国产精品九九99| svipshipincom国产片| av在线app专区| 波多野结衣一区麻豆| 下体分泌物呈黄色| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 免费看不卡的av| 成人国语在线视频| 日本五十路高清| 制服诱惑二区| 国产精品一二三区在线看| 黄频高清免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲av美国av| 国产视频首页在线观看| h视频一区二区三区| 少妇人妻久久综合中文| 国产成人欧美| 成人手机av| 老司机在亚洲福利影院| 欧美日韩综合久久久久久| 亚洲精品久久午夜乱码| 欧美黑人欧美精品刺激| 男女国产视频网站| 日韩欧美一区视频在线观看| 成人国语在线视频| 国产亚洲精品第一综合不卡| 亚洲伊人久久精品综合| 91字幕亚洲| 国产精品成人在线| 久久人人爽人人片av| 国产成人精品久久久久久| 在线观看免费高清a一片| 久久亚洲国产成人精品v| xxx大片免费视频| 亚洲av成人不卡在线观看播放网 | 欧美精品一区二区免费开放| 久久久久精品国产欧美久久久 | av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 国产精品免费视频内射| 青春草视频在线免费观看| 色网站视频免费| 色婷婷av一区二区三区视频| 国产免费视频播放在线视频| 亚洲成人免费电影在线观看 | 美女扒开内裤让男人捅视频| 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 国产精品熟女久久久久浪| 欧美日韩综合久久久久久| 亚洲精品av麻豆狂野| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影在线观看一区二区三区| av欧美777| 国产一区亚洲一区在线观看| 天天影视国产精品| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| 91国产中文字幕| 一级黄色大片毛片| 丝袜人妻中文字幕| 国产视频一区二区在线看| 男女免费视频国产| 欧美性长视频在线观看| 欧美激情高清一区二区三区| 亚洲成人手机| 午夜福利免费观看在线| 午夜日韩欧美国产| 久久国产精品大桥未久av| 高清不卡的av网站| 美女高潮到喷水免费观看| 日本av手机在线免费观看| av欧美777| 中文精品一卡2卡3卡4更新| 日本91视频免费播放| 国产成人91sexporn| 男女床上黄色一级片免费看| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 免费av中文字幕在线| avwww免费| 亚洲国产欧美在线一区| 亚洲国产看品久久| 亚洲精品国产一区二区精华液| 亚洲欧美色中文字幕在线| 一级毛片 在线播放| www.自偷自拍.com| 日本wwww免费看| 成年av动漫网址| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 国产无遮挡羞羞视频在线观看| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 国产精品 国内视频| 欧美日韩av久久| 亚洲av日韩在线播放| 欧美国产精品va在线观看不卡| 国产av精品麻豆| av国产久精品久网站免费入址| 波野结衣二区三区在线| netflix在线观看网站| 波野结衣二区三区在线| 国产在视频线精品| 亚洲欧美一区二区三区黑人| a级毛片黄视频| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 亚洲一区二区三区欧美精品| 一边摸一边做爽爽视频免费| 国产精品国产三级专区第一集| 一级黄色大片毛片| 成人手机av| 免费看av在线观看网站| 欧美日韩福利视频一区二区| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 国产日韩欧美在线精品| 国产亚洲午夜精品一区二区久久| 1024香蕉在线观看| 青青草视频在线视频观看| 男女床上黄色一级片免费看| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 亚洲av片天天在线观看| 黄频高清免费视频| 欧美精品亚洲一区二区| 免费高清在线观看视频在线观看| 美女视频免费永久观看网站| 日本一区二区免费在线视频| videos熟女内射| 各种免费的搞黄视频| 巨乳人妻的诱惑在线观看| 大片电影免费在线观看免费| 少妇被粗大的猛进出69影院| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 亚洲,欧美,日韩| 久久ye,这里只有精品| 亚洲国产精品999| 国产成人av激情在线播放| www.999成人在线观看| xxxhd国产人妻xxx| 看十八女毛片水多多多| 免费在线观看视频国产中文字幕亚洲 | 亚洲图色成人| e午夜精品久久久久久久| 亚洲成人免费av在线播放| 亚洲成国产人片在线观看| 日本欧美视频一区| 免费av中文字幕在线| 亚洲成人国产一区在线观看 | 香蕉丝袜av| 欧美国产精品va在线观看不卡| 精品福利永久在线观看| 欧美成人午夜精品| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃| 桃花免费在线播放| h视频一区二区三区| 成人影院久久| 啦啦啦 在线观看视频| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 久久久久网色| 