• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-fidelity Gaussian process based empirical potential development for Si:H nanowires

    2020-07-01 05:13:56MoonseopKimHuyiYinGungLin

    Moonseop Kim, Huyi Yin, Gung Lin,c,*

    a School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906-2045, USA

    b School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

    c Department of Mathematics, Purdue University, West Lafayette, IN 47906-2045, USA

    Keywords:Multi-fidelity Gaussian process regression Inter-atomic potential and forces Elasticity

    ABSTRACT In material modeling, the calculation speed using the empirical potentials is fast compared to the first principle calculations, but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate. In this work, first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential. Second, the H-H parameters are estimated. After fitting H-H parameters, the mechanical properties are obtained. Finally, to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations, the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy. Numerical results demonstrate the accuracy of the developed empirical potentials.

    In the last three decades, empirical potentials have been advanced. With the advance of supercomputers, these potentials are anticipated to be widely used for the next three decades [1].Atomistic calculations by empirical potentials can be utilized in understanding the structural aspects of Si or Si-H systems that are found in many important areas such as the surface of nanopatterning Si [2, 3], nano-electro-mechanical systems (NEMS)[4], superconductivity of silane [5], optical modulators [6], and applications of α-Si:H materials [7]. In the past, empirical potentials for Si [8–11] and for Si-H [12–14] have been developed. But the bulk elastic properties of Si cannot be resolved using such empirical potentials. In Ref. [12], it has been shown that at the hydrogen-induced reconstruction of the silicon surface, the distance between hydrogen and hydrogen is 1.64 ? (1 ? = 1×10-10m) and bond angle H-Si-H is 106° using existing empirical potential. However, when H-H distance and the bond angle are compared with the results from the first-principle calculations,H-H distance and the bond angle are 2.1638 ? and 104.805° respectively. In this situation, the bond angle is distinguished from 1.195°, which means that the difference of the bond angles can be ignored, however, the biggest issue is that H-H distance is distinguished from 0.5238 ?. Hence, if the existing empirical potential is used for Si nanowires, the computation speed is fast, but the results obtained from the existing empirical potentials are not accurate compared to the results from the first-principle calculations. It is critical to fix such errors. In this paper, we propose two novel techniques to construct the empirical potentials with an emphasis on parameter fitting and multi-fidelity modeling, in which the relationship between material properties and potential parameters is explained. The input database has been obtained from the density functional theory (DFT) calculations with the Vienna ab initio simulation package (VASP) [15]. This paper is constituted as follows. First, the structure of silicon nanowires passivated hydrogen is introduced with some specific shapes. Second, governing equations of Tersoff empirical potentials are presented to explain which parameters can be obtained from H-H binding energy and H2-H2interaction energy.Third, we give a brief explanation of the multi-fidelity Gaussian process regression for prediction of the results of H-H binding energy and H2-H2interaction energy. Fourth, we represent three optimization methods for H-H parameter fitting. The rootmean-square-error obtained by the Nelder–Mead simplex method is compared with the results from the other two optimization methods. Lastly, we evaluate the mechanical properties (Young's modulus and equilibrium elongation) using the estimated parameters obtained from the H-H parameter fitting.

    In this study, Si nanowires passivated hydrogen model is chosen. If Si nanowires have dangling bonds, it will oxidize in the air circumstance. By passivating hydrogen to the surface of Si nanowires, it can be stabilized from the oxidization. Figure 1 has expressed a cross-section of silicon nanowires passivated hydrogen [16]. Green dots and blue dots represent silicon atoms and hydrogen atoms, respectively. Cross-section of Si nanowires represents by the Wulff structure selected by minimizing the surface energy. It can be stabilized by passivating hydrogen to the surface of Si nanowires. In the mechanical property, Young's modulus is calculated after the H-H parameter fitting by increasing the size of cross-section compared to the results of Young's modulus using the existing empirical potentials and the firstprinciples calculations.

