• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter

    2015-04-22 02:33:16WUXuebin鄔學(xué)斌ZHANGXin張欣CHENHongwei陳宏偉YANGMeng楊猛
    關(guān)鍵詞:張欣

    WU Xue-bin(鄔學(xué)斌), ZHANG Xin(張欣), CHEN Hong-wei(陳宏偉), YANG Meng(楊猛)

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

    ?

    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter

    WU Xue-bin(鄔學(xué)斌), ZHANG Xin(張欣), CHEN Hong-wei(陳宏偉), YANG Meng(楊猛)

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

    A power train dynamics model of a coaxial parallel hybrid electric vehicle (HEV) was built for different clutch operating states. With the state vector constituted by the motor rotation speed and the clutch transmitting torque at two successive time steps, a discrete state space model for estimating the clutch transmitting torque was built, and the Kalman filtering algorithm was used to estimate the clutch transmitting torque. The Matlab/Simulink was employed to simulate the clutch transmitting torque for two mode-switch processes. Estimation errors were analyzed through comparing the estimated and simulated values of the clutch torque. Impact of the noise covariance and the sample time on clutch torque estimation errors were explored. The results show that the developed estimation method can be used to estimate the clutch transmitting torque for HEV with good accuracy. The results are useful for torque direct control of automatic diaphragm clutches.

    hybrid electric vehicle; mode switch; automatic clutch; Kalman filter; torque estimation

    Dynamic coordinated control for drive-mode switch is a key challenge to develop a hybrid electric vehicle (HEV). Hybrid systems using planetary gear sets to couple rotational elements, such as Toyota hybrid system (THS) and GM dual-mode hybrid system, switch their drive-mode by coordinating motor and engine torques[1-2].

    In respect of hybrid systems using automatic clutches as drive-mode switch element, the switch control need coordinate torques of motor, engine and clutch. Motor torque and engine torque can be acquired from MCU and ECU respectively, while clutch transmitting torque is unavailable because there is no sensor to measure clutch transmitting torque. Therefore, it is impossible to control clutch transmitting torque directly. The generally followed approaches like the speed control of the driving and driven shaft[3-4]and the travel control of the clutch[5-6]can hardly provide desired clutch transmitting torque for the drive mode switch.

    A prerequisite for clutch transmitting torque control is to estimate the clutch friction torque. The engage/disengage travel of automatic diaphragm clutches can be directly controlled. However, the relationship between engage/disengage travel and clutch transmitting torque shows strongly nonlinear characteristics because of the elasticity of clutch elements, the quasi-static variation of friction coefficient, and the wearing of friction lining[7-8]. Therefore, it is difficult to theoretically build an accurate model to calculate the clutch transmitting torque.

    State estimation based on analysis of power train dynamics could be a feasible approach to this problem. French scholars R. Amari and P. Tona established a mathematical model for clutch torque estimation by solving Riccati equations, which is a continuous system Kalman-like observer[9]. However, the purpose of their study is to establish the nonlinear function between the clutch travel and clutch torque, and their method can not be used for real-time control.

    This paper introduces a method to estimate the clutch transmitting torque for coaxial parallelHEVs. A state space model of the hybrid power train system is built. Based on the model, a Kalman filter is designed to estimate the clutch transmitting torque in the process of drive mode switch. This study makes it possible to control the clutch transmitting torque directly during HEV mode switch.

    1 Modeling of a coaxial parallel hybrid power train

    The configuration of a coaxial parallel hybrid power train (Fig.1) includes an engine, a motor, a battery set, an automatic clutch, an AMT, and a final drive. The motor is fixed at the input shaft of the AMT. The automatic clutch switchs the drive mode by controlling a dry clutch to engage or disengage. The AMT can automatically change gear ratios by using an actuator.

    Fig.1 Configuration of a coaxial parallel hybrid power train with AMT

    The automatic clutch has three operating states, including disengagement, slipping and engagement. When it is disengaged or slipping, the engine and the motor rotate at different speeds. In that case, the engine torque and the clutch transmitting torque act on the engine crankshaft simultaneously, and the motor torque and the clutch transmitting torque act on the AMT input shaft simultaneously. When the clutch is engaged, it transmits static friction torque, and in that case, the motor torque and the engine torque act on the AMT input shaft simultaneously.

