• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep density estimation via invertible block-triangular mapping

    2020-07-01 05:13:08KejuTngXiolingWnQifengLio

    Keju Tng, Xioling Wn*, Qifeng Lio

    a School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

    b Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA

    Keywords:Deep learning Density estimation Optimal transport Uncertainty quantification

    ABSTRACT In this work, we develop an invertible transport map, called KRnet, for density estimation by coupling the Knothe–Rosenblatt (KR) rearrangement and the flow-based generative model, which generalizes the real-valued non-volume preserving (real NVP) model (arX-iv:1605.08803v3). The triangular structure of the KR rearrangement breaks the symmetry of the real NVP in terms of the exchange of information between dimensions, which not only accelerates the training process but also improves the accuracy significantly. We have also introduced several new layers into the generative model to improve both robustness and effectiveness, including a reformulated affine coupling layer, a rotation layer and a component-wise nonlinear invertible layer. The KRnet can be used for both density estimation and sample generation especially when the dimensionality is relatively high. Numerical experiments have been presented to demonstrate the performance of KRnet.

    Density estimation is a challenging problem for high-dimensional data [1]. Some techniques or models have recently been developed in the framework of deep learning under the term generative modeling. Generative models are usually with likelihood-based methods, such as the autoregressive models [2–5],variational autoencoders (VAE) [6], and flow-based generative models [7–9]. A particular case is the generative adversarial networks (GANs) [10], which requires finding a Nash equilibrium of a game. All generative models rely on the ability of deep nets for the nonlinear approximation of high-dimensional mapping.

    We pay particular attention to the flow-based generative models for the following several reasons. First, it can be regarded as construction of a transport map instead of a probabilistic model such as the autoregressive model. Second, it does not enforce a dimension reduction step as what the VAE does. Third,it provides an explicit likelihood in contrast to the GAN. Furthermore, the flow-based generative model maintains explicitly the invertibility of the transport map, which cannot be achieved by numerical discretization of the Monge?Ampére flow [11]. In a nutshell, the flow-based generative model is the only model that defines a transport map with explicit invertibility. The potential of flow-based generative modeling is twofold. First, it works for both density generation and sample generation at the same time. This property may bring efficiency to many problems. For example, it can be coupled with the importance sampling technique [12] or used to approximate the a posterior distribution in Bayesian statistics as an alternative of Markov chain Monte Carlo (MCMC) [13]. Second, it can be combined with other techniques such as GAN or VAE to obtain a refined generative model[14, 15].

    The goal of flow-based generative modeling is to seek an invertible mapping Z =f(Y)∈Rn, where f (·) is a bijection, and Y,Z ∈Rnare two random variables. Let pYand pZbe the probability density functions (PDFs) of Y and Z, respectively. We have

    To construct f (·), the main difficulties are twofold: (1) f (·) is highly nonlinear since the prior distribution for Z must be simple enough, and (2) the mapping f (·) is a bijection. Flowbased generative models deal with these difficulties by stacking together a sequence of simple bijections, each of which is a shallow neural network, and the overall mapping is a deep net.Mathematically, the mapping f (·) can be written in a composite form:

    where f[i]indicates a coupling layer at stage i . The mapping f[i](·)is expected to be simple enough such that its inverse and Jacobi matrix can be easily computed. One way to define f[i]is given by the real NVP [8]. Consider a partition y =(y1,y2) with y1∈Rmand y2∈Rn?m. A simple bijection f[i]is defined as

    where s and t stand for scaling and translation depending only on y1, and ⊙ indicates the Hadamard product or componentwise product. When s (y1)=1, the algorithm becomes non-linear independent component estimation (NICE) [7]. Note that y2is updated linearly while the mappings s (y1) and t (y1) can be arbitrarily complicated, which are modeled as a neural network(NN),

    The simple bijection given by Eqs. (3) and (4) is also referred to as an affine coupling layer [8]. The Jacobian matrix induced by one affine coupling layer is lower triangular:

    whose determinant can be easily computed as

    Since an affine coupling layer only modifies a portion of the components of y to some extent, a number of affine coupling layers need to be stacked together to form an evolution such that the desired distribution can be reached.

