• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning material law from displacement fields by artificial neural network

    2020-07-01 05:14:00HangYangQianXiangShanTangXuGuo

    Hang Yang, Qian Xiang, Shan Tang,*, Xu Guo,*

    a State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China

    b International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China

    Keywords:Data-driven Material law Displacement field Digital image correlation Artificial neural network

    ABSTRACT The recently developed data-driven approach can establish the material law for nonlinear elastic composite materials (especially newly developed materials) by the generated stress-strain data under different loading paths (Computational Mechanics, 2019). Generally, the displacement (or strain) fields can be obtained relatively easier using digital image correlation (DIC) technique experimentally, but the stress field is hard to be measured. This situation limits the applicability of the proposed data-driven approach. In this paper, a method based on artificial neural network(ANN) to identify stress fields and further obtain the material law of nonlinear elastic materials is presented, which can make the proposed data-driven approach more practical. A numerical example is given to prove the validity of the method. The limitations of the proposed approach are also discussed.

    Materials law plays a key role in mechanics problems as it can relate strain to stress response for a given material. Although many function-based material models are proposed, it is difficult to cover all the materials especially for some newly developed materials. Building an appropriate material law usually requires long-time efforts through the traditional approach,which severely inhibit the use of the newly developed materials in engineering design.

    Recently, many data-driven approaches are proposed, which can replace the function-based material law with data. For example, Kirchdoerfer and Ortiz [1] solved the boundary-value problems in mechanics by minimizing the distance of both computed stress and strain to the stress–strain database of a material. A self-consistent clustering analysis (SCA) was also proposed to reduce the computational cost in Liu’s group [2–4]. Our previous works showed the possibility of replacing the materials law of composites by artificial neural network (ANN) trained by stress–strain data [5, 6]. In these approaches, the database of stress–strain data under different loading paths is pre-required.However, it is difficult to obtain a homogeneous stress-state under multi-axis loadings in the experiments. For inhomogeneous stress-states, the stress fields are hard to obtain directly. But the displacement fields can be measured by digital image correlation (DIC) technique relatively easier [7]. With the measured displacement field by DIC, the parameters involved in the existing function-based hyperelastic models such as Mooney–Rivlin can be calibrated [8–10]. Réthoré [11] further considered the identification of Poisson’s ratio based on the perturbed displacement fields by noises.

    Despite the success of these model-based parameter-identification methods, integration the recognition of material law with the data-driven approach is very attractive because it can avoid the choice of the existing function-based material models or construction of a new one. A stress–strain database can be obtained through the experiments [12–15], which can be used to solve the boundary-value problem by the data-driven approach initialized by Ortiz’s group [1], avoiding the function-based material law.

    In this paper, a data-driven method is proposed to identify the material law based on the measured displacement fields through ANN. The obtained material law based on ANN can be integrated seamlessly with our proposed data-driven approach to solve boundary value problem under the displacement-driven finite element framework. The learned material law is also very flexible to be integrated into commercial software or inhouse code and numerical solving shows the second-order convergence [5].

    The force balance method (FEMU-F) [16–18], which can obtain the parameters in the existing function-based material law based on the available displacements of all the nodesin the experiments, is further developed in this paper. In combination with ANN, it is possible to build a material law without any explicit functional form, which is described in the following. All subsequent formulations are consistent with the current DIC technique under the plane stress conditions.

    The left Cauchy–Green tensor and the Cauchy stress are chosen as measures of strain and stress because they are coaxial under the isotropic assumption. The left Cauchy–Green tensor is defined as

    where F is deformation gradient, given by F =I+. Here, I and ?0are the second-order identity tensor and the gradient operator defined in the original configuration, respectively. The Cauchy stress σ can be given through an implicit function ? as Here the ANN can play the role of this function. In the proposed approach, the function ? rotates the input b first to the principal direction. Then the two principal components of b (b1and b2)are input into the ANN with the different order (b1and b2are switched) (see the upper and lower ANNs in Fig. 1. The two ANNs share the same weights and bias, which can be considered to be the same ANN actually.) The adoption of the two ANN is to ensure that the materials law is strictly isotropic [5]. Finally the outputs of the ANN are averaged and rotated back to the original directions. This process of computing σ from b is shown in Fig. 1,and summarized in the following:

    ? Compute the eigenvalues and eigenvectors of b:

    where biand Nirepresent the eigenvalues (principal component) and eigenvectors of b, respectively.