    When the clutch is completely engaged, the dynamics equation of the system is

    (1)

    And when the clutch is disengaged or slipping, the equations are given by

    (2)

    whereJeis the equivalent inertia of the rotational parts of engine and the input shaft of the clutch,Jmis the inertia of the motor rotor,Jvis the equivalent vehicle inertia measured on the input shaft of the gearbox,Teandweare the engine torque and the engine rotational speed respectively,Tmandwmare the motor torque and the motor rotational speed respectively,Tcis the clutch friction torque,Tris the equivalent running resistance torque measured on the input shaft of the gearbox. In Eqs. (1) (2), the sign depends on the rotation direction of the clutch torque.

    The equivalent vehicle inertiaJvis given by

    (3)

    wheremis the vehicle mass,ris the tire rolling radius,Jwis the wheel inertia,igis the gearbox ratio,i0is the final drive ratio. Without consideration of the wind speed, the vehicle running resistance force is calculated by

    (4)

    wherefis the tire rolling resistance coefficient and is considered to be a constant,iis the road’s longitudinal gradient,Ais the frontal area, andCdis the drag coefficient. Here, the velocity,v, is measured in m/s, and is linearly correlated towmaccording to

    (5)

    The equivalent running resistance torque measured on the input shaft of the gearbox is expressed by

    (6)

    From Eqs.(4)-(6),Trcan be written as

    (7)

    WithTrbeing replaced according to Eq.(7), Eqs.(1)-(2) can unambiguously describe the power train dynamics behavior.

    2 State space model for estimating the clutch transmitting torque

    When a vehicle starts, the coaxial parallel hybrid power train (Fig.1) keeps the automatic clutch disengaged so that the motor provides propulsion. When the vehicle speed is up to a threshold value, the automatic clutch gets engaged and the engine starts. In that case, the engine alone, or the engine and the motor jointly supply the motive power. While getting engaged to start the engine, the clutch is sliding and the system has two degrees of freedom. The clutch transmitting torque,Tc, is the engine starting torque and the motor resistance torque at the same time. The dynamics Eq.(2) can be rewritten as

    (8)

    Eq.(8) models the dynamics characteristics of the engine and motor rotation. The first equation describes the engine dynamics where the engine torque,Te, refers to the transient torque and is hard to acquire. The second equation gives the motor rotor’s dynamics where the motor torque,Tm, is available from the motor controller. And the running resistance torqueTrcan be assumed as a constant since the switching process is short enough. Therefore, the second equation of Eq. (8) can be used to estimateTcand for that purpose, which can be discretized into

    (9)

    whereTsis the sample time of discretization. Eq.(9) can be rewritten as

    (10)

    For the time stepk+1, we have

    (11)

    Eq.(9) can be differentiated and discretized into

    (12)

    and then transformed to

    (13)

    For the time stepk+1, we have

    (14)

    We have identical equation as

    (15)

    With Eqs.(10)(11)(14)(15) parallel put together, the matrix model of the discrete state system can be expressed as

    X(k+1)=A1X(k+1)+A2X(k)+B1U(k+1)

    (16)

    where the discrete state variable vector X(k) and the control vector U(k) were

    (17)

    The matrix A1, A2and B1were

    Let A=(I-A1)-1A2, B=(I-A1)-1B1, and take the process noiseW(k) into consideration, Eq.(17) is rewritten as

    X(k+1)=AX(k)+BU(k+1)+W(k)

    (18)

    Z(k)=HX(k)+V(k)

    (19)

    where H=[1 0 0 0] is the observation matrix, and V(k) is the observation noise.

    3 Kalman filtering estimation of the clutch torque

    The state equation of Eq.(18) and the observation equation of Eq.(19) constitute the state space model of the linear discrete system.

    (20)

    The process noise, W(k), and the observation noise, V(k), are assumed zero mean Gaussian white noise with covarianceQandRrespectively. Based on the model, the discrete Kalman filter can be used to estimate the clutch transmitting torque. The Kalman filter is conceptualized as two distinct phases, “predict” and “update”. The predict phase uses the state estimate at the current time step to produce a priori estimate of the state for the next time step. In the update phase, the priori estimate is combined with the observation information at the next time step to refine the state estimate and get a posteriori state estimate[8]. The estimation steps are as follows.

