• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    2015-04-22 02:33:20XINGJian邢健HELidong何立東WANGKai王锎HUANGXiujin黃秀金

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper-rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled (first critical speed region 37%, second critical speed region 42%). To reflect advantages of optimizing strategy presented and validate the intelligent optimization control technology, detailed experiments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.

    magnetorheological fluid damper; two-span rotor; Hooke and Jeeves; optimizing control; vibration reduction

    Reduction of shafting vibration is very important for safe and efficient functioning of rotating machines. The common technique for vibration control is vibration damping. Magneto rheological fluid (MRF) damper[1-3]has the advantage of rapid damping and stiffness changing in the presence of an applied magnetic field, large damping force, low-power consumption, easy to control. There are mainly two MRF dampers used in rotor vibration: magnetorheological fluid squezze film damper(MRFSFD)[4]and shear mode MRF damper[5]. Compared with MRFSFD (easy to instability, limited inhibition of critical vibration and delayed responses[6]), shear mode MRF damper achieves better vibration suppression with quicker responses.

    Research literatures about shear mode MRF damper in rotor vibration reductionis mainly focus on one-span rotor system with a simple control technique called on-off method. Related studies[7-8]have shown that rotor vibration is well controlled in resonance region with on-off control technique. Furthermore, improper current may cause rotor system losing stability.

    Due to the complex dynamic behavior of a rotor system, not many studies focus on the control technology for rotor vibration with shear mode MRF damper especially in multi-span rotor system. Wang J[9]developed a dynamic model for a two-disk cantilever flexible rotor supported on a MR fluid damper. Few literature till now focus on the optimizing control for the rotor vibration especially multi-span rotor using MRF damper. For this, a two-span rotor system supported by two shear mode MRF dampers was analyzed and a vibration control system was designed in this paper. An intelligent optimization control strategy for complex rotor system with high nonlinearity and uncertainty was proposed and designed to reduce vibration dynamically and effectively. It provides a powerful technical support for the extension and application in target control for shafting vibration.

    1 System modeling and numerical analysis

    1.1 MRF damper force model

    A shear mode MRF damper was made and tested as shown in Fig.1.

    Fig.1 Testing process and geometry of the shear mode MRF damper

    The MRF damper has three moving disks and two stationary disks as shown in Fig.1b. The disks are placed uniformly and alternatively with a uniform gap of 1 mm to form six relative shear surfaces. Electric current is input to the coil to generate magnetic field. The relation betweenHandτyof MRF (SG-MRF2035) in the damper is shown in Fig.2. The damper can be described by the Bingham plastic model[10]:

    (1)

    TherelationshipbetweendamperforceFandcurrentIisasfollows[11-13]:

    Fmr(I,t)=Ssrηvmr(t)/w+Ssrτy(I)

    (2)

    whereFmris the damper force;Vmr(t) is the move speed of the MR damper ball bearing center;wis the width of the gap between parallel plates;Ssris the effective shear area;ηis the Newtonian viscosity.Fmrdepends onVmr(t) andτy.Nis turns per coil. The relationship betweenHandIcan be simplified:

    H≈NI/w

    (3)

    Fig.2 Relation between H and τy of MRF

    1.2 System modeling and analysis

    The simplified mechanical model of two-span rotor system is illustrated in Fig.3.

    Fig.3 Simplified model of rotor-MRF damper system

    According to the finite element method, the MR-rotor dynamics equation can be expressed as

    (4)

    whereMis the mass matrix;Cis the damping matrix;Kis the stiffness matrix;Fδ(t) is the unbalanced force; andfmr(·) is the nonlinear relationship between damping force and other coefficients (see Eq.(3),current, displacements etc.).

    The basic structure parameters of the rotor system are shown in Tab.1.

    The vibration modes of double shafts have been calculated through the rotor dynamics software DyRoBeS, in which MRF dampers were simplified with damping and stiffness as to simulate the shafting vibration with the MRF damper switched on current during the operation, and the simulation results as shown in Fig.4a and Fig.4b.