    In the optimal transport theory, a mapping T :Z →Y is called a transport map such that T#μZ=μY, where T#μZis the push-forward of the law μZof Z such that μY(B)=μZ(T?1(B)) for every Borel set B [16]. It is seen that T =f?1, where f (·) is the invertible mapping for the flow-based generative model. In general, we have Yi=T(Z1,Z2,...,Zn) or Zi=f(Y1,Y2,...,Yn), i.e., each component of Y or Z depends on all components of the other random variable. The Knothe–Rosenblatt (KR) rearrangement says that the transport map T may have a lower-triangular structure such that

    It is shown in Ref. [17] that such a mapping can be regarded as a limit of a sequence of optimal transport maps when the quadratic cost degenerates. More specifically, the Rosenblatt transformation is defined as

    where

    which implies that Ziare uniformly and independently distributed on [0 ,1]. Thus the Rosenblatt transformation provides a lower-triangular mapping to map Z , which is uniform on [0,1]nand has i.i.d. components, to an arbitrary random variable Y.

    Motivated by the KR rearrangement, we propose a block-triangular invertible mapping as a generalization of real NVP. Consider a partition of y =(y1,y2,...,y∑K), where yi=(yi,1,yi,2,...,yi,m)with 1 ≤K ≤n and 1 ≤m ≤n , anddim(yi)=n. We define an invertible bijection, called KRnet,

    whose structure is consistent with the KR rearrangement. The flow chart of KRnet is illustrated in Fig. 1. Before a detailed explanation of each layer, we fist look at the main structure of KRnet, which mainly consists of two loops: outer loop and inner loop, where the outer loop has K ?1 stages, corresponding to the K mappingsin Eq. (9), and the inner loop has L stages,corresponding to the number of affine coupling layers.

    ● Inner loop. The inner loop mainly consists of a sequence of general coupling layers, based on whichcan be written as:

    where LRis a rotation layer and LSis a squeezing layer. The general coupling layerincludes a scale and bias layer,which plays a similar role to batch normalization.

    For all general coupling layerswe usually let neural network Eq. (5) have two fully connected hidden layers of the same number of neurons, say l. Since the number of effective dimensions decreases as k increases in the outer loop, we expect that l decreases accordingly. We define a ratio r <1. Ifhas M hidden neurons in total, the number becomes M rk?1for.We now explain each layer in Fig. 1.

    Squeezing layer.In the squeezing layer, we simply deactivate some dimensions using a mask

    which means that only the first k components, i.e., q ⊙y, will be active after the squeezing layer while the other n ?k components will remain unchanged.

    Rotation layer.We define an orthogonal matrix

    where W ∈Rk×kwith k being the number of 1's in q, and I ∈R(n?k)×(n?k)is an identity matrix. Using, we obtainsubject to a rotation of the coordinate system. The Jacobian matrix betweenand y iswhose determinant is needed. For the sake of computation, we consider in reality:

    where W =LU is the L U decomposition of W. More specifically,L is a lower-triangular matrix, whose entries on the diagonal line are 1, and U is a upper-triangular matrix. Then we have

    Fig. 1. Flow chart of KRnet

    One simple choice to initializeis, where the column vectors of V are the eigenvectors of the covariance matrix of the input vector. The eigenvectors are ordered such that the associated eigenvalues decrease since the dimensions to be deactivated are at the end. The entries in L and U are trainable.The orthogonality condition may be imposed through a penalty term, whereindicates the Frobenius norm and α >0 is a penalty parameter. However, numerical experiments show that a direct training of L and U without the orthogonality condition enforced also works well.

    Scale and bias layer.By definition, the KRnet is deep. It is well known that batch normalization can improve the propagation of training signal in a deep net [18]. A simplification of the batch normalization algorithm is

    where a and b are trainable [9]. The parameters a and b will be initialized by the mean and standard deviation associated with the initial data. After the initialization, a and b will be treated as regular trainable parameters that are independent of the data.

