• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study on the mechanical properties and thermodynamic properties of Mo–Ta alloys

    2020-06-28 06:17:42XinZHANG張欣HengLI李恒YuhongXU許宇鴻QijunLIU劉其軍YangyangLIU劉洋陽ZilinCUI崔子麟HaifengLIU劉海峰XianquWANG王先驅(qū)JieHUANG黃捷HaiLIU劉海JunCHENG程鈞MingLI李明ShaofeiGENG耿少飛ChangjianTANG唐昌建andGuangjiuLEI雷光玖
    Plasma Science and Technology 2020年6期
    關(guān)鍵詞:張欣

    Xin ZHANG(張欣),Heng LI(李恒),Yuhong XU(許宇鴻),Qijun LIU(劉其軍),Yangyang LIU (劉洋陽), Zilin CUI (崔子麟), Haifeng LIU (劉海峰),Xianqu WANG (王先驅(qū)), Jie HUANG (黃捷), Hai LIU (劉海),Jun CHENG (程鈞), Ming LI (李明), Shaofei GENG (耿少飛),Changjian TANG (唐昌建),4 and Guangjiu LEI (雷光玖)

    1 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, People’s Republic of China

    2 School of Physical Science and Technology,Southwest Jiaotong University,Key Laboratory of Advanced Technologies of Materials,Ministry of Education of China,Chengdu 610031,People’s Republic of China

    3 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    4 School of Physical Science and Technology,Sichuan University,Chengdu 610065,People’s Republic of China

    Abstract The mechanical properties, thermodynamic properties and electronic structure of Mo1?xTax(Mo–Ta) alloys (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1) were calculated by using firstprinciples.The electronic structure of Mo–Ta alloys was analysed by the projected density of states(PDOS).The low temperature heat capacity was estimated by Fermi energy and Debye temperature.It is shown that the formation enthalpy will decrease with the increase of Ta content, and the cohesive energy will increase with the increase of the Ta content.On the other hand,the addition of Ta atoms will reduce the strength and improve the ductility of Mo–Ta alloys,the Debye temperature will decrease and the low temperature heat capacity will be improved with the increase of the Ta content.All these results will be useful for the research of new plasma grid(PG)materials,which is mainly used in neutral beam injection (NBI) systems to produce negative hydrogen ions.

    Keywords: first principles calculations, Mo–Ta alloy, mechanical properties, thermodynamic(Some figures may appear in colour only in the online journal)

    1. Introduction

    Recently, body-centred cubic (BCC) transition elements and their alloys have increasingly been the subject of research,especially regarding their mechanical properties due to their good physical and chemical properties, such as extreme stiffness, high melting point and high thermal conductivity. Henceitshould benoted that,these metals and alloys are receiving considerable attention as potential plasma facing material of the divertor and the first wall in fusion power reactors[1–6].On the other hand, molybdenum (Mo) and tantalum (Ta) are typical BCC transition metals.In particular,Mo is an electrode material used to make plasma grid in NBI system [7], and another potential electrode material is tungsten. In addition, more and more attention has been paid to the feasibility of using alloy materials to make electrodes. Alloying can significantly improve the physical properties of metals. Ham et al pointed out that Mo–Ta alloys may work at high temperatures and have high strength [8]. Mo–Ta alloys are good candidate for gate electrode applications due to the good thermal and chemical stability [9, 10]. Turchi [11] and Van Torne et al [12] studied the structure and mechanical properties of Mo–Ta alloys.However, they paid little attention to the elastic modulus,hardness and thermodynamic properties of Mo–Ta alloys.Compared with traditional methods of experimental investigation, DFT calculation is a good method for studying the properties of materials, especially mechanical and thermodynamic properties. The computational data can make reasonable prediction of the properties of materials, so the calculated results may serve as guidance for further experiments.Research costs will be greatly reduced by first-principles study.

    Table 1.The k-point mesh,energy cut-off(eV)and calculated lattice constants of Mo1?xTax alloys(x=0,0.0625,0.125,0.25,0.3125,0.5 and 1).