    Tab.1 Basic parameters of two-span rotor system

    Fig.4 Comparison of unbalanced response of two-span rotor with and without MRF dampers

    The simulation results in Fig.4 indicated that the first order critical speed of the double shafts system is 2 900 r/min and the second order critical speed is 4 200 r/min without MR dampers. During the run-up process, rotor resonance occurred in shaft 2 about 2 900 r/min, which in turn raising the vibration of shaft 1 (Fig.4b). The resonance of shaft 1 occurred about 4 200 r/min. The rotor vibration is well controlled in resonance region with MRF dampers. With the increasing of the current, the damping effect is better. However, the rising current may also cause instability to the rotor system. Because MRF dampers will increase largely the support stiffness, which may cause rotor system losing stability. It is necessary to control the current properly to get better performance.

    2 Optimizing controller design based on Hooke and Jeeves algorithms

    Due to the complex dynamic behavior of the two-span rotor and multidiscipline interaction of MRF damper, it is hard to obtain optimal control parameter with traditional control methods based on an accurate mathematical model. Based on the modeling and numerical analysis, an optimizing control strategy to find appropriate control parameters (current) for the desired vibration amplitude is proposed and designed.

    Hooke and Jeeves algorithm[14](step acceleration method or Pattern search method) was proposed in 1961,which is a family of numerical optimization methods. Pattern search methods are gradient related methods. They do not rely on the evaluation of derivatives, which is especially desirable for the cases where derivatives are either unavailable or unreliable. It is straightforward and easy to use for control parameter tuning when used in properly.

    Two parameters are needed in Hooke and Jeeves algorithm, search patternPkto accelerate search process and an exploratory movesk, which varied one theoretical parameter at a time by steps of the same magnitude, and when no such increase or decrease in any one parameter further improved the fit to the experimental data, they halved the step size and repeated the process until the steps were deemed sufficiently small. The pattern Pkis a matrix as follows:

    Pk=B×Ck

    (6)

    Ck=[ΓkLk]

    (7)

    where B∈Rn×nis a basis matrix fixed in every iteration, assumed normally B=I. The direction of experiment search is decided by Ck, which is a generating matrix that can vary from iteration to iteration.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, that means a zero step.

    sk∈Δkpk≡Δk[ΓkLk]

    (8)

    If min {f(xk+y)|y∈ΔkΓkand (xk+y)∈Ω}

    f(xk+sk)

    (9)

    If expressions (8) and (9) are valid,xk+1=xk+skwherexkis the current iterate.Ωis feasible region forx.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, which means a zero step. R,Q, and N represent the sets of real, rational, integer, and natural numbers respectively.

    A parallel and independent control strategy based on Hooke and Jeeves algorithm for a two-span rotor system was developed, which controlled each span non-interfering and respectively. The control scheme for optimizing controller is illustrated in Fig.5.

    As shown in Fig.5, the input of the designed controller is the vibration amplitudef(u) of the rotor, which was measured by a sensor. The desired valuef*for the control of rotor vibration was settled by simulations with DyroBes and experiments. The initial control currentu0∈Ωfor each rotor was chosen andΔ0>0 be settled independently. The output of the controller was the optimized currentuk. The controller is designed and accomplished in Labview platform.

    Fig.5 Control scheme of optimizing controller

    Once Pksettled to accelerate moving process andskdetermined with a linearly constrained exploratory moves algorithm,f(uk) was computed. Iff(uk+sk)

    3 System design and experimental result analysis

    The schematic diagram of the control system and the sketch of two-span rotor system with two MR dampers are shown in Fig.8. The control platform is designed and developed in Labview.The Labview control platform includes five modules,as shown in Fig.6a.

    The rotor system is outfitted with eddy-current type non-contact displacement sensor that measures the displacements of the flexible rotor. A real time control and data acquisition system is designed to collect the vibration data and regulate the input current to the MR damper.

    Experiments were done firstly to verify the simulation of rotor-MR damper system and analyze the feasibility of vibration reduction with MR

    damper. According to the experiments, the first order critical speed of the double shafts system is about 3 000 r/min with the maximum vibration amplitude 160 μm, and the second order critical speed is 4 800 r/min with the maximum vibration amplitude 525 μm. As showed in Fig.7, rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%) with appropriate current which obtained by optimal current approximate controller.

    Fig.6 Schematic diagram and component of the control system

    To reflect advantages of optimizing control strategy and to validate the intelligent optimization control for complex rotor system with high nonlinearity and uncertainty, detailed experiments about the performance of optimizing control strategy were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed through different control parameters(different desired values and different tolerances).