    The atomistic computer simulations based on the empirical potential is fast for calculation. In this system, the number of atoms is not limited compared to the first principles, however,the accuracy of calculation is not adequate, therefore, reliability of the empirical potential presented so far is needed to verify.Various empirical potentials depend on the material, for instance, Ni and Ti are calculated through embedded atom method (EAM) [17], and Si is calculated through Tersoff empirical potential [9] and Stillinger-Weber empirical potential [8]. In this study, silicon nanowires passivated hydrogen model, and Tersoff empirical potential are used to verify the accuracy of existing Tersoff empirical potentials. Tersoff empirical potential is based on the concept of bond order, the force of bonds between atoms is not consistent and depends on the local environment.The total energy function is given as [12]

    Fig. 1. Cross-section of silicon nanowires passivated hydrogen<0 01> .

    where V is total energy function, fR(r) and fA(r) are repulsive energy and attractive energy respectively. These functions are defined as function of distance between i and j atoms, r is interatomic distance and bijis bond order. In this study, A, B, λ1and λ2are decided as H-H fitting parameters.

    where ζijis the function of effective coordination number, H(N)is the function of bond number, cos θijkis the bond angle, rijand rikare the distance between i and j atoms and between i and k respectively andandare equilibrium distance between i and j atoms and between i and k respectively. Lastly, in this study, α, β, η, δ , and c are determined from H2- H2parameter fitting.

    where fc(n) is a cutoff function determining whether there is coherence or not between the atom and its neighbor atom. r is the interatomic distance, R and D, the influence is 1. If the interatomic distance is larger than R–D, the influence is 0.Finally, if the interatomic distance is between R–D and R+D, it is influenced by Eq. (5).

    Here, we provide the steps for multi-fidelity modeling with Gaussian processes (GP). The steps on multi-fidelity are given as

    where u1(x) and u2(x) are independent. In the Gaussian process regression, it is assumed that the mean of GP is zero and k(x,x′;θ ) is the covariance matrix between all possible pairs ( x,x′) in the set of vectors of hyper-parameters θ. As shown in Ref.[18], the basic idea is that we begin with two independent GP u1(x) and u2(x); then we define the low-fidelity and the highfidelity models [19–24]

    This demonstrates the "relationship" between the low- and highfidelity models since both include the G P u1(x). In particular,setting k1= cov[u1, u1] and k2= cov[u2, u2] we have:

    cov[u1, u2] = 0 and cov[u2, u1] = 0 by independence and to sum up KLL, KLH, KHH:

    This gives us a complete model that incorporates both the lowand high-fidelity. In particular, we model the column vector[ fL(x); fH(x)] using a zero-mean prior and the covariance matrix defined block-wise by [ KLL, KLH; KHL, KHH]. Since the mean and covariance are known, the whole Gaussian process model is specified, and the training can be performed using the standard procedure.

    To represent the uncertainty (or noise) in the observation data,the covariance of the noise for both the low- and high-fidelity data is added on the diagonal of the covariance matrix in Eq.(16). The level of the noise in the observation data will affect the prediction accuracy as shown in Figs. 2 and 3.

    where K is the covariance matrix and the negative log marginal likelihood (NLML) is used as the "cost function" which should be minimized to get the best-fit model by using hyper-parameters θ. In prediction, if we consider a Gaussian likelihood and the posterior distribution is easy to apply and can be used to involve predictive deduction for a new output fH, given a new input x?as

    In numerical results, to reduce the computational cost for expensive calculations (DFT), multi-fidelity Gaussian process regression for prediction [19–24] is used. H-H binding energy and H2-H2interaction energy obtained from the empirical potential are applied to the low-fidelity model. Results of H-H binding energy and H2-H2interaction energy obtained from DFT are implied to the high-fidelity model with a limited number of samples due to high computational cost. In Figs. 2 and 3, the number of high-fidelity samples ( NH= 4) is fixed and we compare the standard deviation of the high-fidelity prediction by increasing the number of low-fidelity samples. As we can see,the standard deviation of the high-fidelity is decreased when the number of low-fidelity samples is increased.