    ? Compute the principal stress by ANN:

    where w and β are the wight and bias of the ANN (fANN),represents the i-th output of the ANN, and σirepresents the i-th principal component of σ. More details about the ANN are given in the appendix.

    ? Compute the stress in the original directions:

    The internal force of each nodecan be predicted through finite element method (FEM) as

    Fig. 1. Artificial neural network for strictly isotropic nonlinear elastic materials. The dotted boxes identify the functions of ? and f ANN defined in the paper. The weights w and biases β and its components and are also marked. The mapping from the left Cauchy-Green tensor to the Cauchy stress can be obtained after ANN training.

    which is a function of w and β. Here ?(e)is the area of the element e, and B(e)is strain-displacement matrix depending on the shape function [19]. The total force on all the nodes should also satisfy the equilibrium condition, which can be written as follows

    where ? represents the internal area and Sσrepresents the boundary with the externally imposed force fext. Equilibrium equations can be transformed into a minimization problem as

    where viis the introduced weight greater than zero which can improve the convergence to the global optimal solution. Two regularization terms for both weights and bias are also introduced to prevent over-fitting, and the optimization should be carried out in the entire loading process as

    where T is the total time of the loading process, λ is the regularization coefficient, ∥ ·∥L2is L2 norm operator, and (·)(t)is the value of (·) at time t. This is a non-convex unconstrained optimization problem, which can be solved by intelligent optimization algorithm (e.g., particle swarm optimization) or stochastic gradient descent method (the gradients can be obtained by back propagation algorithm of ANN).

    The solving process is similar to the standard ANN training,discussed in our previous work [5]. The difference is that the entire process only provides input data (the measured displacements), and the output data (stress) is not required and replaced by the equilibrium condition. The ANN does not compute the node forces directly, but predicts the stress in each element. The force on a node is computed by the stress from multiple elements, and the stress of an element also affects the node force of multiple nodes, explained in Fig. 2. It can be seen that elements 1, 2, and 4 jointly determine the force of the blue node that needs to be in equilibrium with the external force. Elements 1, 3, 4, 5, 6 and 7 jointly determine the force of the red node that needs to reach the zero resultant force. At least one non-zero force boundary condition is required. Otherwise it converges to the solution with all-zeros.

    The optimization problem discussed above is not a convex one, so the ordinary gradient-based optimization method usually is hard to give the globally optimal solution. It tends to converge to a solution where the weights w and biases β are all-zeros, leading to the predicted stress with zeros. In this situation,only the equilibrium condition on the boundary with the externally imposed force cannot be satisfied but all other nodes can,which is a local optimal solution. The situation can be improved by increasing the weight viof nodes on the boundary in Eqs. (8)and (9). On the other hand, intelligent optimization algorithms can solve this problem well. The cost of computation is much lower than that of the sample preparation and physical experiments.

    The displacement fields used to learn the material law must contain enough multi-axis stress-states so that the trained ANN can predict the stress accurately with arbitrary strain. Otherwise,the trained ANN cannot predict the mechanical responses under some specific stress-states. The gathering of the measured displacement fields from different specimens can be used to train the ANN together to avoid this issue. More detailed discussion is given as below.

    The proposed method shown in the above only considers the two dimensional problem (plane stress), which can be naturally extended to three dimension problem. But the method is limited by the DIC technology, which can only measure the displacement/strain on the 2D surface.