    ① Experiments with different desired values

    Vibration amplitudes for each shaft: shaft

    1 (150 μm, 140 μm and 130 μm) and shaft 2 (90 μm, 80 μm, 70 μm): When the rotor is accelerating across two critical speeds, according to the optimizing strategy, the control current is applied. The frequency response of rotor system with MR dampers and without MR dampers are illustrated in Fig.8.

    Note that the experimental results in Fig.8 show the effectiveness of the control strategy. With three different desired control target values for each shaft, the control strategy is effective in the vibration suppressing. It indicated that rotor vibration caused by unbalance is well controlled both in resonance region and in non-resonance region with optimizing control strategy.

    It is shown in Fig.9 that the current varying with the changing vibration amplitude. The smaller the rotor vibration changes, the smoother the current curve appears. That is,the current regulating follows vibration amplitude change quickly and effectively.

    ②Experiments with different desired tolerances

    Experimental results in the rotor run-up process under the same desired vibration amplitude but with four different tolerances for each shaft were shown in Fig.10.

    From Fig.10, current seeking process with larger tolerance is smoother and more stable than with smaller tolerance. The smaller the tolerance is, the stricter the control requirement for optimizing process it to find an appropriate coefficient, which means the more instable curve for the current optimization.

    Fig.11 is the comparison of the frequency response in different tolerances. The current approximating process and the frequency response in different tolerances show the accuracy and response speed of MR dampers. The transient response with larger tolerance is more rapid but less steady than with smaller tolerance.

    Fig.7 Comparison of two-span rotor with and without MRF dampers

    Fig 8 Comparison of rotor with damper (in three desired amplitude) and without damper

    Fig.9 Amplitude-speed-current of two span rotor with optimizing control in different desired value

    Fig.10 Vibration response and current approximating process in different tolerances

    Fig.11 Frequency response with different tolerances

    4 Conclusions

    ①Experiment results show that rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%).

    ②This optimizing controller for current is regulated independently for each shaft, which is especially meaningful in a multi-span rotor system. It can be extended to a multi-span (more than three or four span) rotor system and provides a powerful technical support for the extension and application in target and control for shafting vibration.

    ③The stability and rapidity of transient response and efficiency of optimal approximate technique for rotor system depends on coefficients, such as tolerance, target value etc.

    The rapidity of optimizing control is better with longer current search step, but longer search step may affect the accuracy and stability of optimizing control. It is necessary to balance these control performance requirements (accuracy, rapidity and stability). In the premise of vibration control stability, rapidity and accuracy of control are maximized.

    A fixed search step is used in this paper. Further research on search step varying with different vibration amplitudes can be done to improve the efficiency, smoothness and rapidity of transient vibration response.

    [1] Yang G, Spencer B F, Carlson J D, et al. Large scale MR fluid dampers: modeling and dynamic performance consider-ations[J]. Engineering Structures,2002.

    [2] Carlson J D, Catanzarite D M, Clair K A. Commercial magnetorheological fluid devices[J].International Journal of Modern Physics B, 1996,10:2857-2865.

    [3] Andrzej Milecki. Investigation and control of magnetor- heological fluid dampers[J]. International Journal of Machine Tools & Manufacture,2001,41:379-391.

    [4] Masoud Hemmatian, Abdolreza Ohadi. Sliding mode control of flexible rotor based on estimated model of magnetorheological squeeze flim damper[J].Journal of Vibration and Acoustics,2013,135(5):1-11.

    [5] Wang J, Meng G. Experimental study on stability of an MR fluid damper-rotor journal bearing system[J].Journal of Sound and Vibration,2003, 262:999-1007.

    [6] Zhu Changsheng. Experiment investigation into the dynamic behaviors of a flexible rotor on magnetorheological fluid squeeze film dampers[J]. Journal of Functional Materials, 2006,5(37):750-753.

    [7] Wang J X, Meng G. Experimental study on rotor system vibration control of a squeeze MR fluid damper[J]. Journal of Aerospace Power, 2005,20(3):424-428.

    [8] Wang J, Meng G. Experimental study on stability of a rotor supported on a MR fluid damper and sliding bearing[J]. Journal of Vibration Engineering, 2003, 16(1):71-74.