    Fig. 2. Multi-fidelity prediction results of H-H binding energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    Fig. 3. Multi-fidelity prediction results of H 2- H2 interaction energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    The structure of Si nanowires is passivated by hydrogen to prevent oxidation. We divide the Si nanowires into three parts for parameter fitting. First, Si-Si parameter fitting is needed for the internal structure of Si nanowires, Second, H-H parameter fitting is required for the surface computation. Lastly, Si-H parameters for the interface calculation are needed. In this study, the H-H parameters fitting is focused on using H-H binding energy and H2-H2interaction energy for surface computation. In the surface of Si nanowires, there are two forces for hydrogen relations that are attractive and repulsive forces. This H-H parameter fitting is complicated so we have to design systematically.When we fit H-H parameters using H-H binding energy, we only use Eqs. (1)–(3) except for Eqs. (4) and (5). This is because H-H binding energy is calculated by two hydrogen atoms which can be neglected ζijterm that needs more than three atoms,however, H2-H2parameter fitting by using interaction energy is applied to more than three hydrogen atoms so it should be applied to ζijterm. In Table. 1, three methods of optimization were used for H-H parameters fitting. Finally, we investigate the error of each method between DFT results and the fitting line through the root-mean-square-error in Table 1. The Nelder–Mead simplex method is the best compared to the other two optimization methods. The parameters using the Nelder–Mead simplex method were chosen, which are listed in Table 1.

    In the study, we compute the binding energy using DFT for reference results that are adjusted to the results of the empiricalpotentials objective function. Parameters can be obtained after fitting between hydrogen and hydrogen. In Fig. 4, black dots represent DFT results for H-H binding energy and the red line is the fitting line. A, B, λ1, λ2, and R(e)values are listed on Table 1.

    Table 1 To fit H-H parameters for molecular hydrogen, three optimization methods are compared which are Nelder–Mead simplex method (N-M) [25], Broyden–Fletcher–Goldfarb–Shanno quasi–Newton method (BFGS) [26–29], trust-region method (T-R)[30, 31].

    We compute the interaction energy using DFT for reference results that are adjusted to the results of the empirical potentials objective function and we obtained parameters after fitting hydrogen inter-molecular. We use the Nelder–Mead simplex methods of optimization for the H-H parameter fitting using the interaction energy. In Fig. 5, the black dots represent the DFT results for H2-H2interaction energy, and the red line is the fitting line. In this H-H fitting, A, B, λ1, λ2, and R(e)are obtained from H-H parameter fitting using the binding energy applied to H2-H2parameter fitting and α, β, η, δ, and c values are presented in Table 1.

    Figures 6 and 7 represent the H-H binding energy and H2- H2interaction energy compared to DFT, empirical potential (this work), and existing empirical potential. In Fig. 6 and 7, crossdata represents the H-H binding energy and H2- H2interaction energy using the existing Tersoff empirical potential parameters.It is critical to note that these data's curve shape is not smooth because, in existing classical molecular dynamics (MD), the cutoff range is too short to calculation, so it does not calculate for the long-range interaction. In this study, we fixed cut off range much longer and calculate the long-range of hydrogen molecules. As we can see, DFT and empirical potential (this work)result matches each other after H-H parameters fitting. We have developed a systematic process to construct empirical potential for Si nanowires' passivated hydrogen.

    In Figs. 8 and 9, mechanical properties were performed using H-H parameters which are obtained after H-H part parameter fitting. To evaluate the new fit of the H-H part, Young's modulus and equilibrium elongation of Si nanowires are calculated by increasing the wire width of Si nanowires. We compared the numerical results with the DFT results and existing empirical results in Figs. 8 and 9. The size reliance of Young's modulus and equilibrium elongation shows critical improvement compared to the DFT results and the existing potential results. Until now,the surface part of Si nanowires is fitted using our systematic fitting method and shows mechanical properties to prove enhancement. However, the improvement of the irregular mechanical properties can be observed by the H-H parameter fitting of the surface. But the perfect result of matching could not be observed. The reason for this is that not only the surface but also the silicon-hydrogen parameter fitting between the silicon and the surface must be performed. In addition, the hydrogen parameters obtained so far are limited to the calculation of the mechanical properties of nanowires with hydrogen and silicon. Furthermore, it is necessary to derive parameter fitting that can be applied to various types of materials, and potential errors of existing empirical potentials must be corrected for calculations using various materials as well as silicon nanowires.

    Fig. 4. H-H parameter fitting using the Nelder-Mead simplex method.

    Fig. 5. H2-H2 parameter fitting using the Nelder-Mead simplex method.