    ① Predict

    The priori estimate of the state for the next time step is given by

    (k+1/k)=A(k/k)+BU(k+1)

    (21)

    The priori estimate covariance is obtained according to

    P(k+1/k)=AP(k/k)AT+Q(k)

    (22)

    ② Update

    Optimal Kalman gain is given by

    K(k+1)=P(k+1/k)HT/[HP(k+1/k)HT+R(k)]

    (23)

    The posteriori estimate of the state for the next time step is given by

    (k+1/k+1)=(k+1/k)+K(k+1)[Z(k+1)-H(k+1/k)]

    (24)

    The posteriori estimate covariance is calculated by

    P(k+1/k+1)=[I-K(k+1)H]P(k+1/k)

    (25)

    Eqs.(21)-(25) provide iterative steps of the Kalman filter estimating the clutch torque, and some variables are explained as follows.

    K(k+1), Kalman gain matrix for the time stepk+1;

    P(k+1/k), priori estimate covariance matrix for the time stepk+1;

    P(k/k), posteriori estimate covariance matrix for the time stepk;

    Q(k), covariance matrix of the process noise;

    R(k), covariance matrix of the observation noise.

    4 Simulation and analysis on estimating the clutch transmitting torque for HEV drive-mode switch

    The HEV drive-mode switch includes two situations. The first situation refers to switching motor drive mode to engine drive mode or to engine-and-motor drive mode, where the automatic clutch is controlled to move from disengagement to engagement. The second one is switching engine drive mode or engine-and-motor driving mode to motor driving mode, where the automatic clutch is controlled to move from engagement to disengagement. This paper focuses on the first situation, simulating and studying the most important mode-switch processes, from motor drive mode to engine-and-motor drive mode.

    4.1 Clutch transmitting torque estimation for HEV drive-mode switch

    The Matlab/Simulink is employed to simulate the dynamic behavior of the HEV power train. The simulation model is shown in Fig.2.

    The varying torques of engine, motor and clutch are determined by the mode-switch controller. The mode-switch control strategy is

    Fig.2 Simulation model of HEV mode-switch process

    different under different drive-mode switch situations. Two mode-switch control processes are simulated. Simulation results are shown in Fig.3.

    Fig.3 Profile of power train torques for the HEV drive-mode switch

    Fig.3a provides torque history for switching from motor drive to engine-and-motor drive. Fig.3b provides torque history for switching from motor drive to engine drive. At the beginning of mode switching in Fig.3a, the motor drive torque is 300 N·m and equivalent resistance torque is 36 N·m. The clutch is completely disengaged and the engine stops, therefore the engine torque and the clutch torque are zero. With the clutch being controlled to get engaged, the engine is driven to start by clutch friction torque. At 0.36 s, the engine generates driving torque and the engine speed exceeds its idle speed. At 0.53 s, the clutch gets into the static friction state, which indicates the end of mode switching. Fig.3b shows the engine starting process, which is part of the whole mode-switch process. The engine torque is always zero since its speed does not reach the idle speed.

    The initial motor speed is 1 440 r/min. Based on the above data, for the state space model described by Eq.(20), the initial values of state vector X(0) and control vector U(0) are

    (26)

    The process noise mainly includes the non-ideal characteristics of the PWM inverter and the motor inner friction torque. The observation noise comes from the quantization errors in programming and the various errors in rotation speed measurement. The noise covariance, Q and R, can be acquired through the experimental analysis. According to Ref. [10], Q and R are assigned by

    (27)

    R=0.01

    (28)

    With Eqs.(20)-(25) applied to the two switching processes shown in Fig.3, the clutch transmitting torque can be estimated. Fig.4 and Fig.5 compare the estimate torque with the actual one.

    Fig.4 and Fig.5 show that the estimated clutch torque has random errors when adding Gaussian white noise signal at the motor torque and speed signal. Fig 4a and Fig 5a compares estimated torque and actual torque, which shows that the estimated torque match with the actual torque very well. Fig.4b and Fig.5b show the error curve of clutch torque estimation. The profile data can be quantitatively analyzed. As for Fig.4, the maximum clutch torque is 104.5 N·m. The maximum estimation error is 3.754 N·m for the period from 0 to 0.3 s. While for the period from 0.3 s to 0.5 s, the error decreases and the maximum is 3.364 N·m with an estimation accuracy of 3.22%. The results indicate that the accuracy of the clutch estimation algorithm is available and effective.

    Fig.4 Clutch torque estimation for switching motor drive to engine-and-motor drive

    Fig.5 Clutch torque estimation for switching motor drive mode to engine drive mode

    4.2 Impact of the noise covariance on the clutch torque estimation

    The process noise covariance Q and the observation noise covariance R should be acquired through the experimental analysis. The impact of noise parameters on the clutch torque estimation is examined by simulation and computation. The covariance of process noise is assigned with 0.1×Q, Q and 10×Q respectively for the clutch torque estimation process. Q and R take values according to Eqs.(27) (28), and the sample time is 0.001 s. Fig.6 and Fig.7 show clutch torque estimation errors versus time.