    [9] Wang J, Meng G. Dynamic model of flexible rotors supported on an MR fluid damper (Ⅱ) : Cantilever rotor with two disks[J]. Journal of Foshan University:Natural Science Edition, 2003,21(1):15-18.

    [10] Stanway R, Sposton J L, Stevens N G. Non-linear modeling of an electrorheological vibration damper[J]. J Electrostatics, 1987,20:167-184.

    [11] Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,esting and control[D].Indiana,USA: University of Notre Dame, 2001.

    [12] Winslow W M. Method and means for translating electrical impulses into mechanical forces,U.S.Patent 2417850[P]. 1947-03-25.

    [13] Shtarkman E M. Fluid response to magnetic field,U.S. Patent 4992190[P].1991-02-12.

    [14] Hooke R, Jeeves T A. Direct search solution of numerical and statistical problems[J]. J Assoc Comput Mach, 1961, 8(2): 212-229.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0420

    TP 273.1 Document code: A Article ID: 1004- 0579(2015)04- 0558- 08

    Received 2014- 01- 20

    Supported by the National Program on Key Basic Research Project (973 Program)(2012CB026000); Ph.D Programs Foundation of Ministry of Education of China(20110010110009)

    E-mail: he63@263.net

    netflix在线观看网站| 黑人欧美特级aaaaaa片| 国产精品亚洲美女久久久| 国产精品1区2区在线观看.| 一区二区三区高清视频在线| 深夜精品福利| 一级作爱视频免费观看| 怎么达到女性高潮| 天堂影院成人在线观看| 色精品久久人妻99蜜桃| 国产三级在线视频| 99久久久亚洲精品蜜臀av| 午夜视频精品福利| 99国产极品粉嫩在线观看| 日本五十路高清| 2021天堂中文幕一二区在线观| 美女大奶头视频| 国产精品香港三级国产av潘金莲| 最新中文字幕久久久久 | 久久久水蜜桃国产精品网| 免费观看人在逋| 男插女下体视频免费在线播放| 香蕉国产在线看| 老司机福利观看| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 亚洲国产欧美人成| 非洲黑人性xxxx精品又粗又长| 一级毛片精品| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 在线观看66精品国产| 最新中文字幕久久久久 | 中文字幕高清在线视频| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 午夜久久久久精精品| 欧美日韩综合久久久久久 | 成人三级做爰电影| 曰老女人黄片| 九九久久精品国产亚洲av麻豆 | 久久精品亚洲精品国产色婷小说| 99re在线观看精品视频| 18美女黄网站色大片免费观看| 成人18禁在线播放| 久久精品91蜜桃| 国产91精品成人一区二区三区| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面| 757午夜福利合集在线观看| 18禁黄网站禁片免费观看直播| 欧美日韩乱码在线| 久久伊人香网站| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 丝袜人妻中文字幕| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 在线观看舔阴道视频| 久久久久亚洲av毛片大全| 欧美性猛交╳xxx乱大交人| 很黄的视频免费| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 99热只有精品国产| 国产精品美女特级片免费视频播放器 | 色综合亚洲欧美另类图片| 一边摸一边抽搐一进一小说| 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| 少妇裸体淫交视频免费看高清| 女人被狂操c到高潮| 无限看片的www在线观看| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 久久香蕉国产精品| 国产v大片淫在线免费观看| 亚洲最大成人中文| 欧美黄色片欧美黄色片| 在线免费观看不下载黄p国产 | 十八禁人妻一区二区| 亚洲av成人精品一区久久| 亚洲欧美日韩东京热| 