    A rectangular plate with three circular holes of different radius under the imposed tensile loading is investigated under plane stress conditions. The unit of length is mm; force is N; stress,pressure and modulus are MPa. The geometric setup is shown in Fig. 3a. Six equally spaced concentrated forces are applied to the right edge. On the left edge, both X and Y degrees of freedom are fixed. The Ogden model with parameters μ = 5, α = 2, and D =0.01 is employed (the definition of these parameters is consistent with ABAQUS manual). The displacement field is computed by FEM with the given Odgen model. The entire loading process is equally divided into 6 incremental steps. Particle swarm algorithm, in which the swarm size is 1000, is used to solve the optimization problem (Eq. (9)), identifying the weights w and biases β of the ANN. Note that the numerical experiment is used to replace the role of DIC technique to obtain the required displacement fields for the optimization problem. The employed ANN consists of two hidden layers with 3, 3 neurons respectively.

    The predicted stress fields by both the reference and the trained ANN models are plotted in Fig. 3(c, d). Define the relative error of the effective stress between two models as

    Fig. 2. Physical explanation of equilibrium equations by ANN model. The nodes are marked blue on the boundary with the externally imposed force, black on the boundary with the imposed displacement and red inside the simulated domain. The internal force is equal to the external force on the blue nodes, and equal to zeros on the red nodes. The force on the black nodes are not considered. The force on each node depends on the stress of all the elements that contain the node, and each element has an effect on the force of all the nodes belonging to it.

    The principal components of the left Cauchy–Green tensor,b1and b2in all the elements of the numerical example during the whole loading process are summarized in Fig. 5. The ANN trained model by the given displacement fields can accurately predict the stress when the strain is close to the data points shown in the figure, but it cannot predict stress accurately when the strain is far from the data points. Most points lie in the II and IV regions while only a few in the I and III regions. In order to predict mechanical response better, the displacement field reflecting the deformation modes shown in the I and III region should be introduced to train the ANN together.

    In this paper, a data-driven method based on ANN to obtain the material law is proposed. The proposed method can be used to quickly build the material law for isotropic nonlinear elastic materials based on the measured displacements in the experiments. In this short paper, the displacement field is generated by the numerical experiments rather than the DIC measurement. If the data of the displacement fields measured by DIC is used, the same way can be used.

    Fig. 3. Numerical example for a rectangular plate with three holes. a Geometric model and boundary conditions of the voided plate. The contour plots of effective stress computed by b the finite element simulation with the reference Odgen model and d the proposed method. c Finite element mesh contains 142 nodes and 226 element.

    Fig. 5. Summary of all the strain states during the loading process.The principal components of the left Cauchy-Green tensor, b1 and b2 of every element at each time step are plotted.

    Fig. 4. Statistics of the relative error between the predicted results by the proposed method and the reference Odgen model. The results of all incremental steps are counted together.

    The proposed method can only be applied to isotropic nonlinear elastic materials at present. In the future, it should be extended for more complex materials such as elastoplastic and viscoelastic materials. Numerical techniques for improving efficiency and robustness of the proposed method should also be incorporated. These things leave abundant room to improve the present method.

    Acknowledgement

    S. Tang appreciates the support from the National Natural Science Foundation of China (Grant 11872139). X. Guo thanks the support from the National Natural Science Foundation of China (Grants 11732004 and 11821202), and Program for Changjiang Scholars, Innovative Research Team in University(PCSIRT).

    Appendix: Discussion on the ANN

    ANN is briefly discussed here. The reader can refer to our previous work for more details [5]. For a general ANN, a functional transformation is defined as

    on n-th layer (superscript n represents the layer number), which can map the data unit on i-th neuronfrom the n-th layer to (n+1)-th layer, whereis the weights for the link between i-th neuron on n-th layer and j-th neuron on (n+1)-th layer, andis the bias for the j-th neuron on (n+1)-th layer.

    For materials law described in the principal directions, the iteration for ANN training starts from the input layer with the principal component of the left Cauchy–Green tensor as the input:

    which correspond to the upper and the lower ANNs in Fig. 1,respectively. The two ANNs share the same weights and bias.The mapping from n-th layer to (n+1)-th layer takes

    The outputs at the final layer are the principal components of the Cauchy stress in Eq. (4) as

    where N represents the total number of layers of the ANN.

