• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    2015-04-22 02:38:54ZHAOHongjie趙宏杰WUNan武楠WANGHua王華LIZhixin李智信KUANGJingming匡鏡明
    關鍵詞:王華

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠) , WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠), WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The problem of soft-input soft-output (SISO) detection for time-varying frequency-selective fading channels is considered. Based on a suitably-designed factor graph and the sum-product algorithm, a low-complexity iterative message passing scheme is proposed for joint channel estimation, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly decrease compared to the optimal maximum a posteriori (MAP) detection with the exponential complexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.

    factor graph; message passing; frequency-selective fading channel; soft-input soft-output (SISO) detection; turbo equalization

    In wireless communication systems, inter-symbol interference (ISI) results in unacceptable detection over frequency-selective fading channels. Thus the equalization strategies are necessary to compensate the ISI efficiently. The optimal equalizer can be implemented by the max a posteriori (MAP) algorithm, or the Viterbi and soft-output Viterbi algorithms[1]. However, these optimal equalizers suffer high complexity and depend on acquisition of the exact channel state information. Therefore, joint channel estimation and equalization algorithm is demanded for practical applications.

    In the last decade, turbo equalization[2]has been proven to be a near-optimal solution with reasonable complexity[3-4]. Recently, the iterative receivers have been redesigned by factor graphs and message passing algorithms for their low complexity[5-8]. Several new algorithms were developed for both unconstrained and constrained linear equalization[9]. Focusing on channels with known ISI, FDM and CDMA systems, some novel algorithms for SISO detection were presented over linear channels with reduced complexity[10]. Some other problems have also been benefited from message passing algorithms, for instance, SISO detection in MIMO systems[11-13], iterative multiuser detection in CDMA systems[14-15], and iterative receiver in strong phase noise channels[16-17], etc.

    In consideration of rapidly time variations of wireless channels due to high mobility and unavailability of CSI at the receiver, this paper proposes an iterative soft-in soft-output detection scheme by applying message passing algorithm on a suitable designed factor graph for joint channel estimation, equalization and decoding over frequency-selective fading channels. The computational complexity of the proposed detector increases only linearly with the channel memory length, which is a significant reduction compared with the optimal MAP detection.

    1 System model

    Consider an LDPC-coded singer-carrier communication system over a frequency-selective Rayleigh fading channel of lengthL. At the transmitter, information bit sequenceb{bk} is first encoded to produce the coded bit sequencec{ck}, denoted by encoding functionc=fc(b)∈C. The coded bits are mapped to symbol sequencex{xk} byM-PSK constellation A, denoted by mapping functionx=fx(c)∈A, and then transmitted over frequency-selective Rayleigh fading channel. At the receiver, assuming perfect carrier recovery and timing synchronization, the equivalent baseband received signal at time instantkis given by

    (1)

    (2)

    r=Hx+n

    (3)

    where H is a (K+L-1)×KToeplitz channel matrix with entries

    (4)

    Throughout this paper,knowledge of the channel matrix H and the statistics of the noise vectornare practically unknown and have to be estimated at receiver side.

    2 Factor graph representation

    The optimal decision rule that minimizes bit error rate (BER) follows the maximum a posteriori (MAP) criterion[1], given by

    (5)

    whereP(bi|r) denotes the a posteriori probability mass function (pmf) of theith information bitbigiven the received signal vector r. This can be obtained by marginalizing the joint posterior probability distribution functionp(b,c,x,H|r), which can be factorized as

    p(b,c,x,H|r)∝p(r|x,H)p(x|c)p(c|b)p(b)p(H)∝I[c=fc(b)]I[x=fx(c)]p(r|x,H)p(b)p(H)

    (6)

    whereI[c=fc(b)] andI[x=fx(c)] denote the code and mapping constraint indicator function, respectively.p(b) defines the a priori bit information which can be factorized easily according to the uniform i.i.d. assumption.