    Statistical analysis is performed on the torque estimation error data in Fig.6 and Fig.7, and the mean and variance of the torque errors are filled in Tab.1.

    Fig.6 Clutch torque estimation errors for switching motor drive to engine-and-motor drive

    Fig.7 Clutch torque estimation errors for switching motor drive mode to engine drive mode

    Tab.1 Statistics of the clutch torque estimation errors at different noise covariance

    SwitchcaseMean/(N·m)Variance/(N·m)0 1×QQ10×Q0 1×QQ10×QMotordrivetoengine?and?motordrive0 971 461 461 411 421 44Motordrivetoenginedrive0 570 620 650 640 690 71

    The data in Tab.1 indicates that the mean of torque estimation error gets smaller while the process noise covariance Q becoming smaller. The reason is that the priori estimate covariance, P, is getting smaller along with estimating iteration going. At the beginning, P dominates the values of the Kalman gain since it is largely greater than Q and R. With estimating iteration going, P

    becomes smaller, leading to Q and R weighing much more in determining the Kalman gain. If Q is assigned values small enough, the Kalman gain will be near 0, which means the estimation and the observation are decoupled. If Q takes too large values, the estimation will include much more observation noise, leading to more uncertainty.

    4.3 Impact of the sample time on the clutch torque estimation

    The sample time is an important parameter for the discrete system to ensure the sampled digital signal sufficient for perfect fidelity for the original analog signal. Clutch torque estimation is simulated at different sampling times, while Q and R are set the same value in Section 4.1. Estimation errors at different sampling times are shown in Fig.8 and Fig.9.

    According to the torque estimation error data in Fig.8 and Fig.9, the mean and variance of the torque errors are analyzed and filled in Tab.2.

    Fig.8 Impact of the sample time on the clutch torque estimation for switching motor drive to engine drive

    Fig.9 Impact of the sample time on the clutch torque estimation for switching motor drive mode to the engine-and-motor drive mode

    Tab.2 Statistics of the clutch torque estimation errors for different sample times

    SwitchcaseMean/(N·m)Variance/(N·m)0 001s0 002s0 005s0 001s0 002s0 005sMotordrivetotheengine?and?motordrive1 4571 2690 7021 4200 5911 115Motordrivetoenginedrivemode0 6201 1100 4420 6900 7151 117

    Fig.8, Fig.9 and Tab.2 show that the mean of clutch torque estimation errors gets smaller with the sample time becoming larger. The mean of the errors for the sample time of 0.001 s is the largest, but estimation errors curve for the sample time of 0.001 s is more stable. It seems that larger sample time is effective. In the development of the actual control system, it is necessary to comprehensively consider the Shannon theorem, and the real-time control and the torque estimation errors for determining sampling time.

    5 Conclusions

    The two-freedom dynamics model for the power train of coaxial parallel HEVs is built with consideration of the clutch engagement/disengagement states, and on the basis of that, following issues are studied.

    ① With the motor rotation speed and the clutch transmitting torque at two successive time steps constituting the state variable vector, and with the motor rotation speed as the observation vector, the discrete state space model for estimating the clutch transmitting torque is built. And in order to minimize the influence of noise, the Kalman filtering algorithm is developed to estimate the clutch transmitting torque.

    ② The Matlab/Simulink is employed to simulate the clutch transmitting torque for mode-switch from motor drive to engine drive and from motor drive to engine-and-motor drive. The estimated and simulated values of the clutch torque are compared, which shows good accuracy of the estimation method.

    ③ Impact of the noise covariance and the sample time on clutch torque estimation errors are explored, indicating the estimation errors are acceptable if the variations of the noise covariance and the sample time are limited to some range.

    It can be concluded that the algorithm developed in this paper provides an estimation method with good accuracy to estimate the clutch transmitting torque for a HEV. On the basis of this algorithm, torque for automatic diaphragm clutches can be controlled to improve the performance of the drive mode switch of a HEV.

    [1] Liu J, Peng H, Filipi Z. Modeling and analysis of the Toyota hybrid system[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey CA,2005.

    [2] Grewe T, Conlon B, Holmes A. Defining the general motors 2-mode hybrid transmission[C]∥Proceedings of the 2007 SAE World Congress, Detroit, MI, 2007.

