• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods

    2020-07-09 04:20:06ZhongqiFENG馮中琦DachengZHANG張大成BowenWANG王博文JieDING丁捷XuyangLIU劉旭陽andJiangfengZHU朱江峰
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:張大博文

    Zhongqi FENG (馮中琦),Dacheng ZHANG (張大成),Bowen WANG (王博文),Jie DING (丁捷),Xuyang LIU (劉旭陽) and Jiangfeng ZHU (朱江峰)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,principal component analysis Mahalanobis distance,partial least squares discriminant analysis,classification of complex organics

    1.Introduction

    The analysis on organics,especially the rapid identification of bacteria,explosives and plastics,is important for disease prevention,public safety and waste recycling [1–3].Various techniques such as the near-infrared spectroscopy (NIR),X-ray fluorescence spectroscopy(XRF),Raman spectroscopy or mass spectrometry can be used for organics analysis for their good detection ability of molecules [4–6].NIR has the high precision and speed but poor recognition results for these black or heavily polluted organics [4].XRF is suitable for identifying organic molecules with heavy atoms such as chlorine,but is not sensitive to light elements [5].Raman spectroscopy can determine the molecular structure by detecting scattered light on the sample surface.However,it is difficult to analyze the trace molecular via Raman spectroscopy because its signal is proportional to the number of molecules excited by laser[6,7].The mass spectrometry is a sensitive technology for elements and molecular analysis.But it needs sample preparation and runs in vacuum [8].For on-line monitoring applications,it is urgent to find a realtime,in situ and without sample preparation method for classifying organics.

    Laser-induced breakdown spectroscopy (LIBS),as a powerful tool for element detection,and has acquired great interest in recent years [9–14].It allows for fast contact-less analysis of any materials and has unique versatility and capabilities for on-line composition determination [15,16].For organics,especially synthetic organics such as plastics and explosives,the major elements are C,H,O,and N.It is difficult to classify these materials by LIBS directly [17–19].If machine learning or chemometric methods are applied to analyze the data of LIBS,the organics can be classified by comparing slight difference of their spectra [20,21].Several methods such as artificial neural networks(ANN)[3,22,23],support vector machines (SVM) [24,25],principal component analysis (PCA) [22,26]and partial least squares discriminant analysis (PLS-DA) [27,28]have been used for LIBS application.

    Moench et al first carried out identification of polymers by LIBS.The recognition rate of four kinds of plastics by ANN algorithm was 87%–100% [23].Unnikrishnan et al used PCA and statistical parameters to classify four kinds of common plastics.The average accuracy of these plastics is more than 90% [26].Yu et al correctly identified 9 out of 11 kinds of plastics by SVM [24].Delucia et al first used LIBS to distinguish explosives from other energetic materials [2],and a very high identification accuracy was obtained by PLSDA[27].Wang et al successfully distinguished the simulation spectrum of TNT molecules from seven kinds of plastics by chemometric methods [29].Samuels et al reported the identification of bacterial spores by LIBS [1].Rao et al classified different microorganisms by combining PCA with the algorithm of random forest[30].Wu et al identified waste oil and edible oil rapidly by PCA and ANN methods [22].Yu et al identified the powder of green tea and matcha by PCA and linear discriminant analysis (LDA) [31].

    From the above work,it can be found that LIBS has been extensively studied on classifying different organics.However,there are few reports on the classification of more complex organics such as the fresh plant tissues.Rapid identification of fresh plant tissues by LIBS technology could be significant for plant traceability on-line.However,the intensity of lines is easily affected by physical and chemical properties of fresh plant tissues,which will result in large fluctuations in the spectra of samples and increase the difficulties for identification.Optimization algorithm can help to improve the accuracy of classification for fresh plant tissues.In this paper,the identification methods of complex organics by LIBS were studied.Three kinds of plant leaves were measured and two chemometric methods PCA-MD and PLSDA were used for classifying leaves.