    Fig. 6. Binding energy after H-H parameter fitting.

    Fig. 7. Interaction energy after H-H parameter fitting.

    Fig. 8. Young's modulus increasing as wire width of Si nanowires increasing.

    Fig. 9. Equilibrium elongation increasing as wire width of Si nanowires increasing.

    Acknowledgement

    We gratefully acknowledge the support from the National Science Foundation of USA (Grants DMS-1555072 and DMS-1736364).

    男女边摸边吃奶| 高清在线视频一区二区三区| 能在线免费看毛片的网站| 天天躁日日操中文字幕| 色播亚洲综合网| 国精品久久久久久国模美| 免费大片18禁| 精品少妇久久久久久888优播| 一二三四中文在线观看免费高清| 亚洲av电影在线观看一区二区三区 | 亚洲精品自拍成人| 午夜日本视频在线| 精华霜和精华液先用哪个| 日韩伦理黄色片| 国产一区二区在线观看日韩| 看非洲黑人一级黄片| 最近最新中文字幕免费大全7| 大码成人一级视频| 欧美少妇被猛烈插入视频| 国产成人福利小说| 亚洲最大成人av| 国产成人免费无遮挡视频| 精品久久久精品久久久| 国产淫片久久久久久久久| 青春草国产在线视频| 亚洲图色成人| 男女无遮挡免费网站观看| 日韩国内少妇激情av| 国产精品一区二区在线观看99| 亚洲国产日韩一区二区| 国产欧美亚洲国产| 三级经典国产精品| av福利片在线观看| 1000部很黄的大片| 国产亚洲5aaaaa淫片| 国产一区二区三区av在线| 深夜a级毛片| 精品久久久久久电影网| 亚洲欧洲国产日韩| 日韩三级伦理在线观看| 亚洲精品乱久久久久久| 丰满乱子伦码专区| 欧美一区二区亚洲| 欧美zozozo另类| av国产久精品久网站免费入址| 久久午夜福利片| 久久久久久久久久久免费av| 在线精品无人区一区二区三 | 成人午夜精彩视频在线观看| 国产精品国产av在线观看| 看黄色毛片网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲av不卡在线观看| 欧美成人午夜免费资源| 亚洲av在线观看美女高潮| 丝袜喷水一区| 日韩电影二区| 国产伦在线观看视频一区| 五月开心婷婷网| www.av在线官网国产| 亚洲电影在线观看av| 亚洲av欧美aⅴ国产| 国产精品成人在线| 少妇人妻 视频| 777米奇影视久久| 欧美少妇被猛烈插入视频| 超碰av人人做人人爽久久| 久久午夜福利片| 国产淫片久久久久久久久| 蜜桃亚洲精品一区二区三区| 中文在线观看免费www的网站| 国产免费又黄又爽又色| 91狼人影院| 精品国产露脸久久av麻豆| 日本黄大片高清| 久久99精品国语久久久| 亚洲天堂av无毛| 在线观看三级黄色| 美女xxoo啪啪120秒动态图| 国精品久久久久久国模美| videossex国产| 乱系列少妇在线播放| 亚洲精品中文字幕在线视频 | 中文天堂在线官网| 亚洲欧美精品专区久久| 菩萨蛮人人尽说江南好唐韦庄| 国产男人的电影天堂91| 日韩强制内射视频| 午夜老司机福利剧场| 久久久久国产精品人妻一区二区| 欧美 日韩 精品 国产| av在线老鸭窝| 97超碰精品成人国产| 精品少妇黑人巨大在线播放| 一个人看的www免费观看视频| 色网站视频免费| 久久久午夜欧美精品| 日韩精品有码人妻一区| 有码 亚洲区| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 夫妻午夜视频| 舔av片在线| 丰满人妻一区二区三区视频av| 久久人人爽人人爽人人片va| 国产av国产精品国产| 男人和女人高潮做爰伦理| 韩国高清视频一区二区三区| 精品99又大又爽又粗少妇毛片| 久久久久久久亚洲中文字幕| 亚洲性久久影院| 欧美三级亚洲精品| 国产黄频视频在线观看| 久久久久久久久大av| 亚洲精品国产色婷婷电影| 欧美xxxx黑人xx丫x性爽| 亚洲精品第二区| 久久精品国产a三级三级三级| 青春草视频在线免费观看| 国产成人午夜福利电影在线观看| 精品国产一区二区三区久久久樱花 | 国产在视频线精品| 女的被弄到高潮叫床怎么办| 成人鲁丝片一二三区免费| 国产大屁股一区二区在线视频| 另类亚洲欧美激情| 人人妻人人澡人人爽人人夜夜| 91久久精品电影网| 久久久成人免费电影| 久久久精品欧美日韩精品| 久久久久九九精品影院| 欧美丝袜亚洲另类| 九九爱精品视频在线观看| 国产日韩欧美在线精品| kizo精华| 人妻夜夜爽99麻豆av| 九九久久精品国产亚洲av麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲在久久综合| 