    又黄又粗又硬又大视频| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 久久人妻熟女aⅴ| 久久久久久久精品精品| 午夜福利视频在线观看免费| 午夜91福利影院| 久久久国产精品麻豆| 国产视频首页在线观看| 久久久国产欧美日韩av| 中文字幕最新亚洲高清| www.av在线官网国产| 卡戴珊不雅视频在线播放| 日韩人妻精品一区2区三区| 老司机深夜福利视频在线观看 | 欧美在线黄色| 亚洲色图综合在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲av综合色区一区| 亚洲免费av在线视频| 免费在线观看完整版高清| 国产福利在线免费观看视频| 97精品久久久久久久久久精品| 欧美久久黑人一区二区| 精品亚洲乱码少妇综合久久| 精品久久久精品久久久| 精品一区二区免费观看| 亚洲精品美女久久av网站| 国产日韩欧美亚洲二区| 国产精品久久久久久精品电影小说| 99久久精品国产亚洲精品| 尾随美女入室| 午夜91福利影院| 国产黄频视频在线观看| 国产色婷婷99| 一级毛片我不卡| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 美女国产高潮福利片在线看| 国产av码专区亚洲av| 丰满少妇做爰视频| 在线观看免费日韩欧美大片| www.av在线官网国产| 国产成人欧美| 青青草视频在线视频观看| 成人黄色视频免费在线看| 纵有疾风起免费观看全集完整版| 欧美av亚洲av综合av国产av | 久久精品久久久久久久性| 啦啦啦视频在线资源免费观看| 午夜av观看不卡| 精品人妻熟女毛片av久久网站| 亚洲成人一二三区av| av一本久久久久| 国产女主播在线喷水免费视频网站| 自线自在国产av| 国产精品久久久久成人av| xxx大片免费视频| 国产av精品麻豆| 波多野结衣av一区二区av| 高清不卡的av网站| 一区二区av电影网| 国产精品av久久久久免费| 日韩 欧美 亚洲 中文字幕| 五月天丁香电影| 免费久久久久久久精品成人欧美视频| 久久人妻熟女aⅴ| 国产精品麻豆人妻色哟哟久久| 777久久人妻少妇嫩草av网站| 亚洲成国产人片在线观看| 久久免费观看电影| 久久av网站| 高清在线视频一区二区三区| 在现免费观看毛片| 亚洲熟女毛片儿| 黄色毛片三级朝国网站| 国产免费视频播放在线视频| 91国产中文字幕| 欧美最新免费一区二区三区| 免费看不卡的av| 涩涩av久久男人的天堂| 婷婷色av中文字幕| 亚洲欧美清纯卡通| 亚洲成人手机| 制服人妻中文乱码| 亚洲一卡2卡3卡4卡5卡精品中文| 美女脱内裤让男人舔精品视频| 久久久欧美国产精品| 狂野欧美激情性bbbbbb| 成人国产av品久久久| 好男人视频免费观看在线| 成年女人毛片免费观看观看9 | 性少妇av在线| 亚洲精品美女久久久久99蜜臀 | 国产精品香港三级国产av潘金莲 | 国产一区二区三区综合在线观看| 丰满少妇做爰视频| 18在线观看网站| 天天影视国产精品| 国产高清国产精品国产三级| 国产在线免费精品| 久久天堂一区二区三区四区| 老司机靠b影院| 少妇 在线观看| 啦啦啦视频在线资源免费观看| 777米奇影视久久| 超色免费av| 欧美激情高清一区二区三区 | 久久久精品国产亚洲av高清涩受| 最近中文字幕2019免费版| 制服丝袜香蕉在线| 这个男人来自地球电影免费观看 | 下体分泌物呈黄色| 国产亚洲一区二区精品| 美女国产高潮福利片在线看| av一本久久久久| 成人手机av| 亚洲av国产av综合av卡| 免费女性裸体啪啪无遮挡网站| 国产精品香港三级国产av潘金莲 | 热re99久久国产66热| 我的亚洲天堂| 国产激情久久老熟女| 最新在线观看一区二区三区 | 亚洲av在线观看美女高潮| av不卡在线播放| 国产成人av激情在线播放| 又大又黄又爽视频免费| 国产精品一区二区在线观看99| 国产色婷婷99| 欧美av亚洲av综合av国产av | 狠狠婷婷综合久久久久久88av| 国产精品二区激情视频| 欧美黑人精品巨大| 伊人久久国产一区二区| 另类精品久久| 亚洲欧美精品综合一区二区三区| 精品久久久精品久久久| 久久97久久精品| 中文字幕色久视频| 一区二区av电影网| 人成视频在线观看免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲,欧美,日韩| avwww免费| 亚洲图色成人| 国产日韩欧美视频二区| 久热爱精品视频在线9| 老司机影院成人| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产亚洲av麻豆专区| 国产精品一区二区在线不卡| 大片电影免费在线观看免费| 色婷婷av一区二区三区视频| 91国产中文字幕| 汤姆久久久久久久影院中文字幕| 精品免费久久久久久久清纯 | 老司机影院毛片| 岛国毛片在线播放| 黄色一级大片看看| 亚洲欧美成人精品一区二区| 国产亚洲精品第一综合不卡| 老司机靠b影院| 性色av一级| 一级a爱视频在线免费观看| 在现免费观看毛片| 99九九在线精品视频| 国语对白做爰xxxⅹ性视频网站| netflix在线观看网站| 国产一区二区 视频在线| www.