    The factorization ofp(b,c,x,H|r) leads to the factor graph representation shown in Fig.1, where the factor nodesp(r|x,H) andp(H) correspond to the equalizer and channel estimator, respectively. Applying sum-product algorithm (SPA) on the FG, we can obtain a suboptimal but low complexity iterative message passing algorithm since the graph is cyclic[6]. The equalizer uses the received signal vector, the channel state information and the a priori information from the decoder to compute extrinsic log-likelihoods of every transmitted symbol, which are then soft demapped and decoded. The SISO decoder compute extrinsic log-likelihood ratios (LLRs), which will be fed into the equalizer and channel estimator as a priori information after soft mapping. After several iterations of soft information exchange between the SISO decoder, SISO equalizer and the channel estimator, it is stopped when a maximum iteration number is reached. Then the estimates of transmitted information bits can be obtained by the channel decoder with hard decision.

    Fig.1 Factor graph of the factorization in Eq.(6)

    3 Proposed message passing algorithm

    3.1 Decoder and demapper

    (7)

    (8)

    (9)

    3.2 Channel estimator

    Since the channel taps are continuous random variables, the messages propagating on edges adjacent to the channel tap nodes are probability density functions (pdfs). The SPA applied for continuous random variables involves the integration of pdfs, which lead to intractable computations for practical implementation. Thus, we use parameterized canonical distributions[6]as the outgoing messages of the channel tap nodes. Specifically, the impulse at estimated value is selected to approximate the actual density of the channel tap, given by

    pu(hk)=δ(hk-k)

    (10)

    which further simplifies the message calculation of the equalizer nodes in next section. Then only the estimated valuekat time indexkneeds to be computed. The optimal linear minimum mean square error (LMMSE) estimate[16]of the complex channel tap can be obtained by

    (11)

    whereNis the length (assumed odd) of a finite-impulse response (FIR) filter and the filter coefficientsωi,jcan be obtained by solving the Wiener-Hopf equations[3]. Note that the optimal Wiener solution requires knowledge of the channel autocorrelation function and the matrix inverse calculation. If the normalized fade rate is slow (fdTs?1) and the filter lengthNis small enough (N?(fdTs)-1), we can approximate the filter coefficients to be equal as

    (12)

    (13)

    At first iteration, only pilot symbols are used to calculate the initial estimates of the channel taps and noise variance. In subsequent iterations, symbol estimates and pilot symbols are used together to obtain refined channel estimates.

    3.3 SISO detector

    The likelihood functionp(r|x,H) can be expressed as

    (14)

    (15)

    with the functions

    (16)

    (17)

    Fig.2 shows the detector section for three time instants of the corresponding factor graph in Fig. 1. The nodeUk,ldenotes the inter-symbol interference betweenxkandxk-l. Note that the marginalization cannot be exactly carried out by applying the SPA to the factor graph in Fig.2 as it contains cycles[6]. On the other hand, we can see that the cycles cannot be lower than six according to the factorization in Eq.(15). Therefore, in this case SPA can make a good approximation of the exact marginalization.

    Fig.2 Three equalizer sections of the factor graph for L=3

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    Based on the factorization method in Eq.(15), we note that function nodesUk,lalways have degree of two, whose number increases linearly with the length of the channel. Thus, the describing message passing algorithm has a complexity per iteration which is linear with the channel length. It is a significant complexity reduction compared to the optimal MAP symbol detection with exponential complexity in the number of channel length.

    3.4 Schedule

    Due to the existence of cycles in the FG, the schedule for the message passing cannot be unique[6]. Here, we employ two different schedules, which result in two different SISO equalizers. One is a parallel schedule inspired by flooding schedule in LDPC decoding whose latency does not depend on the symbol lengthK. The other is a serial schedule executed by the forward and backward recursion with latency linearly increasing with the symbol lengthK. Both schedules iterate only once before passing out the extrinsic messages due to more self-iterations can provide negligible gains[10]. For parallel schedule, the message computation sequence is as follows.

    ① Update allPAPP(xk) in parallel for allk.

    ④ Update allPAPP(xk) again and then calculate all extrinsic messagesPu(xk) for allk.

    For serial schedule, the message computation sequence is as follows.

    ③ Update all messagesPu(xk).