    2.Experimental setup and sample presentation

    The experiments were carried out with a Nd:YAG laser(Dawa-300,Beamtech,China) which can deliver up to 300 mJ pulse energy at its fundamental wavelength.The pulse duration is 7 ns and the repetition rate is 10 Hz.Figure 1 shows the schematic drawing of the LIBS system in this work.The pulse energy of laser was monitored by an energy meter (J-MB-HE,Coherent,USA).The laser beam was focused on the sample using a quartz lens with 60 mm focal length.Plasma emission was focused to a bifurcated fiber cable by a pair of plano-convex lenses.The fiber was connected to a two-channel fiber optic spectrometer (AvaSpec-ULS2048-2-USB2,Avantes,Netherlands)with a spectral resolution of 0.08–0.11 nm in the range of 220–432 nm.The signals were recorded by CCD detectors with 2 ms minimum gate width.A versatile digital delay generator (DG645,SRS Inc.USA) was used to trigger the laser and the spectrometer so that the delay time between detector and laser pulse can be adjusted.The samples were stuck in a 3D motorized translation stage to refresh the target point and avoid the destruction of samples.All the experiments were carried out in air without any control of the surrounding atmosphere.

    The samples were three kinds of leaves (Ligustrum lucidum Ait,Viburnum odoratissinum,Bamboo).To avoid the interfere of environments of different regions,all samples in this work were collected in our campus.100 pieces of each kind of leaves were collected to measure the spectra.They are all matured leaves with similar growth state.In experiments,each piece was used only one time.The leaves were cleaned by distilled water firstly and dried in air naturally to remove the dust on their surface.The pulse energy was controlled to 30 mJ.The delay time between laser ignition and spectral acquisition was optimized at 300 ns.To improve the repeatability of measurements,100 spectra were acquired for each kind of leaves and each spectrum was an averaged result of 100 laser pulses.

    3.Results and discussion

    The LIBS spectra from three kinds of leaves are presented in figure 2.More than 16 kinds of elements and molecules were identified according to the National Institute of Standard and Technology (NIST) atomic spectroscopy database and our previous work[32,33].The spectra from these three kinds of leaves are so similar that it is difficult to classify them directly.

    Chemometrics are multivariate classification methods.They are commonly used to recognize the kinds of samples by establishing mathematical models [34].Once a classification model is established,the unknown samples can be predicted as one of the defined classes.In this work,the two methods PCA-MD and PLS-DA are used to classify the leaves.

    To build a prediction model,arbitrary 70 spectra of each kind of leaves were used as the training set and the other 30 spectra were used as the test set.The lines from 16 elements and molecules listed in table 1 were used as the input data.The lines were normalized by the sum of all line’s intensity firstly.

    3.1.Principal component analysis Mahalanobis distance(PCA-MD)

    Principal component analysis (PCA) is a popular method for extracting information from data.It is normally used for dimensionality reduction.To reduce the dimension,PCA uses some new components to replace the variables in the original data [34].The new components should be less than the variables and be independent completely.The PCA was used to reduce the dimensionality of the data matrix by finding the underlying relationship between the variables [35].

    Figure 1.Schematic of the LIBS experimental setup.

    Figure 2.The LIBS spectrum of three kinds of leaves.

    Mahalanobis distance (MD) is a distance measure and it can be used to identify different patterns with respect to a reference baseline [36].The equation for computing the distance is given as follows:

    Figure 3.Principal component contribution rate.

    Table 1.The characteristic lines used as input data.

    where X is the spectral variable matrix,μ and v are the mean and covariance of X respectively,D is the value of MD.

    Figure 4.The 3D pattern based on the first three principal components of three kinds of leaves.

    Figure 5.The correct rate of PCA-MD as a function of principal component numbers.

    As shown in figure 3,the variance contribution rates of the first 18 principal components were obtained by performing PCA operation on the normalized data.A 3D pattern drawn by the first three principal components which accumulated 85.42%of variation information is shown in figure 4.It can be found that the information from first three principal components could not classify these three kinds of leaves accurately.However,if the number of principal components exceeded four,it was impossible to establish an intuitive PCA classification pattern in Cartesian coordinates.

    Figure 6.The correct rate of cross-validation with PLS-DA as a function of k.