    In this work, the structure, stability, elastic properties,Debye temperature and low temperature heat capacity of Mo1?xTax(Mo–Ta) alloys (x=0, 0.0625, 0.125, 0.25,0.3125, 0.5 and 1) have been studied via first-principles. We can have a good understanding of the basic physical properties of these alloys due to these calculated results. On the other hand, these results will provide a useful database for relevant Mo–Ta alloy studies.

    2. Computational methods and model

    A method based on the DFT [13, 14] was used to study the mechanical and thermodynamic properties of Mo–Ta alloys,which was done using Cambridge Serial Total Energy Package Code (CASTEP) [15]. The ultra-soft pseudo-potential plane-wave (UPPW) [16] was used to describe the interaction between valence electrons and core ions and general gradient approximation(GGA)PBE[17]was used for exchange correlation. The Monkhorst–Pack method [18] was used for k-points sampling,as M×M×M.The values of M and the plane wave cut-off energy are shown in table 1. All these structures were fully relaxed until the forces exerted on all atoms are less than 0.01 eV ??1[19].

    In the references, Van Torne et al pointed out that the Mo–Ta binary diagram shows a continuous BCC solid solution across the entire diagram [12]. All of the structural models are depictived by the 2×2×2 supercell, which is containing 16 atoms in a BBC structure. Various alloys with different Ta concentrations were obtained because a portion of the Mo atoms were substituted by Ta atoms; those are pure Mo, Mo0.9375Ta0.0625, Mo0.875Ta0.125, Mo0.75Ta0.25,Mo0.6875Ta0.3125, Mo0.5Ta0.5and pure Ta. All of these structural models are shown in figure 1.

    3. Results and discussion

    3.1. Structure optimisation

    First,the positions of Ta atoms in the supercell must be taken into account. Theoretically, Ta atoms can be placed in any position in the lattice when Mo atoms are replaced by Ta atoms to form Mo–Ta alloys such that the lattice structures of Mo–Ta alloys with the same Ta concentration are undetermined. Thus, we should confirm the energetically most favourable atomic arrangements of Mo–Ta alloys in a 2×2×2 supercell. All these structures in figure 1 are the lowest energy structures.As shown in figure 1,Mo–Ta alloys still retain the BCC structure, the Ta atom prefers to be in a position that ensures a high degree of symmetry throughout the lattice structure.

    The calculated lattice constants of Mo1?xTaxalloys

    (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1) are shown in table 1. The results of lattice constants had been overestimated because the GGA approach was used for geometry optimisation[22–25].Even so,the calculated lattice constants were in good agreement with the experiment data. Figure 2 shows the change trend of equilibrium lattice constants of Mo–Ta alloys with the increase of Ta content.

    Figure 1. The energetically most favourable atomic arrangements of the BCC Mo1?xTax (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1)alloys in a 2×2×2 supercell. The cyan and red atoms are Mo and Ta, respectively.

    Figure 2. The change trend of equilibrium lattice constants of Mo–Ta alloys.

    3.2. The energy and stability of the Mo–Ta alloys

    Formation enthalpy and cohesive energy are important parameters for evaluating the stability of alloys. The formation enthalpy and cohesive energy of Mo–Ta alloys are calculated according to the following equations:

    where x is the Ta concentration,Etot(M o1-xTax),Ebulk(M o)andEbulk( Ta)are the total energy of Mo1?xTaxalloys (2×2×2 supercell), bulk Mo and bulk Ta (2×2×2 supercell) in the BBC lattice, respectively.Eiso( Mo)andEiso(T a)are the energies of an isolated Mo and Ta atom,respectively. N is the number of atoms. According to this definition, negative values of the formation enthalpy (Ef) andcohesive energy (Ecoh) mean that the formation of Mo1?xTaxalloys releases energy so that it is more thermodynamically stable. Table 2 shows the calculated results, and the changes of formation enthalpy and cohesive energy with Ta concentration are shown in figure 3. The formation enthalpy that has continuously decreased with the increase of Ta concentration,which means that Mo–Ta alloys formed by bulk Mo and bulk Ta become more and more thermodynamically stable with the increase of Ta content.According to the formation enthalpy, the Mo0.5Ta0.5alloy is the most thermodynamically stable. The cohesive energy of Mo–Ta alloys continuously increases with the increase of Ta concentration, which means that it becomes more and more difficult to decompose the Mo–Ta alloy into individual Mo and/or Ta atoms with the increase of Ta concentration.