熟女人妻精品国产| 在线观看三级黄色| 中文字幕色久视频| 亚洲成国产人片在线观看| 国产麻豆69| 最近中文字幕2019免费版| 999久久久国产精品视频| 国产精品久久久久久精品古装| 久久久久久久国产电影| 国产 精品1| 下体分泌物呈黄色| 老司机影院成人| 亚洲欧美中文字幕日韩二区| 下体分泌物呈黄色| 久久久精品区二区三区| 曰老女人黄片| 国产欧美日韩一区二区三区在线| 国产精品蜜桃在线观看| 激情视频va一区二区三区| 婷婷成人精品国产| 热re99久久精品国产66热6| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一出视频| 亚洲国产精品成人久久小说| 久久精品亚洲熟妇少妇任你| 免费黄色在线免费观看| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 2021少妇久久久久久久久久久| 高清欧美精品videossex| 少妇 在线观看| 丰满饥渴人妻一区二区三| 国产乱来视频区| 久久久久国产精品人妻一区二区| 国产乱来视频区| 国产亚洲av片在线观看秒播厂| 国产精品麻豆人妻色哟哟久久| 久久久精品免费免费高清| kizo精华| 看免费成人av毛片| 大香蕉久久网| 大话2 男鬼变身卡| 汤姆久久久久久久影院中文字幕| 制服诱惑二区| 在线观看免费日韩欧美大片| 汤姆久久久久久久影院中文字幕| 又大又爽又粗| 伊人亚洲综合成人网| 精品免费久久久久久久清纯 | 操美女的视频在线观看| 亚洲美女视频黄频| 精品一区二区免费观看| 2018国产大陆天天弄谢| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜| 国产1区2区3区精品| 亚洲,一卡二卡三卡| 精品第一国产精品| 国产av国产精品国产| 亚洲国产欧美网| 欧美乱码精品一区二区三区| 人妻人人澡人人爽人人| 夜夜骑夜夜射夜夜干| 少妇 在线观看| 日韩 亚洲 欧美在线| 999精品在线视频| 国产在线一区二区三区精| 97在线人人人人妻| 久久天堂一区二区三区四区| 90打野战视频偷拍视频| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 啦啦啦视频在线资源免费观看| 一级毛片我不卡| 9热在线视频观看99| 久久久久久人人人人人| a级片在线免费高清观看视频| 免费高清在线观看日韩| 国产精品久久久久久人妻精品电影 | av又黄又爽大尺度在线免费看| 国产99久久九九免费精品| 日韩欧美精品免费久久| 国产亚洲一区二区精品| 国产淫语在线视频| 久久精品国产亚洲av涩爱| 波野结衣二区三区在线| 国产欧美日韩综合在线一区二区| 香蕉丝袜av| 日韩一区二区视频免费看| 十八禁高潮呻吟视频| 国产精品久久久久久精品电影小说| 王馨瑶露胸无遮挡在线观看| 精品一区在线观看国产| 丰满乱子伦码专区| 亚洲av成人精品一二三区| 久久久久久久久久久久大奶| 国产有黄有色有爽视频| www.av在线官网国产| 精品人妻在线不人妻| 精品人妻一区二区三区麻豆| 国产无遮挡羞羞视频在线观看| 亚洲四区av| 大片免费播放器 马上看| 国产高清国产精品国产三级| 女人精品久久久久毛片| 欧美中文综合在线视频| 亚洲成人手机| 国产亚洲一区二区精品| 美女中出高潮动态图| 九草在线视频观看| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 国产日韩欧美视频二区| 日本91视频免费播放| 在线天堂中文资源库| a级毛片在线看网站| 人人妻人人澡人人看| 中国国产av一级| 免费日韩欧美在线观看| 激情视频va一区二区三区| 精品一区二区三卡| 人人妻人人爽人人添夜夜欢视频| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 国产一级毛片在线| 国产精品av久久久久免费| www.熟女人妻精品国产| 一级黄片播放器| 亚洲图色成人| 国产精品二区激情视频| 精品国产一区二区三区久久久樱花| 一级片免费观看大全| 久久这里只有精品19| 精品一区二区三区av网在线观看 | 一级,二级,三级黄色视频| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影| 一本一本久久a久久精品综合妖精| 国产精品久久久久久人妻精品电影 | 久久国产精品男人的天堂亚洲| 美女高潮到喷水免费观看| 欧美精品人与动牲交sv欧美| 一本色道久久久久久精品综合| 我的亚洲天堂| 婷婷色综合www| 亚洲熟女毛片儿| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 亚洲av国产av综合av卡| 