    When the features of the data were extracted by PCA,the MD was computed by different number of principal components.The training set was used to find the centroids of three kinds of spectra data points.In the process,the sum of MDs between the points of the same sample and their centroid is the smallest.Then the points in test set were used to obtain prediction results.The label of centroid with minimum MD will represent the kind of points in the test set.Figure 5 shows that the accuracy of the PCA-MD is maximum when the number of principal components is more than 12.The accuracies can be up to 100% and 93.3% for the training set and the test set,respectively.It means that PCA-MD can classify these plant leaves clearly.The method can also simplify the computation process for lower dimensional data.

    3.2.Partial least squares discriminant analysis

    Partial least squares discriminant analysis (PLS-DA) is a linear classification method.It combines the properties of partial least squares regression with the discrimination power of a classification technique[37].The method can effectively reduce the influence of noise,missing values and outliers of modeled sample data by searching for PLS components.It just requires enough data to establish a classification model,but not need to study the physical laws of the samples [28].The PLS-DA program was operated under the MATLAB environment.In PLS-DA,the intensity of lines was transformed into a matrix X,and the class labels were transformed into a matrix Y.Both X and Y in training set were used to train PLS-DA model.To build the model,the number of PLS components should be optimized.It was carried out by crossvalidation in many works [37–39].In this work,the k-fold cross-validation method was adopted for its strong calibration capabilities on model.As shown in figure 6,the value of k was set to 10,5,and 3,which means that the training set was divided into 10,5,and 3 groups.Each cross-validation group took the same interval.They were not obviously different when the value of k was reduced from 10 to 5 and then to 3.It means that the PLS-DA model established by the training set was robust.It also can be found that there was no obvious improvement for the cross-validation results if the number of PLS components exceeded 9.Thus,the number of PLS components was optimized from 9 to 18 in our PLS-DA model.

    Figure 7.The correct rate of PLS-DA as a function of PLS component numbers.

    Figure 8.The classification results of two methods.

    The test set was predicted by the PLS-DA model here.Figure 7 shows the classification accuracy by this method.It can be found that the correct rates for classifying three leaves are both increasing with the number of PLS components.The maximum classification accuracies are 100% and 97.8% for training set and test set,respectively.

    3.3.Comparison of PCA-MD and PLS-DA

    The LIBS spectra of these three kinds of leaves have been classified by PCA-MD and PLS-DA.The classification results of these two methods for the test set are shown in figure 8.

    Both PCA-MD and PLS-DA can obtain relatively high accuracy.On the whole,PLS-DA has higher prediction accuracy than PCA-MD in this work.When the feature extraction is performed,a high-dimensional spectral data is reduced to a lower dimension and the computational efficiency can be improved.The PCA does not take the class information of the samples into account when it reduces the dimensionality of the spectral change matrix.Thus,the larger spectral difference in the samples,the more serious deviation between the principal components extracted by PCA for MD discrimination and real classification.However,the covariance between the matrix X (spectral change) and the matrix Y (sample label) is included in PLS-DA,so that the PLS components can be optimized and the shortcomings of PCA can be overcome[34].In short,PLS-DA is more suitable for classifying fresh leaves spectra than PCA-MD.

    4.Conclusions

    In this work,LIBS was used to rapidly identify the fresh plant leaves.The PCA-MD and PLS-DA were studied to classify the spectra from the leaves,and a high discrimination accuracy rate for fresh plant samples was obtained.The best prediction result was 93.3% for PCA-MD when the number of principle components exceeded 11,while the best prediction result was up to 97.8% for PLS-DA with more than 14 PLS components.By comparing these two methods as a whole,the prediction result of PLS-DA for the test set is more accurate than that of PCA-MD.For extracting feature components,PLS-DA takes the change of both spectra and leaves types into account at the same time.But the PCA-MD includes the maximum spectral change information no matter whether this information is useful for classifying plant leaves or not.Therefore,the PLS components in PLS-DA are more helpful for classifying leaves than the principle components in PCA-MD.In brief,PLS-DA has a stronger ability to recognize plant leaves species than PCA-MD for its optimal PLS components between each kind of leaves.This result can provide a reference for further rapid detection and classification of organics such as plant traceability.

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.JB190501),Science and Technology Innovation Team of Shaanxi Province(No.2019TD-002)and National Natural Science Foundation of China (No.11774277).