    Reformulated affine coupling layer.We redefine the affine coupling layer of the real NVP as follows:

    where α ∈(0,1) and β ∈Rn. First of all, the reformulated affine coupling layer adapts the trick of ResNet, where we separate out the identity mapping. Second, we introduce the constant α ∈(0,1) to improve the conditioning. It is seen from Eq. (7) that |det?yz|∈(0,+∞) for the original real NVP while (1?α)n?m≤|det?yz|≤(1+α)n?min our formulation. Our scaling can alleviate the illnesses when the scaling in the original real NVP occasionally become too large or too small. When α =1,|det?yz|∈(0,2). This case is actually similar to real NVP in the sense that the scaling can be arbitrarily small, and for wellscaled data by the scaling and bias layer, we do not expect a large scaling will be needed. When α =0, the formulation is the same as NICE, where no scaling is included. Third, we also make the shift bounded by letting it pass a hyperbolic tangent function.The reason for such a modification is similar to that for the scaling. The main difference here is the introduction of the trainable factor eβ. Compared to t (y1), eβdepends on the dataset instead of the value of y1, which helps to reduce the number of outliers for sample generation. Numerical experience show that our formulation in general works better than both real NVP and NICE. We usually let α =0.6.

    Nonlinear invertible layer.It is seen that the affine coupling layer is linear with respect to the variable to be updated. We introduce component-wise nonlinear invertible mapping to allevimulative distribution function of a random variable defined on ate this limitation. We consider an invertible mapping y=F(x)with x ∈[0,1] and y ∈[0,1], where F (x) can be regarded as the cu-[0,1]. Then we have

    where p(x) is a probability density function. Let 0=x00. On [ ?a,a], we implement y=F[(x+a)/(2a)]followed by an affine mapping 2 ay ?a. In other words, we maps the domain to [0 ,1], and then map the range back to [? a,a]. On(?∞,?a) and ( a,∞), we just let y =x. Since the scaled data will be roughly centered at the origin, we only need to choose a sufficiently large a to cover the data instead of the whole real axis. In summary, we consider a mapping from R to R, where the mapping is nonlinear on [ ?a,a] and an identity mapping on(?∞,a)∪(a,∞).

    We subsequently present some numerical experiments. For clarity we will turn off the rotation layers and the nonlinear invertible layers to focus on the effect of the triangular structure of KRnet, which provides the main improvement of performance.Let Y ∈Rnhave i.i.d. components, where Yi~Logistic(0,s). Let y[i:(i+k)]=[yi,yi+1,...,yi+k]T. We consider the data that satisfy the following criterion:

    where

    which is a product of a scaling matrix and a rotation matrix.Simply speaking, we generate an elliptic hole in the data for any two adjacent dimensions such that Yibecome correlated. Let Θi=π/4, if i is even; 3 π/4, otherwise. Let α =3, s =2, and C =7.6.For the training process we minimize the cross entropy between the model distribution and the data distribution

    where μmodel(dy)=pY(y)dy , N is the size of training dataset and Θ are the parameters to be trained. This is equivalent to minimize the Kullback?Leibler (KL) divergence or to maximize the likelihood. To evaluate the model, we compute the KL divergence

    where μtrueis known. First, we generate a validation dataset from μtruewhich is large enough such that the integration error in terms of μmodelis negligible. Second, we compute an approximation ofin terms of Y, where Y indicates the random variables that correspond to N samples in the training dataset. We take 10 independent training datasets.For each dataset, we train the model for a relatively large number of epochs using the Adam (the name Adam is derived from adaptive moment estimation) method [19]. For each epoch, we compute DKL(μtrue∥μmodel) using the validation dataset.We pick the minimum KL divergence and compute its average for the 10 runs as an approximation ofWe choose 10 runs simply based on the problem complexity and our available computational resources.

