• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    2015-04-22 02:39:02ZHANGHonggang張洪綱FANHuayu范花玉HEShaohua何少華LIUQuanhua劉泉華

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating (LFM) signal (i.e. chirp) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile (HRRP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field experimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent integration.

    multi-subpulse process; large time-bandwidth product; chirp signal; computational complexity; coherent integration

    In order to achieve high range resolution, radar transmits wideband pulses; while to get high signal-to-noise ratio (SNR), it is desirable to increase the pulsewidth. Pulse compression is a method which combines the high energy of a long pulsewidth with high range resolution. Among the various large time-bandwidth product signals, chirp signal is a popular choice. There are two commonly used pulse compression techniques for chirp signal: matched filter processing and stretch processing[1].

    The digital matched filter processing requires a sampling rate of at least twice the signal bandwidth according to the Nyquist sampling theorem. When radar transmits wideband chirp signals, ittypically requires an extremely high sampling rate for the analog-to-digital (A/D) converter, which increases the computational burden of real-time digital signal processing. Thus the matched filter processing is predominantly used for narrowband radar. To overcome this problem, the stretch processor is normally used in the extremely wide bandwidth chirp signal[2]. The sampling rate of this technique can be reduced significantly. The two methods have been compared and fully discussed in Refs.[3-5]. The stretch processing has two major disadvantages. It can only yield the high range resolution profile over a limited range window and long-time coherent integration is unachievable, which leads to the degradation of image quality and the failure of measuring the Doppler and micro-Doppler[6].

    Another method to process the wide bandwidth chirp signal is presented in Refs.[7-9] where pulse compression is performed in the subband domain. This method can decrease the sampling rate and reduce the processing time. However, it still has trouble in long-time coherent integration, especially for high speed targets.

    Inspired by the concept of using multi-frame stepped frequency signals to achieve long-time coherent integration[10-13], we proposed a multi-subpulse processing method for large time-bandwidth product chirp signal. It can not only decrease the computational complexity effectively, but also achieve coherent integration simultaneously for the wideband signal. To the best of the authors’ knowledge, this method has never been reported.

    1 Multi-subpulse process

    1.1 Basic concept

    The intermediate frequency (IF) chirp pulse can be expressed as

    (1)

    where

    (2)

    and wheretrepresents time,Tpdenotes the pulsewidth,fIis the intermediate frequency, andkis the chirp slope. The bandwidth is determined byB=kTp. To get high SNR and high range resolution, the signal should have a large time-bandwidth productD=BTp.

    The multi-subpulse processing method first averagely splits up chirp signal intoNsubpulses, whereNis an integer, as shown in Fig.1. The resulting subpulses are still chirp signals whose pulsewidth is denoted byT0=Tp/Nand bandwidth is determined byB0=Δf=B/N, where Δfis the frequency division interval.

    Fig.1 Division of large time-bandwidth product chirp signal in time-frequency domain

    1.2 Choice of division numberN

    The division numberNis properly chosen to meet the condition that time-bandwidth product of the subpulse should be much greater than one, i.e.B0T0?1. Thus the frequency spectrum of the subpulse is approximately close to rectangle so that pulse compression can be applied.

    The proposed division presented here is performed simultaneously inNchannels by firstly mixing with different phase detectors and then passing through lowpass filters. The phase detectors in different channels can be written as

    (3)

    wherendenotes thenth subpulse.

    After mixing with the phase detectors and lowpass filtering, we have

    (4)

    From Eq.(4), it is obvious that each subpulse has a pulse duration ofT0and has a bandwidth ofB0=kT0. TheNsubpulses become the stepped frequency like signal whose frequency stepping interval Δfis the single subpulse bandwidthB0. To make the two types of signals equivalent, the initial phase of theNsubpulses must be linear, that is to say, the adjacent two subpulses should have a constant phase difference.

    From Eq.(4), the phase of each subpulsecan be represented as

    (5)

    Its start frequency is -B/2+nB/Nand the bandwidth is determined byB0=B/N. The initial phase of each subpulse isφn(tn) whentn=-T/2+nT/N.

    The phase difference betweenφn(tn) andφn+1(tn+1) can be calculated as

    (6)

    It contains two parts: the constant phase and the varying phase. The varying phase is rewritten as

    (7)

    Apparently, to ensure the two adjacent subpulses have a constant phase difference, 3BT/N2in the varying partφ(n) which prevents the phase of adjacent subpulses being constant should be an integer. Thereforeφ(n) will be an integer multiple of 2π. Under such condition, multi-subpulse process can be applied.