    猜你喜歡
    張大博文
    中國兩會
    華人時刊(2022年4期)2022-04-14 09:27:56
    第一次掙錢
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    張大林美術(shù)作品欣賞
    張大春讓健康從業(yè)者偉大起來
    誰和誰好
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    日韩制服丝袜自拍偷拍| 亚洲久久久国产精品| 久久久久网色| 亚洲情色 制服丝袜| 亚洲伊人久久精品综合| 亚洲激情五月婷婷啪啪| 亚洲成av片中文字幕在线观看 | 人妻少妇偷人精品九色| 两个人看的免费小视频| 日韩人妻精品一区2区三区| av在线app专区| 成人影院久久| 最近最新中文字幕免费大全7| 久久国产精品大桥未久av| 赤兔流量卡办理| 欧美 日韩 精品 国产| 色婷婷久久久亚洲欧美| 啦啦啦视频在线资源免费观看| 成人国语在线视频| 亚洲av国产av综合av卡| 99精国产麻豆久久婷婷| 黄片小视频在线播放| 亚洲国产看品久久| 飞空精品影院首页| 国产成人aa在线观看| 久久精品久久精品一区二区三区| 欧美中文综合在线视频| 波多野结衣一区麻豆| 国产免费福利视频在线观看| 美女高潮到喷水免费观看| 久久久精品免费免费高清| 新久久久久国产一级毛片| 亚洲三区欧美一区| 人妻少妇偷人精品九色| 久久国内精品自在自线图片| 亚洲色图综合在线观看| 男女国产视频网站| 久久久久视频综合| 成人国产麻豆网| 免费高清在线观看视频在线观看| 满18在线观看网站| 女性生殖器流出的白浆| 在线精品无人区一区二区三| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 青春草国产在线视频| a级毛片黄视频| 午夜老司机福利剧场| xxxhd国产人妻xxx| 中文字幕最新亚洲高清| 一边亲一边摸免费视频| 十分钟在线观看高清视频www| 免费观看a级毛片全部| 亚洲av国产av综合av卡| 老鸭窝网址在线观看| 国产熟女欧美一区二区| 国产在线免费精品| 久久亚洲国产成人精品v| 久久久a久久爽久久v久久| 女的被弄到高潮叫床怎么办| 人妻系列 视频| 久久久久网色| 国产精品熟女久久久久浪| 精品国产国语对白av| 亚洲精品第二区| 美国免费a级毛片| 亚洲色图综合在线观看| 免费观看性生交大片5| 各种免费的搞黄视频| 亚洲欧美成人综合另类久久久| 1024视频免费在线观看| 天天操日日干夜夜撸| 欧美激情高清一区二区三区 | 另类精品久久| a 毛片基地| 热99国产精品久久久久久7| xxxhd国产人妻xxx| 欧美精品一区二区免费开放| 国产黄色免费在线视频| 国产成人精品无人区| 午夜福利在线观看免费完整高清在| 日韩,欧美,国产一区二区三区| 亚洲,欧美精品.| 1024香蕉在线观看| 日韩在线高清观看一区二区三区| 亚洲精品久久成人aⅴ小说| 国产亚洲av片在线观看秒播厂| 99久久人妻综合| 狠狠精品人妻久久久久久综合| 久久久久久免费高清国产稀缺| 韩国av在线不卡| 在线免费观看不下载黄p国产| 欧美精品亚洲一区二区| 国产老妇伦熟女老妇高清| av不卡在线播放| 99久久综合免费| 成人漫画全彩无遮挡| 国产精品女同一区二区软件| 丰满迷人的少妇在线观看| 97在线视频观看| 一级毛片电影观看| 国产精品人妻久久久影院| 国产 一区精品| 狠狠婷婷综合久久久久久88av| 欧美最新免费一区二区三区| 欧美日韩综合久久久久久| 国产白丝娇喘喷水9色精品| 欧美激情极品国产一区二区三区| 欧美日本中文国产一区发布| 日韩,欧美,国产一区二区三区| 免费大片黄手机在线观看| 看免费成人av毛片| 精品酒店卫生间| 日韩熟女老妇一区二区性免费视频| 久久久久久久久久久免费av| 亚洲人成77777在线视频| 国产有黄有色有爽视频| 99国产综合亚洲精品| 一级毛片黄色毛片免费观看视频| 中文字幕人妻丝袜制服| 日本-黄色视频高清免费观看| 国产av码专区亚洲av| 成人亚洲欧美一区二区av| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区黑人 | 午夜免费鲁丝| 看免费av毛片| 99久久综合免费| 一本大道久久a久久精品| 成年人午夜在线观看视频| 9热在线视频观看99| 9热在线视频观看99| 亚洲精品成人av观看孕妇| 日韩一区二区三区影片| 老汉色∧v一级毛片| 飞空精品影院首页| 久久精品国产鲁丝片午夜精品| 国产在线一区二区三区精| 日韩一区二区三区影片| 香蕉精品网在线| 丰满少妇做爰视频| 曰老女人黄片| 亚洲欧美日韩另类电影网站| 韩国av在线不卡| 国产精品久久久久久久久免| 99久久人妻综合| 欧美在线黄色| 涩涩av久久男人的天堂| 亚洲国产看品久久| 欧美黄色片欧美黄色片| 午夜福利,免费看| 免费大片黄手机在线观看| 亚洲av电影在线进入| 黑丝袜美女国产一区| 纵有疾风起免费观看全集完整版| 久久久久久久久久久久大奶| 中文天堂在线官网| 一区二区三区精品91| 人人妻人人澡人人看| 少妇人妻久久综合中文| 国产男女内射视频| 久久久久久久精品精品| 日韩伦理黄色片| 菩萨蛮人人尽说江南好唐韦庄| 日本猛色少妇xxxxx猛交久久| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久午夜乱码| 国产在视频线精品| 日韩 亚洲 欧美在线| 免费看av在线观看网站| www.