    3.3. The mechanical properties of Mo–Ta alloys

    The elastic constants of every Mo1?xTaxalloy and the mechanical property parameters of every Mo1?xTaxalloy were calculated in this work. The elastic constants Cijare essential parameters that determine the response of the crystal to external forces and are related to the initial fundamental mechanical properties. Table 3 shows the calculated elastic constants,which are plotted in figure 4(a)as a function of Ta content. And there are only three independent elastic constants, C11, C12, and C44, for a body-centred cubic system.We have known that all of the Mo1?xTaxalloys are thermodynamically stable because all of the values of the formation enthalpy of Mo1?xTaxalloys are negative. According to the‘Born stability criteria’, we can understand the mechanical stability of cubic crystals. The ‘Born stability criteria’ are as follow [29]

    All of the Mo1?xTaxalloys are mechanical stable because they all satisfy these conditions.The elastic constants C11and C44continuously decrease with the increase of the Ta content.However,the change in elastic constant C12with the increase of the Ta concentration is not significant.Elastic constant C11is one of the most important parameters and is related to the stiffness. We can see that the C11value is monotone decreasing from 478.28 to 262.38, which suggests that more Ta content reduces the stiffness of the Mo1?xTaxalloy.

    We can estimate the Cauchy pressure C12?C44[30],which can be used to describe the brittle/ductile properties of alloys.If the Cauchy pressure(C′)is positive,the metal bonds dominate the crystal, showing the ductility of the material[31].It is obvious that all Mo–Ta alloys have positive Cauchy pressure.

    Figure 3.The changes of formation enthalpy and cohesive with the increase of Ta content.

    The elastic moduli can be obtained using Voigt–Reuss–Hill approximation [32–34], which is a good method for evaluating the performance of materials from the calculated elastic constants. For cubic crystals, the bulk moduli (B),shear modulus(G),Young’s modulus(E)and Poisson’s ratio(σ) can be calculated from the following equations (6)–(11)[35] and are shown in table 4

    As we know,the elastic modulus represents the ability of bulk materials to resist external forces. From figure 4(b), it can be seen that the increase of Ta content will gradually reduce the elastic modulus. The larger the bulk modulus is, the greater the hardness is. Thus, pure Mo alloys have the greatest hardness. The simulation results show that the addition of Ta atoms will reduce the strength of Mo–Ta alloys.

    Figure 4.(a) Elastic constants Cij of Mo–Ta alloys, (b) elastic modulus of Mo–Ta alloys.

    Table 3. The calculated elastic constants Cij (GPa) of Mo1?xTax alloys.

    Table 4.Elastic modulus (GPa), B/G ratio and Poisson’s ratio (σ, GPa) of Mo1?xTax alloys.

    Figure 5. Poisson’s ratio and B/G ratio of Mo–Ta alloys.

    The B/G ratio present the ductility of metal materials due to Pugh’s theory [36]. If the B/G ratio is less than 1.75, the material shows brittleness. Instead, materials exhibit ductility.It is obvious that the B/G ratios of all Mo–Ta alloys are larger than 1.75. The new rule given by Frantsevich et al [37] indicates that alloys can be considered as ductile material when their Poisson’s ratio (σ) is larger than 0.26. From figure 5, we can see that the B/G ratio and Poisson’s ratio show the same trend with the increase of Ta content. The ductility order of Mo–Ta alloys is: Mo0.5Ta0.5>Mo0.875Ta0.125>Mo0.6875Ta0.3125>Mo0.75Ta0.25>Mo0.9375Ta0.0625. Because the ductility of pure Ta is better than that of pure Mo, the ductility of mo–ta alloy can be improved by more Ta content.