日本-黄色视频高清免费观看| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| av卡一久久| 天堂俺去俺来也www色官网| 99热这里只有是精品50| 九草在线视频观看| 在线观看av片永久免费下载| 精品一区二区免费观看| 中文字幕制服av| 欧美日韩亚洲高清精品| 成年女人在线观看亚洲视频 | 亚洲色图综合在线观看| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精| 美女被艹到高潮喷水动态| 色5月婷婷丁香| 制服丝袜香蕉在线| 成人国产麻豆网| 校园人妻丝袜中文字幕| 人妻少妇偷人精品九色| 99久久人妻综合| 少妇的逼水好多| 国产成人精品久久久久久| 国产一区二区在线观看日韩| 国产欧美另类精品又又久久亚洲欧美| 深爱激情五月婷婷| 久久久久精品性色| 国产大屁股一区二区在线视频| 国产成人午夜福利电影在线观看| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9| 久久影院123| 亚洲国产精品成人久久小说| 伊人久久国产一区二区| 看免费成人av毛片| 久久99精品国语久久久| 一边亲一边摸免费视频| 欧美xxxx黑人xx丫x性爽| 女的被弄到高潮叫床怎么办| 欧美老熟妇乱子伦牲交| av网站免费在线观看视频| 我的女老师完整版在线观看| 超碰av人人做人人爽久久| 老司机影院成人| 亚洲精品乱码久久久v下载方式| 亚洲精品一二三| 三级国产精品欧美在线观看| 亚洲美女视频黄频| 综合色丁香网| 亚洲精品第二区| 精品一区二区三卡| 亚洲经典国产精华液单| 免费高清在线观看视频在线观看| 久久久久久久久大av| 日韩成人av中文字幕在线观看| 99热全是精品| 精品久久久久久久人妻蜜臀av| 最近中文字幕2019免费版| 日韩伦理黄色片| 国产精品爽爽va在线观看网站| 最近手机中文字幕大全| 欧美成人午夜免费资源| 久久久久久久久久成人| 2022亚洲国产成人精品| 夫妻午夜视频| 成年人午夜在线观看视频| 欧美极品一区二区三区四区| 尾随美女入室| 日韩av在线免费看完整版不卡| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 国产欧美日韩一区二区三区在线 | 三级经典国产精品| 日韩欧美精品v在线| 日韩强制内射视频| 最近2019中文字幕mv第一页| 亚洲三级黄色毛片| 肉色欧美久久久久久久蜜桃 | 别揉我奶头 嗯啊视频| 人妻制服诱惑在线中文字幕| 久久久午夜欧美精品| 亚洲精品国产色婷婷电影| 好男人在线观看高清免费视频| 亚洲精品国产av蜜桃| 一个人看视频在线观看www免费| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 中文字幕制服av| 色综合色国产| 又大又黄又爽视频免费| 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 欧美区成人在线视频| 七月丁香在线播放| 最近手机中文字幕大全| 男女那种视频在线观看| 日本-黄色视频高清免费观看| 18禁裸乳无遮挡动漫免费视频 | 成人高潮视频无遮挡免费网站| 免费高清在线观看视频在线观看| 综合色av麻豆| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 男人舔奶头视频| 我要看日韩黄色一级片| 午夜激情福利司机影院| 午夜视频国产福利| 久久久午夜欧美精品| 亚洲av电影在线观看一区二区三区 | 一级毛片aaaaaa免费看小| 色网站视频免费| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| 99久久人妻综合| 成人亚洲欧美一区二区av| 高清日韩中文字幕在线| 久久久久九九精品影院| 国产免费又黄又爽又色| 国产免费一级a男人的天堂| 免费av毛片视频| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 全区人妻精品视频| 一级片'在线观看视频| 国产精品久久久久久精品电影小说 | 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| 国产v大片淫在线免费观看| 赤兔流量卡办理| 欧美日韩在线观看h| 欧美激情在线99| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 亚洲婷婷狠狠爱综合网| 精品久久久噜噜| 男女啪啪激烈高潮av片| 久久精品综合一区二区三区| 99热这里只有是精品在线观看| 国产伦理片在线播放av一区| 亚洲欧美精品专区久久| av国产精品久久久久影院| 99热这里只有精品一区| 女人久久www免费人成看片| 精品国产三级普通话版| 国模一区二区三区四区视频| 亚洲人成网站高清观看| 午夜福利高清视频| 