    [3] Glielmo L, Iannelli L, Vacca V, et al. Speed control for automated manual transmission with dry clutch[C]∥43th IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004.

    [4] Dolcini P, Canudas C, Wit de, et al. Improved optimal control of dry clutch engagement[C]∥16th IFAC World Congress, Prague, Czech Republic, 2005.

    [5] Zhang Xionghua. Research and development of electro-controlled clutch for HEV[D]. Dalian : Dalian University of Technology, 2005. (in Chinese)

    [6] Xie Xianping, Wang Xudong, Zhang Xun. Study on precision position tracking control of electronic controlled automatic clutch[J]. Power Electronics, 2008, 42(10): 58-60. (in Chinese)

    [7] Andreas Myklebust, Lars Eriksson. Torque model with fast and slow temperature dynamics of a slipping dry clutch[C]∥2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea, 2012.

    [8] Vasca F, Innelli L. Torque transmissibility assessment for automotive dry-clutch engagement[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3):564-573.

    [9] Amari R, Tona P, Alamir M. A phenomenological model for torque transmissibility during dry clutch engagement[C]∥18th IEEE International Conference on Control Applications, Saint Petersburg, Russia, 2009.

    [10] Su Weifeng, Liu Congwei, Sun Xudong, et al. Speed controller for induction motors based on Kalman filtering[J]. Jourhal of Tsinghua University (Sci & Tech), 2003,43(9):1202-1205. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0404

    U 463 Document code: A Article ID: 1004- 0579(2015)04- 0449- 09

    Received 2015- 03- 10

    Supported by the National High Technology Research and Development Program of China (863 Program) (2012AA111104)