    3.4. The electronic structure

    The electronic structure of Mo–Ta alloys can be analysed by the projected density of states (PDOS). In this paper, the PDOS of Mo0.9375Ta0.0625, Mo0.875Ta0.125, Mo0.75Ta0.25,Mo0.6875Ta0.3125and Mo0.5Ta0.5are presented in figure 6.We can see a pseudo-gap at the Fermi level, which is a characteristic of typical transition metal alloys. The bonding valence electrons are mainly distributed in the energy range of?5–20 eV. Compared with the pure Ta metal, theTa-containingalloys reduce the energy level of Ta states.Compared with the PDOS of Mo far away from Ta,the degree of overlap of Mo states and Ta states is higher when Mo atoms gets closer to Ta atoms. This may be due to the difference in electronegativity between Mo(2.16)and Ta(1.50),which can cause a small charge transfer between Mo atoms and Ta atoms. And figure 6 also demonstrates the degree of overlap of Ta states and Mo states in the case of Mo0.5Ta0.5is the highest, showing the Mo–Ta bonding strength is the highest in Mo0.5Ta0.5.

    3.5. The thermodynamic properties of Mo–Ta alloys

    3.5.1.Debye temperature. Debye temperature is an essential parameter for materials, which corresponds to the highest frequency of lattice vibration and indirectly reflects the strength of the binding force between atoms. Debye temperature can be estimated using the following relationship [37]:

    where ρ, h, kB, NA, M and n are density, Planck constant,Boltzmann constant, Avogadro constant, the weight of a supercell and the number of atoms per formula, respectively.Vl, Vtand Vmrepresent the longitudinal sound velocity, lateral sound velocity and average sound velocity, respectively. From table 5, we can see that the Debye temperature of 466.5 K of pure Mo decreases to 228.8 K for pure Ta,which indicates that the binding force between atoms is strongest in pure Mo.

    3.5.2. Low temperature heat capacity. The low temperature heat capacity can be estimated by Fermi energy and Debye temperature, which are defined as follows:

    For the above formulae, EFis the Fermi energy,? is reduced Planck constant, m is the electron weight, and ρeis the electron density of Mo–Ta alloys.γ and β are the electron and phonon heat capacity coefficients, respectively. N is the number of valence electrons of Mo–Ta alloys,5 s1for Mo and 6 s2for Ta. R is the molar gas constant, Cvis the heat capacity, and T is the temperature.

    From formula (19), the heat capacity is divided into two parts: the electron and phonon heat capacity. Obviously, the larger the value of γ or β is,the larger the heat capacity is. As shown in table 5, the value of γ or β continuously increases with the increase of Ta content such that heat capacity also continuously increases, as shown in figure 7. From formulae(16) and (17), we can find that the magnitude of γ is mainly determined by the number of valence electrons.This is because only the valence electrons, which are near the Fermi level and have a high probability of being excited, will contribute to the heat capacity. Undoubtedly, More Ta atoms lead to more valence electrons.

    Table 5.The density ρ(g cm?3),longitudinal sound velocity Vl(m s?1),transverse sound velocity Vt(m s?1),average sound velocity(m s?1),Debye temperature (K), low temperature parameters of the electron heat capacity coefficient γ (J/(mol K2)) and phonon heat capacity coefficient β (J/(mol K4)) of Mo–Ta alloys.

    Figure 7. Low temperature heat capacity of Mo–Ta alloys.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.11820101004), the National Key R&D Program of China (2017YFE0300100, 2017YFE0301100).