    Finally, the message updating schedule for the entire factor graph starts from the initialization of channel estimation based on pilot symbols. Then a parallel or serial schedule is executed just one self-iteration before sending the extrinsic messages to the decoder. The decoder uses standard belief propagation decoding algorithm to calculate the a posteriori probability of information bits and feeds back extrinsic information to the detector and channel estimator. The algorithm stops if a valid codeword is found by checking the code syndrome or a predefined iteration number is reached.

    4 Simulation results

    Computer simulations are conducted to evaluate the performance of the proposed algorithms for single-carrier coded transmission system. The BER performances of several schemes are compared. The first is pilot-based channel estimation using linear interpolation with no iteration. The second is a genie-aided receiver using the proposed detector with perfect knowledge of the channel. The third uses the proposed message passing algorithm for iterative channel estimation and detection with serial/parallel schedules. Moreover, the optimal performance bound, denoted by AWGN bound which corresponds to the system under AWGN channel without ISI, is also shown as a reference benchmark. The simulation uses a (3,6)-regular LDPC code with codeword length of 1920 and gray-mapping QPSK modulation. The channel length isL=3 with equal average power and the total energy are normalized to unity. A typical Doppler ratefDTs=0.005 is considered and each pilot symbol is periodically inserted in every 20 data symbols for the initialization of channel estimation. The length of moving average filter is selected asN=75. A maximum of 10 iterations is allowed. The results are averaged over Monte Carlo simulations after 1 000 independent bit errors are observed.

    Fig. 3 shows the BER performance of the proposed algorithm compared with other receiver schemes. As no feedback information from decoder is used to assist channel estimation and equalization, the pilot-based non-iterative receiving algorithm has a poor BER performance, when BER=10-4there is about 7.9 dB SNR loss compared to the optimal MAP detector. On the other hand, when the CSI is known at receiver, factor-graph-based joint iterative equalization and decoding algorithms can continually increase the estimation accuracy of symbol posterior probability at the equalizer by iteratively exchanging soft information of the symbols between equalizer node and decoder node in factor graph, and then significantly improve the BER performance of the decoder. As we can seen in Fig.3, the above-mentioned algorithms can achieve the BER performance close to the optimal MAP detection, in which the algorithms based on serial schedule and parallel schedule exist only 0.45 dB and 0.70 dB SNR loss respectively. However, due to low latency characteristics, the parallel schedule is more applicable in practical implementation. Moreover, the computational complexity of the iterative message passing algorithm can achieve only linearly to the channel memory length, which is a great reduction compared to the optimal MAP symbol detector with exponential complexity. When the CSI is unknown at receiver, the proposed iterative message passing algorithms for joint channel estimation, equalization and decoding could also obtain favorable performance with low complexity. Compared with the known CSI case, the algorithms based on serial schedule and parallel schedule exist 1.95 dB and 1.80 dB SNR loss respectively.

    Fig.3 BER performance of the proposed algorithm

    Fig. 4 shows the performance of channel estimation in terms of mean square error (MSE) versus SNR. The MMSE of the optimal Wiener filter is also given as a reference lower bound. As can be seen, the MSE of channel estimation decreases with the increase of SNR and the number of iteration. Only after first iteration, the MSE of the proposed algorithm is significantly lower than that of pilot-based algorithm. After 10 iterations of message passing, the MSE of the proposed algorithm gradually approaches the MMSE bound within high SNR region, as high reliability of symbol extrinsic information can be obtained from decoder feedback.

    Fig.4 MSE performance of channel estimation

    5 Conclusion

    In this paper, we have proposed a SISO detector for iteratively joint channel estimation, equalization and decoding over frequency-selective fading channel. The proposed detector is obtained by applying SPA to a suitable designed factor graph, which represents the factorization of the joint posterior probability distribution function of the transmitted symbols and the channel coefficients. Based on SPA, we derive the message computation rules and develop two different schedules for message updates. Simulation results show that, the proposed algorithms with both schedules can achieve a satisfactory BER performance after several iterations, while with a significant complexity reduction with respect to the optimal MAP detector.