嫁个100分男人电影在线观看| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片 | 在线观看免费午夜福利视频| 欧美乱码精品一区二区三区| 97人妻精品一区二区三区麻豆| av视频在线观看入口| 日韩欧美在线二视频| 又紧又爽又黄一区二区| 九九热线精品视视频播放| xxxwww97欧美| 亚洲专区国产一区二区| 亚洲av成人av| 亚洲精品456在线播放app | 免费看十八禁软件| 一级毛片精品| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 国产精品野战在线观看| 欧美在线黄色| 毛片女人毛片| 亚洲自偷自拍图片 自拍| 少妇丰满av| 中国美女看黄片| 男女那种视频在线观看| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| 久久热在线av| 亚洲精品一区av在线观看| 亚洲av熟女| 精品久久久久久久久久久久久| 国产午夜福利久久久久久| 黄片小视频在线播放| 欧美激情在线99| 国产精品 国内视频| 午夜免费激情av| 国产69精品久久久久777片 | 天堂动漫精品| 欧美成人性av电影在线观看| 熟女人妻精品中文字幕| 在线播放国产精品三级| 老司机深夜福利视频在线观看| 一区二区三区高清视频在线| 久久精品国产清高在天天线| 免费大片18禁| 18禁黄网站禁片午夜丰满| 九色国产91popny在线| 白带黄色成豆腐渣| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 成人三级做爰电影| 国产爱豆传媒在线观看| 久久久久久久精品吃奶| 99国产精品99久久久久| 九九久久精品国产亚洲av麻豆 | 日本成人三级电影网站| 国产精品精品国产色婷婷| 精品一区二区三区视频在线 | 在线观看一区二区三区| 国产精品,欧美在线| 噜噜噜噜噜久久久久久91| 男女视频在线观看网站免费| 首页视频小说图片口味搜索| 9191精品国产免费久久| 国产av在哪里看| 亚洲精品美女久久久久99蜜臀| 免费观看的影片在线观看| 观看免费一级毛片| 白带黄色成豆腐渣| 亚洲国产精品sss在线观看| 成人特级av手机在线观看| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 精品一区二区三区视频在线观看免费| 啦啦啦免费观看视频1| 岛国在线免费视频观看| 国产v大片淫在线免费观看| 亚洲自偷自拍图片 自拍| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| 日本黄大片高清| 88av欧美| 色播亚洲综合网| 热99re8久久精品国产| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 亚洲欧美日韩东京热| 女人高潮潮喷娇喘18禁视频| 久久精品国产清高在天天线| 我要搜黄色片| 很黄的视频免费| 国产亚洲精品av在线| av天堂在线播放| 国产一区二区三区在线臀色熟女| 国产真实乱freesex| 国产精品久久电影中文字幕| 欧美乱码精品一区二区三区| 国内精品美女久久久久久| 在线观看一区二区三区| 午夜福利免费观看在线| 好男人在线观看高清免费视频| 男女那种视频在线观看| 欧美日韩综合久久久久久 | 国产精品免费一区二区三区在线| 在线观看午夜福利视频| 99久久成人亚洲精品观看| 免费av不卡在线播放| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| 久99久视频精品免费| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 村上凉子中文字幕在线| 黄频高清免费视频| 久久久久性生活片| 国产1区2区3区精品| 一区二区三区高清视频在线| 亚洲av成人av| 99热只有精品国产| cao死你这个sao货| 成人亚洲精品av一区二区| 91九色精品人成在线观看| 国产午夜福利久久久久久| 99re在线观看精品视频| 久久中文字幕一级| 精品欧美国产一区二区三| 丰满人妻熟妇乱又伦精品不卡| 一个人看视频在线观看www免费 | 婷婷精品国产亚洲av在线| 十八禁网站免费在线| 国产精品久久视频播放| 亚洲欧美精品综合久久99| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 18禁国产床啪视频网站| 中亚洲国语对白在线视频| 在线免费观看不下载黄p国产 | 国内少妇人妻偷人精品xxx网站 | 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 18禁国产床啪视频网站| 美女cb高潮喷水在线观看 | 欧美黄色片欧美黄色片| 国产亚洲av嫩草精品影院| 黑人欧美特级aaaaaa片| 国产一区二区三区视频了| 欧美午夜高清在线| www.www免费av| 最新美女视频免费是黄的| 午夜福利18| 90打野战视频偷拍视频| 亚洲欧美激情综合另类| 免费在线观看视频国产中文字幕亚洲| 一级a爱片免费观看的视频| 91在线精品国自产拍蜜月 | 久久国产精品人妻蜜桃| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 亚洲欧美日韩高清专用| 成人欧美大片| 午夜福利在线在线| 精品国产乱码久久久久久男人| 国产v大片淫在线免费观看| 免费看光身美女| ponron亚洲| 久久精品综合一区二区三区| 成人av在线播放网站| 久久久久久久久中文| 亚洲乱码一区二区免费版| 91av网站免费观看| 精品久久久久久成人av| 一级黄色大片毛片| 99精品欧美一区二区三区四区| 久久久色成人| 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 