    We first consider four-dimensional data and show the capability of the model by investigating the relation between N , i.e.,sample size, and the KL divergence. We let L =12, and K =3, in other words, one dimension will be deactivated every 12 general coupling layers. In, k =1,2,3, the neural network Eq. (5) has two hidden layers each of which has m rk?1neurons with m=24 and r =0.88. The Adam method with 4 mini-batches is used for all the training processes. 8000 epochs are considered for each run and a validation dataset with 1 .6×105samples is used to compute DKL(μtrue∥μmodel). The results are plotted in Fig. 2, where the size of training dataset is up to 8000. Assume that there exist a Θ0such that μmodel(Θ0) is very close to μtrue. We expect to observe the convergence behavior of maximum likelihood estimator, i.e.,~N?1/2, whereis the maximum likelihood estimator. It is seen that the KL divergence between μtrueand μmodel() is indeed dominated by an error of O (N?1/2). This implies that the model is good enough to capture the data distribution for all the sample sizes considered.

    We subsequently investigate the relation between the KL divergence and the complexity of the model. The results are summarized in Fig. 3, where the degrees of freedom (DOFs) indicate the number of unknown parameters in the model. For comparison, we also include the results given by the real NVP. The configuration of the KRnet is the same as before except that we consider L = 2, 4, 6, 8, 10, and 12. The size of the training dataset is 6.4×105and the size of the validation dataset is 3 .2×105. We use a large sample size for training dataset such that the error is dominated by the capability of the model. For each run, 8000 epochs are considered except for the two cases indicated by filled squares where 12000 epochs are used because L is large. It is seen both the KRnet and the real NVP demonstrate an algebraic convergence. By curving fitting, we obtain that the KL divergence decays of O () for the KRnet and of O () for the real NVP, implying the KRnet is much more effective than the real NVP.

    We finally test the dependence of the convergence behavior of the KRnet on the dimensionality by considering an eight-dimensional problem. We let K =7, i.e., the random dimensions are deactivated one by one. In, k =1,2,...,7, the neural network Eq. (5) has two hidden layers each of which has mrk?1neurons with m =32 and r =0.9. For each run, 12000 epochs are considered. All other configurations are the same as the four-dimensional case. The results are plotted in Fig. 4, where we obtain an overall algebraic convergence of O (N) in terms of DOF for L = 2, 4, 6, 8, and 10. It appears that the rate is not sensitive to the number of dimensions.

    Fig. 2. KL divergence in terms of sample size for the four-dimensional case

    Fig. 3. KL divergence in terms of DOFs of the model for the four-dimensional case

    Fig. 4. KL divergence in terms of DOFs of the model for the eightdimensional case

    In this work, we have developed a generalization of the real NVP as a technique for density estimation of high-dimensional data. The results are very promising and many questions remain open. For example, the algebraic convergence with respect to the DOFs is only observed numerically. The dependence of accuracy on the sample size is not clear although the convergence rate seems not sensitive to the dimensionality. These questions are being investigated and the results will be reported elsewhere.

    Acknowledgement

    X.L. Wan's work was supported by the National Natural Science Foundation of Unite States (Grants DMS-1620026 and DMS-1913163). Q.F. Liao's work is supported by the National Natural Science Foundation of China (Grant 11601329).