    1.3 Multi-subpulse process of chirp

    According to the aforementioned principal, subpulse numberNis properly chosen. Then multi-subpulse process can be performed for the large time-bandwidth product chirp signal. The flow chart of the processing is demonstrated in Fig.2.

    Fig.2 Flow chart of multi-subpulse process of large time-bandwidth product chirp signal

    As shown in Fig. 2, the intermediate frequency chirp signal is assigned intoNchannels. In each channel, the signal will firstly pass through the phase detectors, whose expression is given in Eq.(3). Then the frequency-shifted signals must be lowpass-filtered so that the large time-bandwidth product chirp signal can be divided up intoNsubpulses inNdifferent channels. To process the signal completely in the digital domain, the A/D converter and digital IQ processor are employed. Since each subpulse is a complex chirp signal whose time durance isT0and bandwidth isB0, the sampling rate of A/D converter can be dramatically decreased to 1/Nof the direct sampling case.

    To improve the SNR, pulse compression is performed to each subpulse using the matched filter processing. Meanwhile, the phase influence caused by the Doppler must be compensated so that the pulse train can be integrated coherently. Since the original chirp is a wideband signal, it cannot compensate the phase by using the uniform compensation coefficient. However, it is much easier for the subpulses to compensate the phase by using different coefficients in different frequency channels, because these subpulses are narrowband signals.

    Assuming the target moves towards radar in a constant velocityv, and it locates at an initial radial range ofR0. The IF chirp can be rewritten as

    (8)

    wherecis speed of light,fcis the carrier frequency,Ris determined by

    R=R0-mvTr,m=0,1,…,M-1

    (9)

    wheremis the pulse or frame number, andTris the pulse repetition interval.

    When the envelope movement of the totalMframe is less than half of the pulsewidth after compression, which is

    (10)

    The envelope movement can be ignored. From Eq.(10), we have

    v

    (11)

    It shows that the long coherent integration time requires that the target must have a limited velocity. Furthermore, with the bandwidth of the subpulse increase, the velocity limit gets stricter.

    Similarly, the target’s velocity will influence the phase. To get rid of these effects caused by the target’s motion, compensation must be applied for each subpulse.

    The first compensation coefficient which is applied in subpulse compression step eliminates the waveform dispersion caused by the target’s motion. That is

    p1(t)=exp(-j4πkvct2/c)

    (12)

    wherevcis the cued velocity which is provided by radar tracking. The second compensation coefficient is

    (13)

    wheref0=fc-B/2 is the start frequency. The first term compensates the frame influence, and the second term compensates the subpulse influence.

    Note that it is a predominant advantage for these subpulses to compensate the velocity influence, because each subpulse can be compensated at each frequency channel respectively. Hence, it makes the long-time coherent integration feasible.

    After the velocity compensation, PD process can be done for the same frequency subpulses in different frames by using FFT. This approach can distinguish targets from different velocities.

    Finally, we collect the data from same Doppler bins and obtain the high range resolution profile over a large range window by using inverse FFT (IFFT). This step is similar with the process of stepped frequency signal and it avoids the large range window problem in stretch processing. Then the two-dimension R-D high resolution profile can be obtained. The following constant false alarm detection is performed, and it results in the accurate range and velocity measurements of the detected target.

    1.4 Performance of proposed method

    Here we illustrate the performance of the proposed method and three methods in the literatures: the matched filter processor, the stretch processor and the subband pulse compression processor. Assume the chirp signal has a large time-bandwidth product, the comparisons are listed in Tab.1.

    Tab.1 Difference of the four methods

    From Tab.1, we can see that multi-subpulse process requires a sampling rate of 2B/N, which is greatly reduced compared to the matched filter processor. Since the original chirp is divided intoNsubpulses,Nparallel channels can be processed simultaneously. Thus the computation time decreases sharply. Moreover, the subpulse process makes motion compensation at different frequencies possible. And it obtains HRRP over a large range window unlike the stretch processing. The most significant benefit is that the proposed method can realize long-time coherent integration for high speed target.