    [1] Tse D, Viswanath P. Fundamentals of wireless communications [M]. Cambridge: Cambridge University Press, 2005.

    [2] Koetter R, Singer A C, Tuchler M. Turbo equalization [J]. IEEE Signal Processing Magazine, 2004, 21(1):67-80.

    [3] Valenti M C, Woerner B D. Iterative channel estimation and decoding of pilot symbol assisted turbo codes over flat-fading channels [J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1697-1705.

    [4] Su H J, Geraniotis E. Low-complexity joint channel estimation and decoding for pilot symbol-assisted modulation and multiple differential detection systems with correlated Rayleigh fading [J]. IEEE Transactions on Communication, 2002, 50(2): 249-261.

    [5] Wymeersch H. Iterative receiver design [M]. Cambridge: Cambridge University Press, 2007.

    [6] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.

    [7] Colavolpe G, Germi G. Simple iterative detection schemes for ISI channels [C]∥International Symposium on Turbo Codes & Related Topics, Brest, France, 2003.

    [8] Lu B, Yue G S, Wang X D, et al. Factor-graph-based soft self-iterative equalizer for multipath channels [J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2005(2): 187-196.

    [9] Drost R J, Singer A C. Factor-graph algorithms for equalization [J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2052-2065.

    [10] Colavolpe G, Fertonani D, Piemontese A. SISO detection over linear channels with linear complexity in the number of interferers [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1475-1485.

    [11] Etzlinger B, Haselmayr W, Springer A. Equalization algorithms for MIMO communication systems based on factor graphs [C]∥2011 IEEE International Conference on Communication, Kyoto, Japan, 2011.

    [12] Kaynak M N, Duman T M, Kurtas E M. Belief propagation over SISO/MIMO frequency selective channels [J]. IEEE Transaction on Wireless Communications, 2007, 6(6): 2001-2005.

    [13] Haselmayr W, Etzlinger B, Springer A. Factor-graph-based soft-input soft-output detection for frequency-selective MIMO channels [J]. IEEE Communication Letter, 2012, 16(10): 1624-1627.

    [14] Tan P H, Rasmussen L K. Belief propagation for coded multiuser detection [C]∥IEEE International Symposium on Information Theory, Seattle, the United States, 2006.

    [15] Aktas E. Iterative message passing for pilot-assisted multiuser detection in MC-CDMA systems [J]. IEEE Transaction on Communications, 2012, 60(11): 3353-3364.

    [16] Zhao H J, Wu N, Wang H, et al. Factor-graph-based iterative receiver design in the presence of strong phase noise[C]∥IEEE Vehicular Technology Conference Spring, Yokohama, Japan, 2012.

    [17] Zhao H J, Wu N, Wang H, et al. Particle swarm enhanced graph-based iterative receiver with phase noise and frequency offset [C]∥Wireless Communications and Signal Processing, Hangzhou, China, 2013.

    [18] Haykin S. Adaptive filter theory information and system science series[M]. Englewood Cliffs, NJ: Prentice-Hall, 1996.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0410

    TN 911 Document code: A Article ID: 1004- 0579(2015)04- 0494- 07

    Received 2014- 03- 28

    Supported by the National Natural Science Foundation of China(61201181);Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020);the Co-innovation Laboratory of Aerospace Broadband Network Technology