    春色校园在线视频观看| 久久久亚洲精品成人影院| 国产一区二区三区综合在线观看 | 日韩一本色道免费dvd| 国产av码专区亚洲av| 街头女战士在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲精品国产成人久久av| 一二三四中文在线观看免费高清| 国产男人的电影天堂91| 日本与韩国留学比较| 国产白丝娇喘喷水9色精品| 久久久久久久久久久免费av| 黄色配什么色好看| 欧美+日韩+精品| 国产探花极品一区二区| 国产白丝娇喘喷水9色精品| 一个人看的www免费观看视频| 欧美日韩综合久久久久久| 亚洲第一区二区三区不卡| 免费无遮挡裸体视频| 老司机影院毛片| 免费观看av网站的网址| 麻豆久久精品国产亚洲av| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 欧美性感艳星| 亚洲av一区综合| 一级毛片电影观看| a级一级毛片免费在线观看| 精品亚洲乱码少妇综合久久| 国产在线一区二区三区精| 亚洲精品一区蜜桃| 色尼玛亚洲综合影院| 国产大屁股一区二区在线视频| 黄色欧美视频在线观看| 国产又色又爽无遮挡免| 久久鲁丝午夜福利片| 尾随美女入室| 久久鲁丝午夜福利片| 夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 只有这里有精品99| 青春草亚洲视频在线观看| 亚洲精品第二区| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 男女国产视频网站| 日韩一区二区三区影片| 久久久久久久久久成人| 久久国产乱子免费精品| 久久97久久精品| 91精品国产九色| 久久鲁丝午夜福利片| 美女主播在线视频| 国产免费视频播放在线视频 | 亚洲欧美精品专区久久| 少妇裸体淫交视频免费看高清| 国产视频内射| 91精品一卡2卡3卡4卡| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 26uuu在线亚洲综合色| 边亲边吃奶的免费视频| 日韩成人伦理影院| 青春草视频在线免费观看| 免费看不卡的av| 亚洲欧美日韩东京热| 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| 深夜a级毛片| 国产精品一及| 精品一区在线观看国产| 视频中文字幕在线观看| 最近手机中文字幕大全| 午夜激情欧美在线| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 可以在线观看毛片的网站| 成人欧美大片| 国产精品人妻久久久久久| 人人妻人人看人人澡| 看黄色毛片网站| 久久鲁丝午夜福利片| 亚洲第一区二区三区不卡| 日本与韩国留学比较| 99久久中文字幕三级久久日本| 国产成人福利小说| 久久97久久精品| 亚洲av免费高清在线观看| 韩国高清视频一区二区三区| 欧美成人午夜免费资源| 免费人成在线观看视频色| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 淫秽高清视频在线观看| 99热全是精品| 国产探花极品一区二区| 国内揄拍国产精品人妻在线| 高清欧美精品videossex| 精品久久久噜噜| 国产高潮美女av| 久久久久久久午夜电影| 亚洲精品中文字幕在线视频 | eeuss影院久久| 国精品久久久久久国模美| 别揉我奶头 嗯啊视频| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 久久久久网色| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 男插女下体视频免费在线播放| 国产成人a区在线观看| 国产精品综合久久久久久久免费| or卡值多少钱| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 韩国av在线不卡| 国产精品日韩av在线免费观看| 国产黄色小视频在线观看| 国产在视频线精品| 国产成人aa在线观看| 狠狠精品人妻久久久久久综合| 欧美潮喷喷水| 国产精品一区二区在线观看99 | 色吧在线观看| 午夜亚洲福利在线播放| 能在线免费看毛片的网站| 特大巨黑吊av在线直播| 人人妻人人看人人澡| 精品人妻视频免费看| 久久韩国三级中文字幕| 亚洲在线观看片| 亚洲av二区三区四区| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 成人鲁丝片一二三区免费| av线在线观看网站| 国产午夜精品论理片| 欧美日韩综合久久久久久| 亚洲成人精品中文字幕电影| 欧美日韩精品成人综合77777| 又大又黄又爽视频免费| 亚洲一级一片aⅴ在线观看| 欧美人与善性xxx| 色5月婷婷丁香| 国产欧美日韩精品一区二区| 国产亚洲av片在线观看秒播厂 | 91狼人影院| 