啦啦啦在线观看免费高清www| 精品一区二区三区av网在线观看 | 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 高清在线视频一区二区三区| 99精国产麻豆久久婷婷| 一级毛片电影观看| 亚洲av成人不卡在线观看播放网 | 赤兔流量卡办理| 日本wwww免费看| av不卡在线播放| 久久久久精品人妻al黑| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 久久久久久人妻| 精品少妇黑人巨大在线播放| 日韩伦理黄色片| 97精品久久久久久久久久精品| 色94色欧美一区二区| 精品国产一区二区久久| 人人澡人人妻人| 欧美成人午夜精品| 国产不卡av网站在线观看| 亚洲精品aⅴ在线观看| 国产精品一区二区在线不卡| 欧美成人精品欧美一级黄| 成年人免费黄色播放视频| 成人国语在线视频| 欧美日韩精品网址| 亚洲男人天堂网一区| 久久久久视频综合| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 极品人妻少妇av视频| a级毛片黄视频| av有码第一页| 亚洲av福利一区| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 大码成人一级视频| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 欧美日韩福利视频一区二区| 丁香六月欧美| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 搡老乐熟女国产| 一级黄片播放器| 亚洲,欧美,日韩| 欧美人与性动交α欧美精品济南到| 中文字幕av电影在线播放| 一级爰片在线观看| 永久免费av网站大全| 国产人伦9x9x在线观看| 秋霞在线观看毛片| 久久久精品免费免费高清| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 欧美黑人精品巨大| 免费高清在线观看视频在线观看| 精品一区二区三区av网在线观看 | 麻豆av在线久日| 成年女人毛片免费观看观看9 | 欧美少妇被猛烈插入视频| 91精品伊人久久大香线蕉| 久热爱精品视频在线9| 丁香六月天网| 国产成人精品福利久久| 国产 一区精品| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 国产日韩欧美亚洲二区| 女人久久www免费人成看片| av福利片在线| 校园人妻丝袜中文字幕| 久久久久网色| 欧美av亚洲av综合av国产av | 日韩制服骚丝袜av| 国产成人av激情在线播放| 狂野欧美激情性bbbbbb| 两个人免费观看高清视频| 亚洲国产精品一区二区三区在线| 极品人妻少妇av视频| 午夜91福利影院| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 亚洲欧洲国产日韩| 老司机影院成人| 久久久精品免费免费高清| 色精品久久人妻99蜜桃| 欧美另类一区| 一边摸一边做爽爽视频免费| 久久毛片免费看一区二区三区| 午夜日本视频在线| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 久久毛片免费看一区二区三区| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 精品少妇一区二区三区视频日本电影 | 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| 国产淫语在线视频| 国产精品偷伦视频观看了| 久久久久久久久免费视频了| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 亚洲av福利一区| 日韩 亚洲 欧美在线| 国产精品香港三级国产av潘金莲 | 亚洲欧美激情在线| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| 日韩成人av中文字幕在线观看| 国产欧美日韩一区二区三区在线| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 日韩 欧美 亚洲 中文字幕| 国产精品 国内视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区黑人| 如日韩欧美国产精品一区二区三区| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 国产av精品麻豆| 亚洲情色 制服丝袜| 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 精品少妇内射三级| 精品一品国产午夜福利视频| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 