    猜你喜歡
    張欣
    《卯兔之年》
    《保護(hù)生態(tài)》
    《城》
    平面向量線性運算的轉(zhuǎn)化思想的應(yīng)用
    Novel structures and mechanical properties of Zr2N:Ab initio description under high pressures*
    隨筆四則
    作品(2020年4期)2020-05-11 06:21:45
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    自作多情
    張欣現(xiàn)代重彩作品欣賞
    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter
    av国产久精品久网站免费入址| 18禁在线无遮挡免费观看视频| 韩国av在线不卡| 老熟女久久久| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 在线观看国产h片| 99久久精品国产国产毛片| 亚洲国产欧美日韩在线播放| 免费大片黄手机在线观看| 日韩av不卡免费在线播放| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 丁香六月天网| 寂寞人妻少妇视频99o| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 热99久久久久精品小说推荐| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 熟女人妻精品中文字幕| 久久久欧美国产精品| 成人毛片60女人毛片免费| 各种免费的搞黄视频| videossex国产| 久久人人97超碰香蕉20202| 亚洲成av片中文字幕在线观看 | 成人毛片a级毛片在线播放| 中国三级夫妇交换| 美国免费a级毛片| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 国产乱人偷精品视频| 国产免费现黄频在线看| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 人人妻人人澡人人爽人人夜夜| av福利片在线| 精品卡一卡二卡四卡免费| 久久久久久久国产电影| 国产成人精品在线电影| 国产极品粉嫩免费观看在线| av国产久精品久网站免费入址| 99久久人妻综合| 成人免费观看视频高清| 亚洲av.av天堂| 精品国产国语对白av| 国产在线一区二区三区精| 伦理电影大哥的女人| av福利片在线| 亚洲精品国产av成人精品| 日日啪夜夜爽| 最近最新中文字幕大全免费视频 | 亚洲精华国产精华液的使用体验| 欧美精品一区二区免费开放| 国产1区2区3区精品| 亚洲精品国产av蜜桃| 欧美激情极品国产一区二区三区 | 久久久久久久亚洲中文字幕| 日韩av不卡免费在线播放| 男女国产视频网站| 久久久久久人人人人人| 亚洲av电影在线进入| 草草在线视频免费看| 精品少妇内射三级| av在线app专区| 九九在线视频观看精品| 赤兔流量卡办理| 日韩一本色道免费dvd| 国产亚洲最大av| 日韩一区二区三区影片| 伦理电影大哥的女人| 久久这里只有精品19| 美女xxoo啪啪120秒动态图| 性色av一级| 午夜福利,免费看| 波多野结衣一区麻豆| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情久久久久久久| 人妻少妇偷人精品九色| 宅男免费午夜| 亚洲av成人精品一二三区| 久久午夜福利片| 极品少妇高潮喷水抽搐| 久久99一区二区三区| 免费久久久久久久精品成人欧美视频 | 欧美国产精品va在线观看不卡| 日本欧美视频一区| 欧美精品一区二区大全| 国产日韩一区二区三区精品不卡| 中文字幕免费在线视频6| 色94色欧美一区二区| av片东京热男人的天堂| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 国产黄频视频在线观看| 丰满少妇做爰视频| 日韩视频在线欧美| 久久99蜜桃精品久久| 国精品久久久久久国模美| 韩国精品一区二区三区 | 久久久久国产精品人妻一区二区| 色5月婷婷丁香| 成人黄色视频免费在线看| 国产1区2区3区精品| 丁香六月天网| 男的添女的下面高潮视频| 国产片内射在线| 成人二区视频| 全区人妻精品视频| 夫妻午夜视频| 在线观看www视频免费| 成年人免费黄色播放视频| 精品一区二区免费观看| 五月天丁香电影| 少妇的逼水好多| av播播在线观看一区| 啦啦啦视频在线资源免费观看| 高清在线视频一区二区三区| 在线看a的网站| 国产精品欧美亚洲77777| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| 午夜久久久在线观看| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看 | 