最新的欧美精品一区二区| 国产精品久久久久久精品古装| 免费在线观看黄色视频的| 乱人伦中国视频| 精品久久蜜臀av无| 1024香蕉在线观看| 黄色毛片三级朝国网站| 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 国产色视频综合| 亚洲专区中文字幕在线| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 午夜91福利影院| 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看 | 成年女人毛片免费观看观看9 | 国产成人免费观看mmmm| 美女午夜性视频免费| 黑人猛操日本美女一级片| 亚洲第一青青草原| 久久 成人 亚洲| 国产av精品麻豆| 老司机影院成人| 国产成人影院久久av| 婷婷成人精品国产| 精品久久久久久电影网| 国产又爽黄色视频| av天堂久久9| 国产在线视频一区二区| 丰满少妇做爰视频| 人成视频在线观看免费观看| 韩国高清视频一区二区三区| 视频区图区小说| 亚洲成人免费av在线播放| 2018国产大陆天天弄谢| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 99re6热这里在线精品视频| 在线观看国产h片| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 成人国产一区最新在线观看 | 日韩中文字幕欧美一区二区 | 丰满少妇做爰视频| 成人免费观看视频高清| 久久久久视频综合| 嫩草影视91久久| 亚洲av欧美aⅴ国产| 人妻人人澡人人爽人人| av有码第一页| 国产人伦9x9x在线观看| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 97精品久久久久久久久久精品| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| 一本综合久久免费| 又大又爽又粗| 乱人伦中国视频| www.精华液| 亚洲精品美女久久av网站| 一本大道久久a久久精品| 又大又爽又粗| 乱人伦中国视频| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 麻豆av在线久日| 91字幕亚洲| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av涩爱| 午夜福利影视在线免费观看| 超色免费av| 亚洲图色成人| 精品一区在线观看国产| 亚洲av日韩精品久久久久久密 | 国产av精品麻豆| 侵犯人妻中文字幕一二三四区| 久久精品久久久久久噜噜老黄| 久久国产精品男人的天堂亚洲| 在线观看国产h片| 精品久久久久久久毛片微露脸 | 少妇粗大呻吟视频| 亚洲综合色网址| 老汉色av国产亚洲站长工具| 免费日韩欧美在线观看| 成年人黄色毛片网站| 午夜福利视频精品| 交换朋友夫妻互换小说| 18禁观看日本| 多毛熟女@视频| 亚洲av日韩精品久久久久久密 | 久久中文字幕一级| 一区二区三区激情视频| 成人国语在线视频| 男女床上黄色一级片免费看| 99国产精品一区二区三区| 日本av免费视频播放| 免费黄频网站在线观看国产| 欧美久久黑人一区二区| 丝袜美腿诱惑在线| 在线观看www视频免费| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 又黄又粗又硬又大视频| 两性夫妻黄色片| 国产一区有黄有色的免费视频| 亚洲av电影在线观看一区二区三区| 成在线人永久免费视频| 国产精品一二三区在线看| 在线av久久热| 亚洲精品美女久久久久99蜜臀 | 亚洲美女黄色视频免费看| 波多野结衣av一区二区av| 两个人看的免费小视频| 久久人妻福利社区极品人妻图片 | 操美女的视频在线观看| 国产伦理片在线播放av一区| 老司机深夜福利视频在线观看 | 亚洲,一卡二卡三卡| 亚洲一码二码三码区别大吗| 中文字幕亚洲精品专区| 国产精品三级大全| 夫妻性生交免费视频一级片| 亚洲成人免费电影在线观看 | 18禁国产床啪视频网站| 亚洲欧美清纯卡通| 制服诱惑二区| 日韩精品免费视频一区二区三区| 美女福利国产在线| 免费看十八禁软件| 91成人精品电影| 50天的宝宝边吃奶边哭怎么回事| 久久99一区二区三区| 亚洲精品国产av蜜桃| 久久久精品94久久精品| 丝袜美腿诱惑在线| 亚洲精品国产区一区二| 一级片'在线观看视频| 国产一区二区激情短视频 | 国产欧美日韩一区二区三 | 亚洲精品成人av观看孕妇| 国产97色在线日韩免费| 精品人妻熟女毛片av久久网站| 曰老女人黄片| 老司机午夜十八禁免费视频| 18禁国产床啪视频网站| 欧美性长视频在线观看| bbb黄色大片| 久久久欧美国产精品| 夜夜骑夜夜射夜夜干| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲精品不卡| 咕卡用的链子| 麻豆国产av国片精品| 精品人妻在线不人妻| 精品久久久精品久久久| 日本色播在线视频| 日韩精品免费视频一区二区三区| 亚洲av片天天在线观看| 国产色视频综合| 国产精品香港三级国产av潘金莲 | 亚洲黑人精品在线| 精品人妻1区二区| 色视频在线一区二区三区| 亚洲av欧美aⅴ国产| av在线app专区| 看免费av毛片| 麻豆av在线久日| 午夜影院在线不卡| 午夜福利视频精品| 久久精品亚洲av国产电影网| 美女中出高潮动态图| 午夜日韩欧美国产| 如日韩欧美国产精品一区二区三区| 在线观看免费视频网站a站| 一级毛片我不卡| 99精品久久久久人妻精品| 蜜桃在线观看..|