在线观看国产h片| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 亚洲av男天堂| 一区二区三区免费毛片| 午夜精品一区二区三区免费看| 天堂中文最新版在线下载 | 天天躁日日操中文字幕| 亚洲av在线观看美女高潮| 熟女电影av网| 色吧在线观看| 乱系列少妇在线播放| 国产精品99久久久久久久久| 欧美bdsm另类| 一本久久精品| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 亚洲色图综合在线观看| 又爽又黄a免费视频| 午夜福利高清视频| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 国产熟女欧美一区二区| av一本久久久久| 久热久热在线精品观看| 大陆偷拍与自拍| 国产av不卡久久| 国产精品一二三区在线看| 伦理电影大哥的女人| 免费电影在线观看免费观看| 黄色视频在线播放观看不卡| 亚洲欧美日韩东京热| 中国三级夫妇交换| 简卡轻食公司| 亚洲国产精品999| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 久久精品熟女亚洲av麻豆精品| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| 久久久久久久久久久丰满| 天堂中文最新版在线下载 | 久久影院123| 晚上一个人看的免费电影| 91狼人影院| 亚洲av国产av综合av卡| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 男人舔奶头视频| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| av卡一久久| 欧美97在线视频| 一区二区三区精品91| videossex国产| 另类亚洲欧美激情| 国产一区二区在线观看日韩| 在线免费十八禁| 国产精品99久久久久久久久| 日日撸夜夜添| 免费在线观看成人毛片| .国产精品久久| 我要看日韩黄色一级片| 高清在线视频一区二区三区| 国产精品国产三级专区第一集| 18禁在线无遮挡免费观看视频| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 国产淫片久久久久久久久| www.av在线官网国产| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 偷拍熟女少妇极品色| 亚洲图色成人| 久久热精品热| 一个人观看的视频www高清免费观看| 天堂网av新在线| 日本午夜av视频| 人妻少妇偷人精品九色| www.av在线官网国产| 国产亚洲午夜精品一区二区久久 | 97人妻精品一区二区三区麻豆| 一本一本综合久久| 搞女人的毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 我的女老师完整版在线观看| 一级黄片播放器| 欧美最新免费一区二区三区| av一本久久久久| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 日日撸夜夜添| 国产精品伦人一区二区| 国产高潮美女av| 在线观看免费高清a一片| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看| 人妻系列 视频| 永久网站在线| 日本爱情动作片www.在线观看| 老女人水多毛片| 免费观看a级毛片全部| 简卡轻食公司| 亚洲成人av在线免费| 日韩成人av中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 一区二区三区乱码不卡18| 直男gayav资源| av播播在线观看一区| av女优亚洲男人天堂| 亚洲成人av在线免费| 午夜免费鲁丝| 少妇的逼水好多| 97超视频在线观看视频| 91精品国产九色| 亚洲激情五月婷婷啪啪| 91在线精品国自产拍蜜月| 日日啪夜夜爽| 永久免费av网站大全| av卡一久久| 亚洲国产日韩一区二区| 久久人人爽人人爽人人片va| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 亚洲四区av| 欧美区成人在线视频| 69av精品久久久久久| 精品一区二区三卡| 黄片wwwwww| 国产成人aa在线观看| 99精国产麻豆久久婷婷| 校园人妻丝袜中文字幕| 国产淫语在线视频| 免费av毛片视频| 一级av片app| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| 国产视频首页在线观看| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 在线免费十八禁| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 色综合色国产| 中国国产av一级| 国产淫语在线视频| 成人国产av品久久久| 