男女边吃奶边做爰视频| 一级片'在线观看视频| 日韩三级伦理在线观看| 热re99久久国产66热| 国产精品国产三级国产专区5o| kizo精华| 在线天堂最新版资源| 国产一区二区在线观看日韩| 九色成人免费人妻av| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 国产一区二区激情短视频 | 久久久精品区二区三区| 国产在线一区二区三区精| 中文字幕免费在线视频6| 成年女人在线观看亚洲视频| 成人亚洲精品一区在线观看| 久久久亚洲精品成人影院| 亚洲国产精品专区欧美| 久久99热这里只频精品6学生| 九色亚洲精品在线播放| 久久久a久久爽久久v久久| 国产成人精品福利久久| 汤姆久久久久久久影院中文字幕| 黑人高潮一二区| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 尾随美女入室| 视频在线观看一区二区三区| 97在线视频观看| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 亚洲欧洲日产国产| 飞空精品影院首页| 日本-黄色视频高清免费观看| 一级毛片电影观看| 高清在线视频一区二区三区| av播播在线观看一区| 国产免费一区二区三区四区乱码| 久久狼人影院| 亚洲欧美成人综合另类久久久| 老司机亚洲免费影院| a级片在线免费高清观看视频| 又大又黄又爽视频免费| 亚洲五月色婷婷综合| 大香蕉久久网| 国产高清国产精品国产三级| 在线观看人妻少妇| 亚洲色图 男人天堂 中文字幕 | 亚洲国产日韩一区二区| 免费久久久久久久精品成人欧美视频 | 在线观看免费视频网站a站| 国产精品一国产av| 久久久久精品性色| 黄色一级大片看看| 免费av中文字幕在线| 如何舔出高潮| 婷婷色麻豆天堂久久| 啦啦啦视频在线资源免费观看| 国产xxxxx性猛交| 91aial.com中文字幕在线观看| 美国免费a级毛片| 国产成人午夜福利电影在线观看| 18禁裸乳无遮挡动漫免费视频| 免费黄色在线免费观看| 肉色欧美久久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 高清在线视频一区二区三区| 久久99蜜桃精品久久| 亚洲综合精品二区| 大香蕉久久网| 精品久久久精品久久久| 国产午夜精品一二区理论片| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 夜夜爽夜夜爽视频| 欧美bdsm另类| 国产黄色视频一区二区在线观看| 久久久久久久久久人人人人人人| av天堂久久9| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| 国产精品秋霞免费鲁丝片| 51国产日韩欧美| 亚洲成色77777| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 国产精品 国内视频| av在线播放精品| 欧美97在线视频| 国产熟女午夜一区二区三区| 水蜜桃什么品种好| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久精品一区二区三区| 考比视频在线观看| 亚洲精品色激情综合| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 美女内射精品一级片tv| 精品人妻熟女毛片av久久网站| 五月玫瑰六月丁香| 十八禁高潮呻吟视频| 免费人妻精品一区二区三区视频| 老司机影院成人| 欧美激情极品国产一区二区三区 | 日韩,欧美,国产一区二区三区| 一级片'在线观看视频| 久久久久久人妻| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 秋霞伦理黄片| 女人精品久久久久毛片| 精品99又大又爽又粗少妇毛片| a级毛片在线看网站| 99九九在线精品视频| 人妻一区二区av| 五月玫瑰六月丁香| 乱码一卡2卡4卡精品| 街头女战士在线观看网站| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 9色porny在线观看| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 国产一区亚洲一区在线观看| 久久久久久久大尺度免费视频| 男女啪啪激烈高潮av片| 国产亚洲精品久久久com| 女人久久www免费人成看片| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 永久免费av网站大全| 久久精品国产综合久久久 | 春色校园在线视频观看| 黑丝袜美女国产一区| xxxhd国产人妻xxx| 亚洲国产精品999| 又粗又硬又长又爽又黄的视频| 男人舔女人的私密视频| 中文欧美无线码| 国产精品一区www在线观看| 国产高清不卡午夜福利| 美女福利国产在线| www.av在线官网国产| 国产视频首页在线观看| 人妻 亚洲 视频| 国产精品人妻久久久影院| 