    E-mail: 09119003@bjtu.edu.cn

    猜你喜歡
    張欣
    《卯兔之年》
    《保護生態(tài)》
    《城》
    Boron at tera-Pascal pressures
    平面向量線性運算的轉(zhuǎn)化思想的應(yīng)用
    Novel structures and mechanical properties of Zr2N:Ab initio description under high pressures*
    隨筆四則
    作品(2020年4期)2020-05-11 06:21:45
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    自作多情
    張欣現(xiàn)代重彩作品欣賞
    亚洲无线观看免费| 国产成人91sexporn| 亚洲av电影在线观看一区二区三区| 欧美成人一区二区免费高清观看| av线在线观看网站| 免费看光身美女| av网站免费在线观看视频| 一本色道久久久久久精品综合| 午夜福利视频精品| 又爽又黄a免费视频| 国产毛片在线视频| 亚洲熟女精品中文字幕| 久久青草综合色| 妹子高潮喷水视频| 亚洲国产日韩一区二区| 一区在线观看完整版| 精品久久国产蜜桃| 久久久久国产精品人妻一区二区| 欧美变态另类bdsm刘玥| 久久久久久九九精品二区国产| 国产精品av视频在线免费观看| 国产精品无大码| 日本黄大片高清| 人体艺术视频欧美日本| 91久久精品电影网| 欧美日韩在线观看h| 日韩不卡一区二区三区视频在线| 各种免费的搞黄视频| 男女国产视频网站| 亚洲欧美日韩卡通动漫| 高清欧美精品videossex| 狂野欧美激情性bbbbbb| 晚上一个人看的免费电影| 国产日韩欧美亚洲二区| 欧美激情国产日韩精品一区| freevideosex欧美| 一级毛片久久久久久久久女| 国产欧美日韩一区二区三区在线 | 在线免费十八禁| 国产一区有黄有色的免费视频| 波野结衣二区三区在线| 亚洲av男天堂| 一区二区三区免费毛片| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 777米奇影视久久| 最近手机中文字幕大全| 精品一区二区三卡| 永久免费av网站大全| 各种免费的搞黄视频| 春色校园在线视频观看| 日韩视频在线欧美| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 美女福利国产在线 | 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 麻豆国产97在线/欧美| 国产人妻一区二区三区在| 日韩电影二区| 一区二区三区精品91| 久久影院123| 久久人人爽人人片av| 另类亚洲欧美激情| 国产极品天堂在线| 免费观看无遮挡的男女| 国产大屁股一区二区在线视频| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 在线免费观看不下载黄p国产| 午夜视频国产福利| 欧美精品一区二区免费开放| 男男h啪啪无遮挡| 九九爱精品视频在线观看| 三级经典国产精品| 大片电影免费在线观看免费| 欧美丝袜亚洲另类| 亚洲精品一二三| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| 岛国毛片在线播放| 中国三级夫妇交换| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 一区二区三区精品91| 人人妻人人添人人爽欧美一区卜 | 午夜日本视频在线| 国产高清有码在线观看视频| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花 | 麻豆国产97在线/欧美| 少妇 在线观看| 97超碰精品成人国产| 国产精品福利在线免费观看| av卡一久久| 97在线人人人人妻| 91午夜精品亚洲一区二区三区| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 久久人妻熟女aⅴ| 国产国拍精品亚洲av在线观看| 国产 精品1| 人人妻人人看人人澡| av播播在线观看一区| 日本av手机在线免费观看| 在线亚洲精品国产二区图片欧美 | 99国产精品免费福利视频| 国产精品福利在线免费观看| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 黑人高潮一二区| 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| av女优亚洲男人天堂| 蜜桃在线观看..| 日本午夜av视频| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 国产精品蜜桃在线观看| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产欧美日韩一区二区三区在线 | 亚洲色图av天堂| 国产精品一及| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 日韩制服骚丝袜av| 人妻少妇偷人精品九色| 五月开心婷婷网| 国产精品国产三级国产av玫瑰| 久久久久精品性色| 伦理电影大哥的女人| 久久久久视频综合| 国产中年淑女户外野战色| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 国产综合精华液| 啦啦啦视频在线资源免费观看| 最后的刺客免费高清国语| 久久久a久久爽久久v久久| 在线观看av片永久免费下载| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 青春草亚洲视频在线观看| 嘟嘟电影网在线观看| 夫妻性生交免费视频一级片| 日韩强制内射视频| 中文字幕人妻熟人妻熟丝袜美| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| freevideosex欧美| 午夜福利视频精品| 91精品一卡2卡3卡4卡| 26uuu在线亚洲综合色| 99久久精品国产国产毛片| 另类亚洲欧美激情| 各种免费的搞黄视频| 久久久久性生活片| 全区人妻精品视频| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 国产黄频视频在线观看| videossex国产| 国产av一区二区精品久久 | 日韩 亚洲 欧美在线| 国产在线视频一区二区| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| av在线老鸭窝| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 