    E-mail: wunan@bit.edu.cn

    猜你喜歡
    王華
    請你幫個忙
    請你幫個忙
    金山(2024年12期)2024-12-29 00:00:00
    旅游目的地全面關系流管理研究
    旅游學刊(2022年5期)2022-05-31 23:55:43
    勸退原配
    老媽的高招
    三月三(2017年11期)2018-01-09 18:58:41
    老媽的高招
    三月三(2017年11期)2018-01-09 02:48:44
    江蘇省僑辦主任王華:僑的力量推動著我
    華人時刊(2017年13期)2017-11-09 05:38:47
    王華主任隨江蘇新聞文化參訪團赴臺訪問圓滿成功
    華人時刊(2017年13期)2017-11-09 05:38:46
    從時尚攝影師到新農(nóng)民,15年走了一條回歸路
    王華主任會見韓國知識文化財團理事長辛圣恩一行
    華人時刊(2016年16期)2016-04-05 05:57:24
    精品不卡国产一区二区三区| 香蕉丝袜av| 黄片大片在线免费观看| 日本三级黄在线观看| 成人精品一区二区免费| www.自偷自拍.com| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 级片在线观看| 日本黄色视频三级网站网址| 国产精品久久久久久精品电影 | 琪琪午夜伦伦电影理论片6080| 在线观看免费日韩欧美大片| av天堂久久9| 老司机在亚洲福利影院| 国产成人系列免费观看| 久久人妻福利社区极品人妻图片| 在线av久久热| 日韩精品中文字幕看吧| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 精品无人区乱码1区二区| 亚洲精品av麻豆狂野| 国产午夜福利久久久久久| 亚洲激情在线av| 夜夜爽天天搞| 级片在线观看| 中文亚洲av片在线观看爽| 国产蜜桃级精品一区二区三区| 男女下面插进去视频免费观看| 欧美丝袜亚洲另类 | 色播亚洲综合网| 午夜老司机福利片| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久亚洲av鲁大| 丝袜美腿诱惑在线| 夜夜夜夜夜久久久久| 久久久久久久久中文| 老熟妇仑乱视频hdxx| 长腿黑丝高跟| 三级毛片av免费| 国产精品野战在线观看| 国产精品国产高清国产av| 亚洲av成人一区二区三| 国产成人精品久久二区二区免费| 麻豆一二三区av精品| 一本大道久久a久久精品| 亚洲av五月六月丁香网| 亚洲精品国产区一区二| 婷婷精品国产亚洲av在线| 亚洲精品久久成人aⅴ小说| АⅤ资源中文在线天堂| 久久中文字幕一级| 1024视频免费在线观看| 热99re8久久精品国产| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av激情在线播放| 美国免费a级毛片| 中文亚洲av片在线观看爽| 无遮挡黄片免费观看| 亚洲久久久国产精品| 亚洲七黄色美女视频| 老司机午夜福利在线观看视频| 精品久久久精品久久久| 在线观看免费视频网站a站| 国产成人精品无人区| 桃色一区二区三区在线观看| 欧美日本视频| 精品国产一区二区三区四区第35| 最近最新免费中文字幕在线| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 国产午夜精品久久久久久| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 999精品在线视频| 国产精品二区激情视频| 在线观看免费午夜福利视频| 色播在线永久视频| 亚洲欧美日韩无卡精品| 精品免费久久久久久久清纯| 熟女少妇亚洲综合色aaa.| 成人国产综合亚洲| 在线永久观看黄色视频| 一本久久中文字幕| 国产精品电影一区二区三区| 波多野结衣高清无吗| 亚洲av电影在线进入| 美女 人体艺术 gogo| 成人精品一区二区免费| 欧美在线黄色| 国产成人影院久久av| 国产精品一区二区在线不卡| 麻豆久久精品国产亚洲av| 亚洲av成人av| 日本vs欧美在线观看视频| 91九色精品人成在线观看| 久久人人精品亚洲av| 久久人妻福利社区极品人妻图片| 色综合欧美亚洲国产小说| www日本在线高清视频| 久久狼人影院| 两性夫妻黄色片| 欧美一区二区精品小视频在线| 国产三级黄色录像| 中文字幕色久视频| 97人妻天天添夜夜摸| 国产免费av片在线观看野外av| www.www免费av| 久久热在线av| 神马国产精品三级电影在线观看 | 精品人妻在线不人妻| 亚洲精华国产精华精| 91大片在线观看| 色哟哟哟哟哟哟| 国产黄a三级三级三级人| 国产国语露脸激情在线看| 丝袜美足系列| 男女午夜视频在线观看| a级毛片在线看网站| xxx96com| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美一区二区综合| 中文字幕最新亚洲高清| 91字幕亚洲| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 好男人电影高清在线观看| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 岛国在线观看网站| 亚洲久久久国产精品| 国产麻豆成人av免费视频| 久久精品亚洲精品国产色婷小说| 