熟妇人妻不卡中文字幕| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 国产精品成人在线| 三级国产精品片| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 国产成人免费无遮挡视频| 日韩成人伦理影院| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看| 免费久久久久久久精品成人欧美视频 | 免费高清在线观看日韩| av卡一久久| 捣出白浆h1v1| 亚洲情色 制服丝袜| 成人午夜精彩视频在线观看| 色哟哟·www| 一个人免费看片子| 中国三级夫妇交换| 国产高清三级在线| 黑人高潮一二区| 国产日韩欧美亚洲二区| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 国产精品一国产av| 黄色 视频免费看| av在线观看视频网站免费| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 精品一区二区三区视频在线| 纵有疾风起免费观看全集完整版| 亚洲精品日本国产第一区| av.在线天堂| 嫩草影院入口| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 五月开心婷婷网| 亚洲 欧美一区二区三区| 国产精品不卡视频一区二区| 亚洲情色 制服丝袜| 97超碰精品成人国产| 午夜久久久在线观看| 青春草视频在线免费观看| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 男的添女的下面高潮视频| 99久久综合免费| 老熟女久久久| 亚洲国产看品久久| av在线观看视频网站免费| 久久国内精品自在自线图片| 伦精品一区二区三区| av免费在线看不卡| 在线观看www视频免费| 国产成人精品久久久久久| 少妇的丰满在线观看| 一级黄片播放器| 久久久久精品人妻al黑| 各种免费的搞黄视频| 国产69精品久久久久777片| 免费人成在线观看视频色| 国产精品无大码| 国产免费一区二区三区四区乱码| 欧美97在线视频| 精品国产乱码久久久久久小说| 欧美国产精品va在线观看不卡| 91精品三级在线观看| 一本色道久久久久久精品综合| 欧美3d第一页| 男女免费视频国产| 日日爽夜夜爽网站| 久久这里有精品视频免费| 草草在线视频免费看| 久久人人爽人人片av| 久久女婷五月综合色啪小说| 亚洲精品第二区| 五月开心婷婷网| 国国产精品蜜臀av免费| 国产在线一区二区三区精| 只有这里有精品99| 丰满少妇做爰视频| 18+在线观看网站| 色吧在线观看| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 欧美成人精品欧美一级黄| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 久久这里有精品视频免费| 97在线视频观看| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 国产免费现黄频在线看| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 亚洲人与动物交配视频| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 丝袜喷水一区| 夫妻午夜视频| 午夜福利,免费看| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 性色avwww在线观看| 全区人妻精品视频| 国产精品一区www在线观看| 亚洲精品视频女| 久久精品久久久久久久性| 亚洲天堂av无毛| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码 | 最黄视频免费看| 老熟女久久久| 777米奇影视久久| 午夜福利乱码中文字幕| 9色porny在线观看| 少妇高潮的动态图| 精品久久久精品久久久| 大话2 男鬼变身卡| 人妻系列 视频| 制服诱惑二区| 伊人久久国产一区二区| 国产亚洲欧美精品永久| 国产不卡av网站在线观看| 成人18禁高潮啪啪吃奶动态图| 伦精品一区二区三区| 黄色毛片三级朝国网站| 狠狠婷婷综合久久久久久88av| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 男人操女人黄网站| av黄色大香蕉| 国产精品三级大全| 99re6热这里在线精品视频| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| av不卡在线播放| 一级片免费观看大全| 国产精品一二三区在线看| 国产 一区精品| 日韩制服丝袜自拍偷拍| 亚洲综合色网址| 另类亚洲欧美激情| 黄色毛片三级朝国网站| 午夜福利在线观看免费完整高清在| 黄色视频在线播放观看不卡| 中文欧美无线码| 久久精品国产亚洲av天美| 亚洲成国产人片在线观看| 久久精品熟女亚洲av麻豆精品| 