夫妻午夜视频| 中文在线观看免费www的网站| 男人舔奶头视频| 午夜福利视频精品| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 女性生殖器流出的白浆| 狂野欧美激情性xxxx在线观看| 日本黄大片高清| 丰满迷人的少妇在线观看| 精品人妻一区二区三区麻豆| 久久国产乱子免费精品| 亚洲国产色片| 黑丝袜美女国产一区| 夫妻午夜视频| 国产 一区 欧美 日韩| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 97超碰精品成人国产| 日本vs欧美在线观看视频 | 欧美高清成人免费视频www| 精品国产三级普通话版| 久久精品久久久久久久性| 国产男女超爽视频在线观看| 国产精品女同一区二区软件| 免费少妇av软件| av免费观看日本| 色婷婷久久久亚洲欧美| 亚洲成色77777| 成人特级av手机在线观看| 99久久人妻综合| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 久久毛片免费看一区二区三区| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 夫妻性生交免费视频一级片| 国产黄片视频在线免费观看| 赤兔流量卡办理| 久久久成人免费电影| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 中国三级夫妇交换| 老熟女久久久| 日本色播在线视频| 一级黄片播放器| 精品国产露脸久久av麻豆| 亚洲av电影在线观看一区二区三区| 国产大屁股一区二区在线视频| 国产精品无大码| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 国产精品三级大全| 精品久久久噜噜| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 寂寞人妻少妇视频99o| 啦啦啦视频在线资源免费观看| 国产在线男女| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 亚洲精品久久久久久婷婷小说| 婷婷色综合www| 国产欧美亚洲国产| 免费大片18禁| 久久婷婷青草| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 黄片wwwwww| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 久久6这里有精品| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 亚洲av不卡在线观看| 男人舔奶头视频| 毛片女人毛片| 久久久久久久久久人人人人人人| 国产黄片视频在线免费观看| 亚洲,欧美,日韩| 少妇的逼好多水| 久久精品国产a三级三级三级| 国产亚洲5aaaaa淫片| 国内精品宾馆在线| 国产熟女欧美一区二区| 丰满少妇做爰视频| 免费av不卡在线播放| 一级二级三级毛片免费看| 精品视频人人做人人爽| 国产精品偷伦视频观看了| 国产黄片视频在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 观看av在线不卡| 秋霞在线观看毛片| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 不卡视频在线观看欧美| 日本猛色少妇xxxxx猛交久久| 美女高潮的动态| 国产免费又黄又爽又色| 美女中出高潮动态图| 久久国产乱子免费精品| 色婷婷久久久亚洲欧美| 免费大片黄手机在线观看| 色哟哟·www| 午夜精品国产一区二区电影| 色网站视频免费| 丰满乱子伦码专区| 免费黄网站久久成人精品| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 丝袜喷水一区| 观看av在线不卡| 国产片特级美女逼逼视频| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 黄色视频在线播放观看不卡| 亚洲色图av天堂| 久久久久人妻精品一区果冻| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 免费看av在线观看网站| av.在线天堂| 免费观看性生交大片5| 99久久精品一区二区三区| 日韩中字成人| 国产精品久久久久成人av| 在线精品无人区一区二区三 | 亚洲成人一二三区av| 国产熟女欧美一区二区| 精品久久久久久久久av| 亚洲精品国产av蜜桃| 22中文网久久字幕| 欧美性感艳星| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 男人和女人高潮做爰伦理| 熟女电影av网| 国内精品宾馆在线| 国产女主播在线喷水免费视频网站| 国产精品久久久久成人av| 中文字幕免费在线视频6| 高清黄色对白视频在线免费看 | 精品人妻一区二区三区麻豆| 亚洲av男天堂| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 免费看日本二区| 国产一区二区三区av在线| a级毛色黄片| 亚洲真实伦在线观看| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 人妻系列 视频| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 午夜福利高清视频| 国产淫片久久久久久久久| 男女免费视频国产| 久久久久精品性色| 三级经典国产精品| 亚洲aⅴ乱码一区二区在线播放| 久久鲁丝午夜福利片| 免费观看性生交大片5| 国产在线视频一区二区| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 国产免费视频播放在线视频| h日本视频在线播放| 国产精品久久久久久av不卡| av福利片在线观看| 一区二区三区乱码不卡18| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频 | 午夜激情福利司机影院| 久久热精品热| a级毛色黄片| 亚洲精品,欧美精品| 性色av一级| 黄片无遮挡物在线观看| 久热久热在线精品观看| 久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 99热网站在线观看| 精品久久久噜噜| 大片电影免费在线观看免费| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 91在线精品国自产拍蜜月| www.av在线官网国产| 国产高清有码在线观看视频| 波野结衣二区三区在线| 亚洲四区av| 