在线永久观看黄色视频| 极品人妻少妇av视频| 一本大道久久a久久精品| 欧美黑人精品巨大| 久久香蕉激情| 久久精品亚洲熟妇少妇任你| 99热只有精品国产| 女人精品久久久久毛片| 午夜两性在线视频| 亚洲九九香蕉| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 亚洲久久久国产精品| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 99国产精品99久久久久| av中文乱码字幕在线| 中文字幕人妻丝袜一区二区| 不卡av一区二区三区| 变态另类成人亚洲欧美熟女 | 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 国内精品久久久久久久电影| 亚洲在线自拍视频| 激情在线观看视频在线高清| 男女午夜视频在线观看| 琪琪午夜伦伦电影理论片6080| 给我免费播放毛片高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱码精品一区二区三区| 久久久久久人人人人人| 国产私拍福利视频在线观看| 电影成人av| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 悠悠久久av| 国产精品自产拍在线观看55亚洲| 九色国产91popny在线| 大型黄色视频在线免费观看| 91av网站免费观看| 国产精品秋霞免费鲁丝片| 亚洲av美国av| 男女床上黄色一级片免费看| 亚洲av熟女| 国产97色在线日韩免费| 午夜日韩欧美国产| 亚洲人成网站在线播放欧美日韩| 国产不卡一卡二| 国产av精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| 又黄又爽又免费观看的视频| 国产精品久久久av美女十八| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| 啦啦啦观看免费观看视频高清 | 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区综合在线观看| 国产亚洲av嫩草精品影院| av天堂久久9| 亚洲熟女毛片儿| 亚洲av成人av| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| 成年版毛片免费区| 亚洲精品在线观看二区| 亚洲中文av在线| 禁无遮挡网站| 精品午夜福利视频在线观看一区| 波多野结衣巨乳人妻| 曰老女人黄片| 国产亚洲精品久久久久久毛片| 国产高清视频在线播放一区| 久久天堂一区二区三区四区| 俄罗斯特黄特色一大片| 久久精品成人免费网站| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 久久国产精品男人的天堂亚洲| 两个人视频免费观看高清| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 日本欧美视频一区| 午夜亚洲福利在线播放| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 国产高清有码在线观看视频 | 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 黑人巨大精品欧美一区二区mp4| 91成年电影在线观看| 日本在线视频免费播放| 亚洲国产毛片av蜜桃av| 深夜精品福利| 成人三级黄色视频| 久久亚洲精品不卡| 男女之事视频高清在线观看| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 欧美激情 高清一区二区三区| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 动漫黄色视频在线观看| 人人妻人人爽人人添夜夜欢视频| 99在线视频只有这里精品首页| 国产1区2区3区精品| 亚洲少妇的诱惑av| 狠狠狠狠99中文字幕| 精品久久久久久成人av| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 真人一进一出gif抽搐免费| 一级毛片高清免费大全| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 国产片内射在线| 国产三级在线视频| 久久这里只有精品19| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区| 啦啦啦韩国在线观看视频| 精品一品国产午夜福利视频| 久久精品国产99精品国产亚洲性色 | 一进一出抽搐gif免费好疼| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 免费在线观看完整版高清| 91麻豆av在线| 亚洲国产精品sss在线观看| 波多野结衣一区麻豆| 激情在线观看视频在线高清| 日本a在线网址| 麻豆一二三区av精品| 国产精品,欧美在线| 中文字幕色久视频| 波多野结衣av一区二区av| 一级作爱视频免费观看| 色哟哟哟哟哟哟| 视频在线观看一区二区三区| 欧美不卡视频在线免费观看 | 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 嫩草影视91久久| 高清毛片免费观看视频网站| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 