18禁美女被吸乳视频| 老司机福利观看| 免费av不卡在线播放| 岛国视频午夜一区免费看| 国产真实乱freesex| 亚洲国产欧美网| 在线视频色国产色| 18美女黄网站色大片免费观看| 淫妇啪啪啪对白视频| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 校园春色视频在线观看| 国产视频一区二区在线看| 久久久久久久久久黄片| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| 在线视频色国产色| 国产精品久久视频播放| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 色av中文字幕| 精品不卡国产一区二区三区| 天堂√8在线中文| 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 久99久视频精品免费| 亚洲专区字幕在线| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 欧美高清成人免费视频www| av国产免费在线观看| 最近最新免费中文字幕在线| 精品久久久久久久久久免费视频| 国产乱人视频| 日本a在线网址| 久久伊人香网站| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 亚洲熟女毛片儿| 色综合站精品国产| 91麻豆av在线| 亚洲电影在线观看av| 亚洲中文av在线| 久久精品国产99精品国产亚洲性色| 三级男女做爰猛烈吃奶摸视频| 亚洲精品美女久久av网站| 国产69精品久久久久777片 | 一个人观看的视频www高清免费观看 | 最新美女视频免费是黄的| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 高清毛片免费观看视频网站| 一区二区三区国产精品乱码| 少妇人妻一区二区三区视频| 免费看美女性在线毛片视频| 成人性生交大片免费视频hd| 久久精品国产综合久久久| 国产一区二区三区视频了| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 亚洲精品乱码久久久v下载方式 | 欧美+亚洲+日韩+国产| 日韩av在线大香蕉| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| cao死你这个sao货| 欧美最黄视频在线播放免费| 丁香欧美五月| 毛片女人毛片| 搞女人的毛片| 88av欧美| 中出人妻视频一区二区| 一区二区三区激情视频| 天天添夜夜摸| 日韩欧美国产在线观看| 久久久久亚洲av毛片大全| 日本 欧美在线| 99国产精品99久久久久| 国产高清激情床上av| 亚洲人成电影免费在线| 一本综合久久免费| 亚洲av美国av| 美女高潮的动态| 成年女人看的毛片在线观看| 亚洲九九香蕉| 两个人看的免费小视频| 久久久国产欧美日韩av| 嫁个100分男人电影在线观看| 欧美日本视频| 丰满人妻一区二区三区视频av | 久久久久国内视频| 亚洲成av人片在线播放无| 国产欧美日韩一区二区三| av片东京热男人的天堂| 国产亚洲精品久久久久久毛片| 国产精品精品国产色婷婷| 亚洲欧洲精品一区二区精品久久久| 99国产极品粉嫩在线观看| 久久久久国内视频| 亚洲无线观看免费| 国产精品久久久久久精品电影| 99热6这里只有精品| 女同久久另类99精品国产91| or卡值多少钱| 久久午夜综合久久蜜桃| 国产av在哪里看| 国产亚洲av嫩草精品影院| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 欧美成人免费av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲真实| 色综合婷婷激情| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区成人 | av片东京热男人的天堂| 成年女人看的毛片在线观看| 最近最新中文字幕大全免费视频| 精品国内亚洲2022精品成人| 午夜a级毛片| 麻豆成人午夜福利视频| 老司机在亚洲福利影院| or卡值多少钱| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 后天国语完整版免费观看| 亚洲最大成人中文| 女生性感内裤真人,穿戴方法视频| 午夜福利成人在线免费观看| 此物有八面人人有两片| 黄片大片在线免费观看| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 级片在线观看| 一级a爱片免费观看的视频| 在线观看日韩欧美| 国产精品久久久久久久电影 | 99国产精品一区二区蜜桃av| 国产1区2区3区精品| 久久中文看片网| 91麻豆av在线| 久久欧美精品欧美久久欧美| 久久九九热精品免费| 国产精品1区2区在线观看.