欧美区成人在线视频| 亚洲精品,欧美精品| 国产 亚洲一区二区三区 | 亚洲av电影在线观看一区二区三区 | 熟女电影av网| 亚洲欧美精品专区久久| 最近最新中文字幕免费大全7| 免费看美女性在线毛片视频| 欧美 日韩 精品 国产| 三级男女做爰猛烈吃奶摸视频| 国产av不卡久久| 麻豆精品久久久久久蜜桃| 国产毛片a区久久久久| 我的女老师完整版在线观看| 国产中年淑女户外野战色| 免费大片黄手机在线观看| 日韩大片免费观看网站| 美女高潮的动态| 免费av不卡在线播放| 床上黄色一级片| 国产一级毛片在线| av在线蜜桃| 美女xxoo啪啪120秒动态图| 丝瓜视频免费看黄片| 国产免费福利视频在线观看| 免费大片18禁| 国产成人a区在线观看| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 国产在线男女| 久久精品夜夜夜夜夜久久蜜豆| 在现免费观看毛片| 特级一级黄色大片| 色吧在线观看| 又爽又黄无遮挡网站| 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 六月丁香七月| 亚洲精品一二三| 精品久久久久久电影网| 国产精品国产三级国产专区5o| 一个人看的www免费观看视频| 少妇的逼好多水| 99久国产av精品| 亚洲国产高清在线一区二区三| 舔av片在线| 久久精品国产亚洲av天美| 两个人的视频大全免费| 两个人视频免费观看高清| 国产一区有黄有色的免费视频 | 毛片女人毛片| 国产一区二区三区综合在线观看 | a级毛色黄片| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| 国产精品av视频在线免费观看| 好男人视频免费观看在线| av线在线观看网站| 久久精品国产亚洲av涩爱| 91午夜精品亚洲一区二区三区| 国产黄a三级三级三级人| 丝袜美腿在线中文| 国产在线一区二区三区精| 亚洲色图av天堂| 91av网一区二区| 色综合站精品国产| 久久国内精品自在自线图片| 日韩欧美国产在线观看| 欧美最新免费一区二区三区| www.色视频.com| 国产高清有码在线观看视频| 韩国高清视频一区二区三区| 大又大粗又爽又黄少妇毛片口| 在线a可以看的网站| 亚洲国产精品sss在线观看| 一级片'在线观看视频| 最后的刺客免费高清国语| 中文字幕免费在线视频6| 亚洲欧美日韩东京热| 日韩伦理黄色片| 国产高清国产精品国产三级 | 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 99九九线精品视频在线观看视频| 超碰97精品在线观看| 国产伦一二天堂av在线观看| 高清午夜精品一区二区三区| 亚洲精品中文字幕在线视频 | 国产亚洲精品久久久com| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 成人国产麻豆网| av国产久精品久网站免费入址| 日本猛色少妇xxxxx猛交久久| 热99在线观看视频| 国产亚洲午夜精品一区二区久久 | av卡一久久| 91精品国产九色| 久久久久久久久久人人人人人人| 日韩制服骚丝袜av| 一级a做视频免费观看| 国产爱豆传媒在线观看| 国产精品av视频在线免费观看| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| or卡值多少钱| 成人鲁丝片一二三区免费| 99热这里只有是精品50| 成人亚洲精品一区在线观看 | av福利片在线观看| 亚洲18禁久久av| 99热6这里只有精品| av福利片在线观看| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 午夜精品在线福利| 日韩电影二区| 男人舔奶头视频| 国产 亚洲一区二区三区 | 亚洲av二区三区四区| 国产精品一区二区性色av| 九九久久精品国产亚洲av麻豆| 成人午夜高清在线视频| 亚洲精品456在线播放app| 久久久久久久久久成人| 3wmmmm亚洲av在线观看| videossex国产| 日韩欧美一区视频在线观看 | 精品国内亚洲2022精品成人| 日韩欧美三级三区| 18禁动态无遮挡网站| 亚洲精品日韩在线中文字幕| 成人性生交大片免费视频hd| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 大香蕉久久网| 一夜夜www| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 亚洲不卡免费看| 国产精品福利在线免费观看| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 久99久视频精品免费| 高清午夜精品一区二区三区| 精品久久久精品久久久| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 免费观看性生交大片5| 