自偷自拍.com| 少妇被粗大的猛进出69影院| 成年动漫av网址| 日韩在线高清观看一区二区三区| 伦理电影大哥的女人| 波野结衣二区三区在线| 最近最新中文字幕大全免费视频 | 欧美 亚洲 国产 日韩一| 下体分泌物呈黄色| 香蕉精品网在线| 青春草视频在线免费观看| 1024香蕉在线观看| 90打野战视频偷拍视频| 永久免费av网站大全| 如日韩欧美国产精品一区二区三区| 亚洲国产av新网站| av一本久久久久| 亚洲国产欧美网| 久久久久网色| 如何舔出高潮| 在线观看人妻少妇| 18+在线观看网站| 色94色欧美一区二区| 亚洲av欧美aⅴ国产| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 国产亚洲最大av| 中文字幕av电影在线播放| 性色avwww在线观看| 一边摸一边做爽爽视频免费| 九九爱精品视频在线观看| 国产又爽黄色视频| 狠狠精品人妻久久久久久综合| 丁香六月天网| 一区二区三区激情视频| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| 久久久久久久久久久免费av| 交换朋友夫妻互换小说| 制服诱惑二区| 国产一区亚洲一区在线观看| av天堂久久9| 欧美日韩国产mv在线观看视频| 建设人人有责人人尽责人人享有的| 熟妇人妻不卡中文字幕| 欧美精品高潮呻吟av久久| 黄片小视频在线播放| 亚洲第一区二区三区不卡| 最新的欧美精品一区二区| 波多野结衣一区麻豆| av网站在线播放免费| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 久久久久久久国产电影| 国产精品麻豆人妻色哟哟久久| 久久av网站| 99国产综合亚洲精品| 中文欧美无线码| 国产97色在线日韩免费| 丰满迷人的少妇在线观看| 高清欧美精品videossex| 久热久热在线精品观看| 日韩电影二区| 国产午夜精品一二区理论片| 国产成人精品在线电影| 欧美亚洲 丝袜 人妻 在线| 色吧在线观看| 在线观看国产h片| 夜夜骑夜夜射夜夜干| 香蕉精品网在线| 国产精品国产av在线观看| 欧美日韩综合久久久久久| 亚洲色图 男人天堂 中文字幕| 日韩一卡2卡3卡4卡2021年| 黄片播放在线免费| www日本在线高清视频| 精品国产超薄肉色丝袜足j| 精品视频人人做人人爽| 国产成人精品福利久久| 美女大奶头黄色视频| av片东京热男人的天堂| 欧美少妇被猛烈插入视频| 亚洲四区av| 久久人人97超碰香蕉20202| 亚洲国产精品999| av.在线天堂| 国产国语露脸激情在线看| 97在线视频观看| 我要看黄色一级片免费的| 一级黄片播放器| 精品亚洲成a人片在线观看| 欧美+日韩+精品| 天天躁夜夜躁狠狠久久av| 久久久精品国产亚洲av高清涩受| 校园人妻丝袜中文字幕| 国产 精品1| 国产亚洲精品第一综合不卡| 亚洲,欧美精品.| 亚洲激情五月婷婷啪啪| 精品午夜福利在线看| 热re99久久国产66热| 久久久久久久大尺度免费视频| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 欧美国产精品一级二级三级| 女性被躁到高潮视频| 天天躁夜夜躁狠狠躁躁| 高清视频免费观看一区二区| 欧美精品人与动牲交sv欧美| 少妇人妻 视频| 天美传媒精品一区二区| 国产精品一二三区在线看| 久久婷婷青草| av.在线天堂| 十分钟在线观看高清视频www| 国产1区2区3区精品| 一区二区三区激情视频| 另类亚洲欧美激情| 纵有疾风起免费观看全集完整版| 搡女人真爽免费视频火全软件| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 久久国产精品男人的天堂亚洲| 在线天堂中文资源库| 只有这里有精品99| www.精华液| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 国产精品一国产av| 久久久久人妻精品一区果冻| 97人妻天天添夜夜摸| 一区二区三区激情视频| 国产av一区二区精品久久| 中文字幕人妻丝袜制服| 亚洲国产av影院在线观看| 久久 成人 亚洲| 久久人人爽人人片av| 国产xxxxx性猛交| 中文字幕另类日韩欧美亚洲嫩草| 欧美bdsm另类| av在线播放精品| 女人被躁到高潮嗷嗷叫费观| 两个人免费观看高清视频| 丝袜美腿诱惑在线| 免费播放大片免费观看视频在线观看| 亚洲av电影在线观看一区二区三区| 亚洲欧美精品综合一区二区三区 | 岛国毛片在线播放| 五月伊人婷婷丁香| 