黄片播放在线免费| 热99久久久久精品小说推荐| av国产精品久久久久影院| 90打野战视频偷拍视频| 久久久久网色| 超色免费av| 女人被躁到高潮嗷嗷叫费观| 色吧在线观看| 久久久欧美国产精品| 一区二区三区四区激情视频| 免费观看在线日韩| 韩国av在线不卡| 国产欧美日韩综合在线一区二区| 在线观看一区二区三区激情| 久久ye,这里只有精品| 国产一区二区三区综合在线观看 | 午夜日本视频在线| 亚洲av综合色区一区| 人人妻人人澡人人看| 亚洲欧美色中文字幕在线| 国产片内射在线| 欧美激情极品国产一区二区三区 | 免费高清在线观看视频在线观看| 欧美成人午夜免费资源| 免费久久久久久久精品成人欧美视频 | 亚洲精品自拍成人| 天天躁夜夜躁狠狠躁躁| 国产男人的电影天堂91| 久久久久久久久久成人| 亚洲精品国产av成人精品| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片| 亚洲丝袜综合中文字幕| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 99热6这里只有精品| 国产一区二区在线观看日韩| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 老司机影院毛片| 国产成人aa在线观看| 国产一区二区在线观看日韩| 国产色婷婷99| 天美传媒精品一区二区| 日本免费在线观看一区| 韩国av在线不卡| 精品一区二区三区四区五区乱码 | 亚洲精品色激情综合| 18禁国产床啪视频网站| 99九九在线精品视频| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 亚洲av福利一区| 久久久久久久久久成人| 欧美人与性动交α欧美软件 | 亚洲图色成人| 国产激情久久老熟女| 久久久久精品人妻al黑| 女性被躁到高潮视频| 国产 一区精品| 国产高清三级在线| 在线观看美女被高潮喷水网站| 香蕉丝袜av| 青春草国产在线视频| 亚洲伊人久久精品综合| 18+在线观看网站| 大片免费播放器 马上看| av网站免费在线观看视频| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 亚洲国产日韩一区二区| 亚洲精品日本国产第一区| 一区在线观看完整版| 免费少妇av软件| 免费大片18禁| 亚洲第一区二区三区不卡| 妹子高潮喷水视频| 中国三级夫妇交换| 亚洲,欧美,日韩| av不卡在线播放| 制服诱惑二区| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 亚洲精品aⅴ在线观看| 妹子高潮喷水视频| xxx大片免费视频| 亚洲精品美女久久av网站| 亚洲精品日本国产第一区| 免费观看a级毛片全部| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 免费观看av网站的网址| 丰满饥渴人妻一区二区三| 亚洲成国产人片在线观看| 欧美激情国产日韩精品一区| 热99国产精品久久久久久7| 欧美日韩视频精品一区| 欧美97在线视频| 久久97久久精品| 伊人亚洲综合成人网| 天天躁夜夜躁狠狠躁躁| av一本久久久久| 国产av精品麻豆| 久久久精品区二区三区| 大码成人一级视频| 捣出白浆h1v1| a 毛片基地| 日韩制服骚丝袜av| 亚洲,欧美精品.| 国内精品宾馆在线| 欧美日韩精品成人综合77777| 午夜福利乱码中文字幕| 精品卡一卡二卡四卡免费| 日产精品乱码卡一卡2卡三| 丝袜喷水一区| 亚洲色图综合在线观看| 久久久亚洲精品成人影院| 国产乱人偷精品视频| 久久综合国产亚洲精品| 制服丝袜香蕉在线| 欧美 日韩 精品 国产| 多毛熟女@视频| 大陆偷拍与自拍| 妹子高潮喷水视频| 国产国拍精品亚洲av在线观看| videosex国产| 黄网站色视频无遮挡免费观看| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 美女中出高潮动态图| 亚洲成人手机| av播播在线观看一区| 男人添女人高潮全过程视频| 亚洲成人手机| 国产精品成人在线| 日韩精品免费视频一区二区三区 | 国产在线视频一区二区| 国产精品99久久99久久久不卡 | 看非洲黑人一级黄片| 久久毛片免费看一区二区三区| 午夜福利影视在线免费观看| 五月伊人婷婷丁香| 国产精品国产av在线观看| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 国产成人午夜福利电影在线观看| 99久久精品国产国产毛片| 精品国产乱码久久久久久小说| 国产又色又爽无遮挡免| 亚洲av免费高清在线观看| 久久精品久久久久久噜噜老黄| 国产精品人妻久久久久久| 热99国产精品久久久久久7| 亚洲av成人精品一二三区| 国产毛片在线视频| 9热在线视频观看99| 七月丁香在线播放| 久久鲁丝午夜福利片| 欧美成人午夜精品| 久久人人爽人人爽人人片va| 国产成人精品在线电影| 婷婷色av中文字幕|