亚洲最大成人中文| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 国产黄色免费在线视频| 国产在视频线精品| 夫妻性生交免费视频一级片| 欧美性感艳星| 成人午夜精彩视频在线观看| 亚洲精品色激情综合| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 秋霞在线观看毛片| 日韩欧美 国产精品| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 熟女av电影| 亚洲精品国产色婷婷电影| 亚洲av中文字字幕乱码综合| 国产成人精品婷婷| 亚洲在线观看片| 国产欧美另类精品又又久久亚洲欧美| 极品少妇高潮喷水抽搐| 99久久精品热视频| 内地一区二区视频在线| 3wmmmm亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区| 久久热精品热| 少妇人妻精品综合一区二区| 久久久亚洲精品成人影院| 国产人妻一区二区三区在| 我的老师免费观看完整版| 高清欧美精品videossex| 老司机影院毛片| 六月丁香七月| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 十八禁网站网址无遮挡 | 欧美日韩一区二区视频在线观看视频在线 | 校园人妻丝袜中文字幕| 亚洲在久久综合| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三 | 亚洲,一卡二卡三卡| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 欧美激情国产日韩精品一区| 在线观看国产h片| 日韩成人伦理影院| 亚洲av电影在线观看一区二区三区 | 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 亚洲av中文av极速乱| 水蜜桃什么品种好| 精品熟女少妇av免费看| 在线 av 中文字幕| 欧美精品一区二区大全| 亚洲成人久久爱视频| 交换朋友夫妻互换小说| 亚洲人与动物交配视频| 国产乱人视频| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 国产乱来视频区| 亚洲欧美日韩无卡精品| 一级av片app| 看非洲黑人一级黄片| 亚洲精品国产av蜜桃| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 中国三级夫妇交换| 精品久久久噜噜| 啦啦啦在线观看免费高清www| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 91狼人影院| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 久久韩国三级中文字幕| 国产毛片a区久久久久| 搡老乐熟女国产| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久| 国产片特级美女逼逼视频| 欧美+日韩+精品| 黑人高潮一二区| 国产精品伦人一区二区| 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜爱| 日韩电影二区| 99热国产这里只有精品6| 亚洲国产色片| 日本免费在线观看一区| 美女内射精品一级片tv| 欧美三级亚洲精品| 久久久色成人| av网站免费在线观看视频| 免费黄色在线免费观看| 日本与韩国留学比较| 成人亚洲精品av一区二区| 美女主播在线视频| 99久久人妻综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲色图av天堂| 18禁在线无遮挡免费观看视频| 亚洲国产高清在线一区二区三| 一级毛片我不卡| 国产老妇女一区| 色婷婷久久久亚洲欧美| 亚洲精品亚洲一区二区| 国产视频内射| 少妇被粗大猛烈的视频| videos熟女内射| 大片电影免费在线观看免费| 97超碰精品成人国产| 久久99热这里只频精品6学生| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 亚洲av日韩在线播放| 少妇 在线观看| 免费观看a级毛片全部| 高清在线视频一区二区三区| 黑人高潮一二区| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 久久久久久久久久人人人人人人| 2021少妇久久久久久久久久久| 亚洲精品自拍成人| 国产v大片淫在线免费观看| 美女国产视频在线观看| 成年女人在线观看亚洲视频 | 美女被艹到高潮喷水动态| 中国国产av一级| 国产精品.久久久| 日本欧美国产在线视频| 日韩一本色道免费dvd| 超碰97精品在线观看| 亚洲美女视频黄频| 精品久久久噜噜| 偷拍熟女少妇极品色| 亚洲成色77777| 亚洲精品日本国产第一区| 亚洲精品,欧美精品| 内地一区二区视频在线| av又黄又爽大尺度在线免费看| 小蜜桃在线观看免费完整版高清|