    2 Simulations and field experiments

    2.1 Simulations

    In order to validate the correctness of the proposed method, simulations are performed. Suppose theXband chirp has a pulsewidth of 20 μs and its bandwidth is 1 GHz. The time repetition interval is 100 μs. According to the principal of choosing subpulse number, the number is set to 20. Thus the pulse duration of subpulse is 1 μs and the bandwidth is 50 MHz. The sampling rate is 100 MHz. Assuming the target locates at a distance of 265 m relative to the range window, its velocity is 400 m/s and the cued velocity is 370 m/s. The SNR level of original signal is -20 dB.

    According to the parameter listed above, the maximum unambiguous range is 3 m, the maximum unambiguous velocity is 150 m/s. And the maximum velocity with which the envelope movement can be neglected is 937.5 m/s. It is much larger than the target speed in our scene. The one-dimension HRRP of matched filter processor and multi-subpulse process are plotted in Fig.3.

    Fig.3 One-dimension HRRP using matched filter and multi-subpulse process

    From Fig.3, it can be seen that the multi-subpulse process approximately has the same performance with matched filter processor. Their HRRPs almost have the same peak side lobe ratio (PSLR) and the same mainbeam width. However, the latter method requires much smaller sampling rate and much shorter computation time.

    The two-dimension high resolution profiles using matched filter processor and multi-subpulse process are presented respectively in Fig.4. The integration pulse number is 16. We can evidently see that multi-subpulse process of the large time-bandwidth product chirp signal can integrate the pulses coherently in spite of the high speed motion of target. In contrast,the matched filter processor fails to integrate coherently. Therefore the R-D profile disperses due to the high speed motion.

    Fig.4 Two-dimension R-D high resolution profile of matched filter and multi-subpulse process

    2.2 Field experiments

    To further prove the feasibility of the proposed method, field experiments are carried out. The original chirp signal operates atXband with pulsewidth of 200 μs and bandwidth of 1 GHz. The subpulse number is chosen as 20. Fig.5a is the HRRP of a civil airplane using matched filter processor while Fig.5b using the multi-subpulse process. Note that thex-axis just indicates the relative range but not the absolute range. Comparing the two HRRPs, they are almost the same except that the HRRP after multi-subpulse process contains grating lobes with a level of -25 dB. And eliminating the grating lobes will be our major work in the following research.

    Fig.5 HRRP of civil airplane using matched filter and multi-subpulse process

    3 Conclusion

    We have proposed a method called multi-subpulse process for the large time-bandwidth product chirp signal. The proposed method compresses the original chirp signal with a relatively low sampling rate so that the computation time can be decreased significantly. It also circumvents the large range window problem in stretch processing. More importantly, pulses can be integrated coherently in a long time using the proposed method. To verify the feasibility of the presented method, simulations and field experiments have been performed and promising results have been achieved. Hence, the presented novel method provides a well performed solution to the real time and coherent integration problem of wideband chirp signal.

    [1] Mahafza B M, Elsherbeni A Z. MATLAB simulations for radar systems design[M]. Florida: CRC Press, 2004.

    [2] Caputi W J. Stretch: a time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic System, 1971, 7(2): 269-278.

    [3] Middleton R J C. Dechirp-on-receive linearly frequency modulated radar as a matched-filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 3(3): 2716-2718.

    [4] Long T, Wang Y, Zeng T. Signal-to-noise ratio in stretch processing[J]. Electronics Letters, 2010, 46(10): 720-721.

    [5] Wang Jun, Cai Duoduo, Wen Yaya. Comparison of matched filter and dechirp processing used in Linear Frequency Modulation[C]∥International Conference on Computing, Control and Industrial Engineering, Piscataway, NJ, USA, 2011.

    [6] Zhu Fengbo, Yang Wenjun, Deng Zhenmiao. A study on coherent wideband phased-array radar systems based on dechirp processing[J]. Modern Radar, 2011, 33(2): 42-46. (in Chinese)

    [7] Rabinkin D, Truong N. Optimum subband filterbank design for radar array signal processing with pulse compression[C]∥the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, Piscataway, NJ, USA, 2000.