亚洲精品久久午夜乱码| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| freevideosex欧美| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 丁香六月天网| 精品国产乱码久久久久久男人| 搡女人真爽免费视频火全软件| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 成人国产麻豆网| av卡一久久| 久久精品国产鲁丝片午夜精品| 久久久国产精品麻豆| 亚洲国产av影院在线观看| 午夜91福利影院| 99久久人妻综合| 国产有黄有色有爽视频| 最近最新中文字幕免费大全7| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 大陆偷拍与自拍| 亚洲综合色惰| 久久韩国三级中文字幕| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| av免费在线看不卡| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 人体艺术视频欧美日本| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 老汉色∧v一级毛片| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av天美| 伦理电影大哥的女人| 性少妇av在线| 精品少妇内射三级| 国产亚洲av片在线观看秒播厂| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡 | 91成人精品电影| 一级毛片黄色毛片免费观看视频| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| 亚洲经典国产精华液单| 成人国产av品久久久| 丝袜在线中文字幕| 五月开心婷婷网| 99热网站在线观看| 99九九在线精品视频| 日本91视频免费播放| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 亚洲国产色片| kizo精华| 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 97在线人人人人妻| 久久99一区二区三区| 男女国产视频网站| 国产无遮挡羞羞视频在线观看| 国产成人一区二区在线| 美女脱内裤让男人舔精品视频| 男人操女人黄网站| 久久精品国产综合久久久| 日本欧美视频一区| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 在现免费观看毛片| 国产av一区二区精品久久| 国产精品成人在线| 久久影院123| 国产乱来视频区| 亚洲精品美女久久av网站| 国产精品无大码| 亚洲色图综合在线观看| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 国产综合精华液| www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 又粗又硬又长又爽又黄的视频| 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 国产精品亚洲av一区麻豆 | 国精品久久久久久国模美| 激情视频va一区二区三区| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 国产精品免费视频内射| 91精品三级在线观看| 26uuu在线亚洲综合色| 欧美 亚洲 国产 日韩一| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡| 久久久久久久久久久久大奶| 最近中文字幕高清免费大全6| 天天躁狠狠躁夜夜躁狠狠躁| 永久网站在线| 国产高清国产精品国产三级| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站| 我的亚洲天堂| 亚洲图色成人| 老鸭窝网址在线观看| 一区二区三区四区激情视频| 天天影视国产精品| 国产精品成人在线| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 免费在线观看黄色视频的| 曰老女人黄片| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 久久久久久免费高清国产稀缺| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 97人妻天天添夜夜摸| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 亚洲av综合色区一区| 精品国产露脸久久av麻豆| 日韩精品免费视频一区二区三区| 制服诱惑二区| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区| 