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 日本av免费视频播放| 欧美 日韩 精品 国产| 国内揄拍国产精品人妻在线| 老女人水多毛片| 五月玫瑰六月丁香| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 亚洲综合精品二区| 欧美精品人与动牲交sv欧美| 成年免费大片在线观看| 26uuu在线亚洲综合色| av线在线观看网站| 一本色道久久久久久精品综合| 久久国产精品男人的天堂亚洲 | 亚洲中文av在线| 大片免费播放器 马上看| 色网站视频免费| 99久国产av精品国产电影| 日韩欧美 国产精品| 国产精品99久久99久久久不卡 | 久久精品人妻少妇| 亚洲精品中文字幕在线视频 | 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 免费观看无遮挡的男女| 欧美日韩一区二区视频在线观看视频在线| 国产人妻一区二区三区在| 亚洲精品日韩在线中文字幕| 欧美成人精品欧美一级黄| 亚洲国产av新网站| 久久国产精品男人的天堂亚洲 | 国产黄片美女视频| 免费观看的影片在线观看| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| av在线播放精品| 国产男女超爽视频在线观看| av女优亚洲男人天堂| 国产极品天堂在线| 日韩欧美一区视频在线观看 | 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 国产乱来视频区| 精品久久久久久久久亚洲| 国产乱人偷精品视频| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| 啦啦啦中文免费视频观看日本| .国产精品久久| 女性被躁到高潮视频| 国产黄色免费在线视频| 国产91av在线免费观看| 777米奇影视久久| 免费看不卡的av| 国产黄片视频在线免费观看| 你懂的网址亚洲精品在线观看| 下体分泌物呈黄色| 欧美日韩在线观看h| 丝瓜视频免费看黄片| 在线观看三级黄色| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 99久久中文字幕三级久久日本| 99久久精品一区二区三区| 人人妻人人添人人爽欧美一区卜 | 免费观看性生交大片5| 99精国产麻豆久久婷婷| 日韩 亚洲 欧美在线| 哪个播放器可以免费观看大片| 直男gayav资源| 九色成人免费人妻av| 尾随美女入室| 丰满少妇做爰视频| 亚洲一区二区三区欧美精品| 久久久久久人妻| 国产精品人妻久久久影院| 久久毛片免费看一区二区三区| av国产精品久久久久影院| 高清午夜精品一区二区三区| 亚洲欧美日韩另类电影网站 | 韩国高清视频一区二区三区| 日韩制服骚丝袜av| 亚洲av中文字字幕乱码综合| 国产黄片视频在线免费观看| 你懂的网址亚洲精品在线观看| 免费黄色在线免费观看| 搡女人真爽免费视频火全软件| 亚洲三级黄色毛片| 综合色丁香网| 欧美日韩一区二区视频在线观看视频在线| 免费在线观看成人毛片| 少妇人妻 视频| 久久国产精品男人的天堂亚洲 | 你懂的网址亚洲精品在线观看| 少妇 在线观看| 26uuu在线亚洲综合色| 精品久久久噜噜| 超碰av人人做人人爽久久| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站 | 成人二区视频| 亚洲精品色激情综合| 熟女av电影| 天天躁日日操中文字幕| 天天躁夜夜躁狠狠久久av| 女的被弄到高潮叫床怎么办| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美成人精品一区二区| 欧美日韩国产mv在线观看视频 | 蜜桃久久精品国产亚洲av| 2018国产大陆天天弄谢| 九草在线视频观看| 国产精品久久久久久精品电影小说 | 高清欧美精品videossex| 免费高清在线观看视频在线观看| 极品少妇高潮喷水抽搐| 久久影院123| 精品国产一区二区三区久久久樱花 | 精品视频人人做人人爽| 国精品久久久久久国模美| 1000部很黄的大片| 美女视频免费永久观看网站| 国产亚洲91精品色在线| 成人高潮视频无遮挡免费网站| 在现免费观看毛片| 哪个播放器可以免费观看大片| 亚洲第一av免费看| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 久久久久久久大尺度免费视频| 亚州av有码| 国产精品99久久久久久久久| 大香蕉97超碰在线| 日本午夜av视频| 日韩电影二区| 国产成人a∨麻豆精品| 男女啪啪激烈高潮av片| 日日啪夜夜爽| 在线观看国产h片| 高清午夜精品一区二区三区| 亚洲av综合色区一区| 在线观看三级黄色| 欧美激情极品国产一区二区三区 | 少妇被粗大猛烈的视频| 秋霞伦理黄片| 午夜福利视频精品| 日日啪夜夜撸| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 全区人妻精品视频| 亚洲精品456在线播放app| 777米奇影视久久| 欧美激情极品国产一区二区三区 | 亚洲在久久综合| 女性被躁到高潮视频| 精品国产乱码久久久久久小说| 日韩欧美一区视频在线观看 | 老女人水多毛片| 色视频在线一区二区三区| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 久久久精品94久久精品| 精品国产露脸久久av麻豆| 超碰97精品在线观看| 啦啦啦在线观看免费高清www| 国产在线视频一区二区| 欧美精品亚洲一区二区| 精品一区二区免费观看| 中文资源天堂在线| 在现免费观看毛片| 成人国产麻豆网| 另类亚洲欧美激情| 春色校园在线视频观看| 婷婷色综合大香蕉| 少妇的逼水好多| 夜夜骑夜夜射夜夜干| 婷婷色综合大香蕉| 小蜜桃在线观看免费完整版高清| 插阴视频在线观看视频| 免费观看a级毛片全部| 在线观看免费视频网站a站| videossex国产| 国产午夜精品久久久久久一区二区三区| 又黄又爽又刺激的免费视频.| 久久久久久久精品精品| 精品人妻偷拍中文字幕| 在线观看人妻少妇| 久久6这里有精品| 这个男人来自地球电影免费观看 | 亚洲av在线观看美女高潮| 99九九线精品视频在线观看视频| 身体一侧抽搐| 亚洲图色成人| 丰满迷人的少妇在线观看| 1000部很黄的大片| 亚洲国产精品国产精品| 天堂8中文在线网| 交换朋友夫妻互换小说| 日日啪夜夜爽| 久久青草综合色| 国产黄色免费在线视频| 亚洲第一av免费看| 国产精品久久久久久av不卡| av播播在线观看一区| h视频一区二区三区| 亚洲va在线va天堂va国产| 黄片wwwwww| 日韩成人伦理影院| 久久久久精品性色| 99久久中文字幕三级久久日本| 久久久久国产网址|