男人添女人高潮全过程视频| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 免费女性裸体啪啪无遮挡网站| 一边亲一边摸免费视频| 国产乱来视频区| 亚洲av日韩精品久久久久久密 | 久久婷婷青草| 一级毛片 在线播放| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 久久久久久久精品精品| 午夜免费男女啪啪视频观看| 国产精品亚洲av一区麻豆 | 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 青草久久国产| 久久久久精品性色| 美女大奶头黄色视频| 丰满迷人的少妇在线观看| 久久久久久人人人人人| 国产伦人伦偷精品视频| 亚洲中文av在线| 91aial.com中文字幕在线观看| 嫩草影院入口| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| netflix在线观看网站| 另类亚洲欧美激情| 99热国产这里只有精品6| 无限看片的www在线观看| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 激情视频va一区二区三区| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 久久人人爽人人片av| 亚洲成色77777| svipshipincom国产片| 涩涩av久久男人的天堂| 1024视频免费在线观看| 免费观看性生交大片5| 日韩 欧美 亚洲 中文字幕| 最黄视频免费看| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精品在线美女| 亚洲一码二码三码区别大吗| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 精品国产一区二区三区久久久樱花| 精品一区在线观看国产| 婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 午夜久久久在线观看| 免费黄频网站在线观看国产| 久久久亚洲精品成人影院| 亚洲精品久久午夜乱码| 久热这里只有精品99| 国产成人91sexporn| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 777米奇影视久久| 精品亚洲乱码少妇综合久久| 一区二区三区精品91| 午夜日韩欧美国产| 久久亚洲国产成人精品v| xxx大片免费视频| 一区二区三区激情视频| 国产精品一区二区在线观看99| 夫妻午夜视频| 亚洲少妇的诱惑av| 成人黄色视频免费在线看| 五月天丁香电影| 国产成人精品在线电影| 久久热在线av| 男人添女人高潮全过程视频| 99久久精品国产亚洲精品| 18禁动态无遮挡网站| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 亚洲综合色网址| 如何舔出高潮| 天天操日日干夜夜撸| 人妻人人澡人人爽人人| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 中文字幕色久视频| 国产免费又黄又爽又色| 一级片'在线观看视频| 国产色婷婷99| 成人三级做爰电影| 美女午夜性视频免费| 中国三级夫妇交换| 国产亚洲av片在线观看秒播厂| 极品人妻少妇av视频| 国产深夜福利视频在线观看| 国产国语露脸激情在线看| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 高清欧美精品videossex| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 国产淫语在线视频| 日韩中文字幕视频在线看片| av线在线观看网站| 99精品久久久久人妻精品| 久久精品久久久久久久性| 久久免费观看电影| 免费日韩欧美在线观看| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦视频在线资源免费观看| 深夜精品福利| 成人漫画全彩无遮挡| 免费看不卡的av| svipshipincom国产片| 欧美97在线视频| 成人国产av品久久久| 久久久久视频综合| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 熟女少妇亚洲综合色aaa.| 男女无遮挡免费网站观看| 美女扒开内裤让男人捅视频| 在线观看免费视频网站a站| 伦理电影免费视频| 国产又色又爽无遮挡免| 夫妻午夜视频| 久久亚洲国产成人精品v| 日韩成人av中文字幕在线观看| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 久久鲁丝午夜福利片| 黄色毛片三级朝国网站| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 国产在线免费精品|