91精品一卡2卡3卡4卡| 一级a做视频免费观看| 国产一区有黄有色的免费视频 | 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区| 国产人妻一区二区三区在| 一级毛片黄色毛片免费观看视频| 亚洲国产最新在线播放| 最近中文字幕2019免费版| av在线播放精品| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 久久久a久久爽久久v久久| 国产不卡一卡二| 国产亚洲一区二区精品| 2021天堂中文幕一二区在线观| 午夜激情欧美在线| 国产黄色免费在线视频| 久久久久性生活片| 只有这里有精品99| 国产69精品久久久久777片| 在线观看av片永久免费下载| 国产成人aa在线观看| 身体一侧抽搐| 国产淫片久久久久久久久| 一级毛片黄色毛片免费观看视频| 美女cb高潮喷水在线观看| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区 | 看十八女毛片水多多多| 欧美成人a在线观看| 国产毛片a区久久久久| 舔av片在线| 高清在线视频一区二区三区| 美女被艹到高潮喷水动态| 国产在线男女| 男人舔奶头视频| 免费观看性生交大片5| 国产日韩欧美在线精品| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 日韩欧美 国产精品| 久久久久网色| 久久热精品热| 少妇熟女欧美另类| 国产精品福利在线免费观看| 免费看日本二区| 2021天堂中文幕一二区在线观| 少妇熟女欧美另类| 国产av在哪里看| 亚洲精品第二区| 午夜日本视频在线| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 非洲黑人性xxxx精品又粗又长| 精品人妻偷拍中文字幕| 久久久久性生活片| 深夜a级毛片| a级毛色黄片| 国产av码专区亚洲av| 亚洲av免费在线观看| 国产精品国产三级专区第一集| 一级片'在线观看视频| 国产精品一区www在线观看| 久久精品熟女亚洲av麻豆精品 | 精品国产一区二区三区久久久樱花 | 国内少妇人妻偷人精品xxx网站| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站| videos熟女内射| 久久热精品热| 免费大片18禁| 日本三级黄在线观看| 久久久亚洲精品成人影院| 天天躁日日操中文字幕| a级一级毛片免费在线观看| av网站免费在线观看视频 | 97人妻精品一区二区三区麻豆| 午夜老司机福利剧场| 久久久a久久爽久久v久久| 日本免费在线观看一区| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| av网站免费在线观看视频 | 亚洲精品影视一区二区三区av| 噜噜噜噜噜久久久久久91| 亚洲欧美中文字幕日韩二区| 久久久精品免费免费高清| 日韩不卡一区二区三区视频在线| 午夜激情福利司机影院| 天天一区二区日本电影三级| 亚洲伊人久久精品综合| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 国产乱人视频| 日本欧美国产在线视频| 永久网站在线| 亚洲人与动物交配视频| 精品人妻视频免费看| 亚洲av不卡在线观看| 免费播放大片免费观看视频在线观看| 乱码一卡2卡4卡精品| xxx大片免费视频| 秋霞伦理黄片| 免费大片18禁| 国产白丝娇喘喷水9色精品| 欧美日韩国产mv在线观看视频 | 日韩一区二区视频免费看| 五月玫瑰六月丁香| 国产91av在线免费观看| 最近中文字幕2019免费版| 网址你懂的国产日韩在线| 国产精品av视频在线免费观看| 中文乱码字字幕精品一区二区三区 | 久久亚洲国产成人精品v| 精品久久久久久电影网| 国产69精品久久久久777片| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 色5月婷婷丁香| 亚洲精品久久午夜乱码| av天堂中文字幕网| 99久国产av精品国产电影| 中文字幕av成人在线电影| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 性插视频无遮挡在线免费观看| 亚洲精品国产成人久久av| 亚洲精品日本国产第一区| 精品久久久噜噜| 男的添女的下面高潮视频| 丝袜美腿在线中文| 天堂影院成人在线观看| freevideosex欧美| 免费观看的影片在线观看| 精品不卡国产一区二区三区| 国产老妇伦熟女老妇高清| 午夜福利在线在线| 成年av动漫网址| 丰满人妻一区二区三区视频av| 可以在线观看毛片的网站| 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 成人av在线播放网站| 国产三级在线视频| 一级毛片我不卡| 亚洲欧美一区二区三区黑人 | 成人毛片60女人毛片免费| 