国内精品久久久久精免费| av视频免费观看在线观看| 亚洲成国产人片在线观看| 亚洲 国产 在线| 十八禁人妻一区二区| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 我的亚洲天堂| 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| 一级a爱片免费观看的视频| 久久这里只有精品19| 悠悠久久av| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 母亲3免费完整高清在线观看| 9色porny在线观看| 动漫黄色视频在线观看| 免费av毛片视频| 亚洲国产精品成人综合色| 日韩一卡2卡3卡4卡2021年| 亚洲va日本ⅴa欧美va伊人久久| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频 | 91在线观看av| 日韩 欧美 亚洲 中文字幕| 99riav亚洲国产免费| 色播在线永久视频| avwww免费| 真人一进一出gif抽搐免费| 欧美日本视频| 午夜福利欧美成人| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 国产xxxxx性猛交| 成年人黄色毛片网站| 欧美日本视频| 欧美午夜高清在线| 很黄的视频免费| 成年版毛片免费区| 亚洲中文av在线| 久久伊人香网站| 好男人电影高清在线观看| 久久久久久久精品吃奶| 手机成人av网站| 国产伦人伦偷精品视频| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 99久久99久久久精品蜜桃| 久久久久久国产a免费观看| 免费在线观看日本一区| 久久久水蜜桃国产精品网| 欧美久久黑人一区二区| 精品乱码久久久久久99久播| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 免费观看精品视频网站| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 日韩欧美三级三区| 精品国产乱子伦一区二区三区| 欧美午夜高清在线| 亚洲情色 制服丝袜| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 伦理电影免费视频| 亚洲av美国av| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 精品第一国产精品| 99国产精品免费福利视频| 久久影院123| 色综合亚洲欧美另类图片| www.精华液| 久久精品aⅴ一区二区三区四区| 精品久久久久久成人av| av在线播放免费不卡| 人妻久久中文字幕网| 国产又爽黄色视频| 老司机福利观看| 一a级毛片在线观看| 老司机福利观看| av在线播放免费不卡| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 高清在线国产一区| 日韩欧美三级三区| 国产精品电影一区二区三区| 露出奶头的视频| 精品卡一卡二卡四卡免费| 国产一区二区三区在线臀色熟女| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| 岛国在线观看网站| 一边摸一边抽搐一进一小说| 亚洲中文字幕一区二区三区有码在线看 | 91在线观看av| 精品免费久久久久久久清纯| 97人妻天天添夜夜摸| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女 | 神马国产精品三级电影在线观看 | 免费人成视频x8x8入口观看| 亚洲五月色婷婷综合| 一本久久中文字幕| 身体一侧抽搐| 久久久国产成人免费| 日本免费一区二区三区高清不卡 | 欧美在线黄色| 黄色丝袜av网址大全| 宅男免费午夜| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 丁香六月欧美| 亚洲性夜色夜夜综合| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 手机成人av网站| 18美女黄网站色大片免费观看| 在线观看66精品国产| 午夜免费激情av| 国产成人欧美| 99久久精品国产亚洲精品| 亚洲成人精品中文字幕电影| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产| 久久久久久久久免费视频了| 成人免费观看视频高清| 老司机深夜福利视频在线观看| 黄频高清免费视频| 黄片播放在线免费| 免费高清视频大片| 一级毛片高清免费大全| 搡老妇女老女人老熟妇| 麻豆成人av在线观看| 久久九九热精品免费| 老司机靠b影院| 精品国产一区二区久久| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 91成年电影在线观看| 熟妇人妻久久中文字幕3abv| 老鸭窝网址在线观看| 国产精品亚洲一级av第二区| av福利片在线| 亚洲国产毛片av蜜桃av| 日韩欧美国产在线观看| 欧美日本中文国产一区发布| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 黄网站色视频无遮挡免费观看| 国产熟女午夜一区二区三区| 国产av在哪里看| 久久草成人影院| 国产精品久久久人人做人人爽| 