| 我要搜黄色片| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜| 成人18禁在线播放| 五月玫瑰六月丁香| 久久久久久久久中文| 观看美女的网站| 欧美不卡视频在线免费观看| 毛片女人毛片| 久久久久亚洲av毛片大全| 中出人妻视频一区二区| 国产私拍福利视频在线观看| 九色国产91popny在线| 国产伦精品一区二区三区视频9 | 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式 | 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| 变态另类丝袜制服| 免费观看的影片在线观看| www日本在线高清视频| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 久久婷婷人人爽人人干人人爱| 亚洲精品456在线播放app | 国产成人福利小说| 男女那种视频在线观看| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 黄片大片在线免费观看| h日本视频在线播放| 日本a在线网址| 91九色精品人成在线观看| 国产三级黄色录像| 亚洲欧美日韩无卡精品| 国产麻豆成人av免费视频| 久久精品91蜜桃| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 香蕉丝袜av| 在线国产一区二区在线| 九色成人免费人妻av| 久久热在线av| 久久精品国产清高在天天线| 精品久久久久久成人av| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 一区二区三区高清视频在线| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 色播亚洲综合网| 国内精品一区二区在线观看| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 床上黄色一级片| 高潮久久久久久久久久久不卡| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| xxxwww97欧美| 日韩免费av在线播放| 在线观看免费午夜福利视频| 1000部很黄的大片| 真人一进一出gif抽搐免费| 亚洲国产高清在线一区二区三| 中亚洲国语对白在线视频| 亚洲av五月六月丁香网| 亚洲av熟女| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 小蜜桃在线观看免费完整版高清| 19禁男女啪啪无遮挡网站| 天堂网av新在线| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 97超视频在线观看视频| 国产人伦9x9x在线观看| 久久99热这里只有精品18| www.精华液| 一区福利在线观看| 精品久久久久久成人av| 少妇丰满av| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 久久久国产欧美日韩av| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| 久久久国产成人精品二区| 日韩成人在线观看一区二区三区| 亚洲欧美激情综合另类| 久久久久亚洲av毛片大全| 很黄的视频免费| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 国产野战对白在线观看| 日本黄色片子视频| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 成人三级黄色视频| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 国产极品精品免费视频能看的| 久久午夜亚洲精品久久| 全区人妻精品视频| 后天国语完整版免费观看| 悠悠久久av| bbb黄色大片| 国产精品影院久久| 美女高潮的动态| av国产免费在线观看| 熟女少妇亚洲综合色aaa.| 国产伦精品一区二区三区视频9 | 一级作爱视频免费观看| 伊人久久大香线蕉亚洲五| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app | 51午夜福利影视在线观看| 久久久久国产精品人妻aⅴ院| 91久久精品国产一区二区成人 | 两个人看的免费小视频| 一二三四社区在线视频社区8| 成人一区二区视频在线观看| 成人特级av手机在线观看| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 天天一区二区日本电影三级| 嫩草影院入口| 亚洲电影在线观看av| 成人av在线播放网站| 国产精品影院久久| 女人被狂操c到高潮| 99re在线观看精品视频| 日本在线视频免费播放| 99热只有精品国产| 99精品在免费线老司机午夜| 久久久久久大精品| 国产免费男女视频| 男女视频在线观看网站免费| 国产视频一区二区在线看| 最近在线观看免费完整版| 国产三级中文精品| 欧美中文日本在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲天堂国产精品一区在线| www.999成人在线观看| 国产激情偷乱视频一区二区| av在线天堂中文字幕| www日本在线高清视频| 欧美xxxx黑人xx丫x性爽| 无人区码免费观看不卡| 亚洲精品一区av在线观看| 老司机福利观看| 1024香蕉在线观看| 可以在线观看毛片的网站| 俄罗斯特黄特色一大片| 又黄又爽又免费观看的视频| 俺也久久电影网| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 亚洲成人中文字幕在线播放| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品综合一区在线观看| 国产伦人伦偷精品视频| 曰老女人黄片| 国产亚洲av嫩草精品影院| 久久精品人妻少妇| 91麻豆av在线| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| 俄罗斯特黄特色一大片| 激情在线观看视频在线高清| a在线观看视频网站| 日韩人妻高清精品专区| 国产单亲对白刺激| 一进一出好大好爽视频| 国产激情欧美一区二区| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 久久国产乱子伦精品免费另类|