秋霞在线观看毛片| 少妇丰满av| av在线老鸭窝| or卡值多少钱| h日本视频在线播放| 午夜精品在线福利| 2021天堂中文幕一二区在线观| 成人二区视频| 街头女战士在线观看网站| a级毛色黄片| 中文字幕av成人在线电影| 能在线免费看毛片的网站| 久久久久久久久久成人| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 热99在线观看视频| 蜜桃亚洲精品一区二区三区| 只有这里有精品99| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 欧美激情在线99| 人妻一区二区av| 男女国产视频网站| 小蜜桃在线观看免费完整版高清| 超碰av人人做人人爽久久| 国产精品.久久久| 午夜福利视频1000在线观看| 2022亚洲国产成人精品| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 99久久精品一区二区三区| 国产精品女同一区二区软件| 国产白丝娇喘喷水9色精品| 亚洲综合精品二区| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 少妇丰满av| 国产色爽女视频免费观看| 国产一区二区亚洲精品在线观看| 色5月婷婷丁香| 男女视频在线观看网站免费| 身体一侧抽搐| 三级国产精品片| 国内揄拍国产精品人妻在线| 国产色婷婷99| 成人漫画全彩无遮挡| 亚洲色图av天堂| 在现免费观看毛片| 日本与韩国留学比较| 高清毛片免费看| 国产亚洲91精品色在线| 中文资源天堂在线| 久久午夜福利片| 国产精品综合久久久久久久免费| 免费看av在线观看网站| 久久久久久久久大av| 午夜免费观看性视频| 青青草视频在线视频观看| 老司机影院毛片| 精品一区二区三区视频在线| 国产真实伦视频高清在线观看| 亚洲av不卡在线观看| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 男人狂女人下面高潮的视频| 日韩大片免费观看网站| 在线播放无遮挡| 欧美xxxx黑人xx丫x性爽| av网站免费在线观看视频 | 国产有黄有色有爽视频| 一级黄片播放器| 26uuu在线亚洲综合色| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 久久精品国产亚洲网站| 精品一区二区免费观看| 久久久精品免费免费高清| 少妇裸体淫交视频免费看高清| 国产精品99久久久久久久久| 日本av手机在线免费观看| 欧美人与善性xxx| 久久久精品94久久精品| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 嘟嘟电影网在线观看| 婷婷色麻豆天堂久久| 毛片女人毛片| 欧美日韩一区二区视频在线观看视频在线 | 又爽又黄a免费视频| 欧美bdsm另类| 亚洲国产成人一精品久久久| 久久久成人免费电影| 亚洲在线自拍视频| 国产亚洲午夜精品一区二区久久 | 免费人成在线观看视频色| 久久久久久久久久黄片| 国产高清三级在线| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| av免费在线看不卡| 国产亚洲av片在线观看秒播厂 | 五月天丁香电影| 久久久久久九九精品二区国产| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕 | 免费无遮挡裸体视频| av国产久精品久网站免费入址| 午夜精品一区二区三区免费看| 精品国产露脸久久av麻豆 | 麻豆乱淫一区二区| 日本与韩国留学比较| 久热久热在线精品观看| 国产成人免费观看mmmm| 老女人水多毛片| 我的女老师完整版在线观看| 丝袜喷水一区| 一级a做视频免费观看| 国产精品人妻久久久久久| 久久99热这里只频精品6学生| 少妇高潮的动态图| 亚洲综合精品二区| 日韩av在线免费看完整版不卡| 亚洲精品中文字幕在线视频 | 日韩强制内射视频| 国产精品一区二区三区四区免费观看| 国产在视频线精品| 欧美精品一区二区大全| 免费在线观看成人毛片| 国产极品天堂在线| 成年av动漫网址| 亚洲av成人av| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 高清午夜精品一区二区三区| 成年人午夜在线观看视频 | 国产亚洲最大av| 免费看不卡的av| 日本爱情动作片www.在线观看| 国产午夜精品一二区理论片| 精品一区在线观看国产| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 免费观看av网站的网址| 在线免费十八禁| 日产精品乱码卡一卡2卡三| 亚洲精品456在线播放app| 婷婷六月久久综合丁香| 午夜久久久久精精品| 国产一区二区亚洲精品在线观看| 一个人看视频在线观看www免费| 国产不卡一卡二| 亚洲内射少妇av|