黄色a级毛片大全视频| 国产三级黄色录像| 熟妇人妻久久中文字幕3abv| 18美女黄网站色大片免费观看| 亚洲精品中文字幕在线视频| av片东京热男人的天堂| 国产高清激情床上av| 国产在线精品亚洲第一网站| 美女高潮到喷水免费观看| 韩国av一区二区三区四区| 国产成人精品无人区| 亚洲三区欧美一区| 热99re8久久精品国产| 一级a爱片免费观看的视频| √禁漫天堂资源中文www| 国产高清激情床上av| 淫妇啪啪啪对白视频| 国产精品爽爽va在线观看网站 | 国产午夜福利久久久久久| 日本一区二区免费在线视频| 巨乳人妻的诱惑在线观看| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 色精品久久人妻99蜜桃| 午夜精品国产一区二区电影| 色综合欧美亚洲国产小说| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av | 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 老汉色∧v一级毛片| 国产亚洲欧美98| 亚洲第一av免费看| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 又大又爽又粗| 中文字幕最新亚洲高清| 国产精品 欧美亚洲| 婷婷精品国产亚洲av在线| 国产欧美日韩综合在线一区二区| 身体一侧抽搐| 亚洲一码二码三码区别大吗| 国产精品一区二区在线不卡| 久久狼人影院| 大码成人一级视频| 亚洲自拍偷在线| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 亚洲熟女毛片儿| 大香蕉久久成人网| 国产99白浆流出| 久久九九热精品免费| 亚洲精品中文字幕在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久久亚洲精品蜜臀av| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 真人一进一出gif抽搐免费| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 不卡一级毛片| 久9热在线精品视频| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 亚洲精品一区av在线观看| 老司机午夜福利在线观看视频| 亚洲伊人色综图| 可以免费在线观看a视频的电影网站| 日韩欧美三级三区| 一本大道久久a久久精品| 禁无遮挡网站| 亚洲国产毛片av蜜桃av| 精品国产乱子伦一区二区三区| 一夜夜www| 国产一级毛片七仙女欲春2 | 精品一区二区三区av网在线观看| 丝袜美腿诱惑在线| 国产一级毛片七仙女欲春2 | 曰老女人黄片| bbb黄色大片| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 高清黄色对白视频在线免费看| 亚洲精品国产区一区二| 亚洲成国产人片在线观看| 欧美黄色片欧美黄色片| 日韩国内少妇激情av| 好男人在线观看高清免费视频 | 狠狠狠狠99中文字幕| 老汉色∧v一级毛片| 欧美黄色淫秽网站| 久久天堂一区二区三区四区| 国产亚洲精品一区二区www| 日韩高清综合在线| 波多野结衣av一区二区av| 夜夜躁狠狠躁天天躁| 黄频高清免费视频| 成人av一区二区三区在线看| 亚洲男人的天堂狠狠| 欧美日韩中文字幕国产精品一区二区三区 | 丁香欧美五月| 中文字幕久久专区| 免费人成视频x8x8入口观看| 此物有八面人人有两片| 最近最新中文字幕大全电影3 | 丝袜人妻中文字幕| 免费在线观看影片大全网站| 精品国产一区二区久久| 国产av在哪里看| 十分钟在线观看高清视频www| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 精品午夜福利视频在线观看一区| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| 岛国视频午夜一区免费看| 淫妇啪啪啪对白视频| 视频区欧美日本亚洲| 国产成+人综合+亚洲专区| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 国产精品美女特级片免费视频播放器 | 欧美中文综合在线视频| 老司机在亚洲福利影院| 午夜免费观看网址| 高潮久久久久久久久久久不卡| 亚洲中文av在线| 9191精品国产免费久久| 黄频高清免费视频| 免费无遮挡裸体视频| 99riav亚洲国产免费| 侵犯人妻中文字幕一二三四区| 在线观看免费日韩欧美大片| 一区二区三区高清视频在线| 性少妇av在线| 国产一区在线观看成人免费| 最新美女视频免费是黄的| 国产三级黄色录像| 99国产精品一区二区三区| 视频在线观看一区二区三区| 午夜视频精品福利| 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜 | 国产亚洲精品一区二区www| or卡值多少钱| netflix在线观看网站| 丝袜美腿诱惑在线| 9热在线视频观看99| 嫁个100分男人电影在线观看| 老司机靠b影院| 在线av久久热| 亚洲视频免费观看视频| 波多野结衣巨乳人妻| 久久精品国产亚洲av高清一级| 亚洲熟女毛片儿| 热99re8久久精品国产| 国产真人三级小视频在线观看| 精品第一国产精品| 久久久精品欧美日韩精品|