国产一区亚洲一区在线观看| 国产精品久久久久久精品古装| 国产免费福利视频在线观看| 久久久久久久久免费视频了| 午夜影院在线不卡| 观看av在线不卡| 美女国产高潮福利片在线看| 免费大片黄手机在线观看| 久久久久国产一级毛片高清牌| 精品少妇一区二区三区视频日本电影 | 午夜免费男女啪啪视频观看| 国产成人91sexporn| 天堂俺去俺来也www色官网| 熟女电影av网| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 亚洲天堂av无毛| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 女人精品久久久久毛片| 亚洲精品在线美女| 国产福利在线免费观看视频| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 国产 一区精品| 水蜜桃什么品种好| 国产高清不卡午夜福利| 91久久精品国产一区二区三区| 国产亚洲av片在线观看秒播厂| 青草久久国产| 久久久久精品性色| 久久女婷五月综合色啪小说| 亚洲情色 制服丝袜| 日本欧美视频一区| 日本wwww免费看| 激情视频va一区二区三区| 最近最新中文字幕大全免费视频 | 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 女人被躁到高潮嗷嗷叫费观| 人成视频在线观看免费观看| 久久久久久久精品精品| 久久精品熟女亚洲av麻豆精品| 国产黄色免费在线视频| 午夜福利影视在线免费观看| 国产在线免费精品| 久久影院123| 日韩精品免费视频一区二区三区| 日韩制服骚丝袜av| 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 久久久久久久精品精品| 久久毛片免费看一区二区三区| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 2022亚洲国产成人精品| 日韩免费高清中文字幕av| av有码第一页| 国产精品一区二区在线不卡| h视频一区二区三区| 国产成人免费观看mmmm| 中文字幕制服av| 久久这里有精品视频免费| 色吧在线观看| 自线自在国产av| 午夜av观看不卡| 久久精品人人爽人人爽视色| 一级毛片电影观看| 秋霞在线观看毛片| 青草久久国产| 欧美成人精品欧美一级黄| 久久99精品国语久久久| 天天躁日日躁夜夜躁夜夜| 国产一区二区激情短视频 | 国产精品三级大全| 97在线人人人人妻| av在线观看视频网站免费| 久久精品夜色国产| 亚洲一码二码三码区别大吗| 丝袜美足系列| 免费看不卡的av| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 久久久久久久久久久免费av| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 国产片内射在线| 久久婷婷青草| 大码成人一级视频| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 韩国高清视频一区二区三区| 国产精品 国内视频| 曰老女人黄片| 午夜福利在线观看免费完整高清在| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 伦理电影免费视频| 日韩制服丝袜自拍偷拍| 久久精品国产自在天天线| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 老司机亚洲免费影院| 制服丝袜香蕉在线| 婷婷色综合www| 精品国产露脸久久av麻豆| 久久 成人 亚洲| 深夜精品福利| 欧美日韩视频高清一区二区三区二| videos熟女内射| 亚洲国产av影院在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 只有这里有精品99| 99热全是精品| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻一区二区| 免费av中文字幕在线| 波多野结衣av一区二区av| 亚洲av.av天堂| 国产日韩欧美视频二区| 精品福利永久在线观看| 亚洲欧美清纯卡通| av.在线天堂| 99久久精品国产国产毛片| 成人免费观看视频高清| 国产av国产精品国产| www.av在线官网国产| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 国产高清不卡午夜福利| 热re99久久国产66热| 老司机影院毛片| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 老司机亚洲免费影院| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 国产乱来视频区| 制服诱惑二区| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码 |