    [8] Fu Wei, Li Ming, Liu Fang. A radar wideband receiving method based on subband pulse compression[J]. Fire Control Radar Technology, 2010, 39(4): 47-51. (in Chinese)

    [9] Shui Penglang, Bao Zheng. A pulse compression method of UWB radar based on intersection of frequency spectrum[J]. Acta Electronica Sinica, 1999, 27(6): 50-53. (in Chinese)

    [10] Yuan Haojuan, Gao Meiguo. Signal processing of mutli-frame stepped frequency radar based on keystone transform[J]. Transaction of Beijing Institute of Technology, 2008, 28(11): 1023-1026. (in Chinese)

    [11] Liu Haibo, Lu Jundao. Target motion compensation algorithm based on keystone transform for wideband pulse Doppler radar[J]. Transaction of Beijing Institute of Technology, 2012, 32(6): 625-630. (in Chinese)

    [12] Liu Haibo, Zhao Xiaona, Lü Huihui. Parameter design of stepped frequency waveform and its signal processing algorithm in cluter[J]. Transaction of Beijing Institute of Technology, 2013, 33(6): 638-643. (in Chinese)

    [13] Yuan Haojuan, Gao Meiguo, Mu Jianchao. Multi-frame stepped frequency signal processing based on Doppler bin alignment[J]. Journal of Electronics & Information Technology,2009, 31(7): 1659-1663. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0411

    TN 957.51 Document code: A Article ID: 1004- 0579(2015)04- 0501- 07

    Received 2014- 02- 09

    Supported by the National Natural Science Foundation of China (61301189)

    E-mail: liuquanhua@bit.edu.cn

    国产欧美日韩一区二区三| 欧美日韩亚洲高清精品| 一区二区日韩欧美中文字幕| 久久久久国内视频| 国产欧美日韩综合在线一区二区| xxx96com| 欧美人与性动交α欧美软件| 国产av在哪里看| 久久精品影院6| 日韩高清综合在线| 免费久久久久久久精品成人欧美视频| 日韩免费高清中文字幕av| 成人av一区二区三区在线看| 岛国视频午夜一区免费看| 国产精品久久久久久人妻精品电影| 国产麻豆69| 看免费av毛片| 亚洲精品国产区一区二| 亚洲成人国产一区在线观看| 人成视频在线观看免费观看| 大码成人一级视频| 国产免费男女视频| 亚洲美女黄片视频| 国产成人精品在线电影| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| cao死你这个sao货| 精品久久久久久成人av| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 色综合站精品国产| 在线观看免费午夜福利视频| 99精品在免费线老司机午夜| 欧美日韩亚洲高清精品| 女生性感内裤真人,穿戴方法视频| 午夜免费激情av| www.熟女人妻精品国产| 在线观看免费高清a一片| 亚洲在线自拍视频| 欧美日韩乱码在线| 免费观看人在逋| 一夜夜www| 亚洲人成电影观看| 久久精品亚洲av国产电影网| 操出白浆在线播放| 女人精品久久久久毛片| 婷婷丁香在线五月| 亚洲精品国产色婷婷电影| 夜夜躁狠狠躁天天躁| 亚洲在线自拍视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线美女| 亚洲成人精品中文字幕电影 | 大陆偷拍与自拍| 电影成人av| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| 又黄又爽又免费观看的视频| 丝袜在线中文字幕| 国产精品香港三级国产av潘金莲| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 日本wwww免费看| 怎么达到女性高潮| 曰老女人黄片| 丰满饥渴人妻一区二区三| 国产野战对白在线观看| 国产欧美日韩精品亚洲av| 亚洲精华国产精华精| 在线观看免费午夜福利视频| 性欧美人与动物交配| 9191精品国产免费久久| 精品国产亚洲在线| 新久久久久国产一级毛片| 久久精品国产亚洲av香蕉五月| 午夜福利在线免费观看网站| 免费看十八禁软件| 校园春色视频在线观看| 一本大道久久a久久精品| 午夜两性在线视频| 国产野战对白在线观看| 精品乱码久久久久久99久播| 久久人妻福利社区极品人妻图片| 日本免费a在线| 欧美日韩乱码在线| 久久中文字幕人妻熟女| 交换朋友夫妻互换小说| 男女之事视频高清在线观看| 日韩有码中文字幕| 国产日韩一区二区三区精品不卡| 国产精品98久久久久久宅男小说| 伊人久久大香线蕉亚洲五| 男女下面进入的视频免费午夜 | 伦理电影免费视频| 日韩大尺度精品在线看网址 | 91老司机精品| 国产成+人综合+亚洲专区| 久久香蕉精品热| 国产亚洲精品第一综合不卡| 亚洲,欧美精品.| 51午夜福利影视在线观看| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| 精品国内亚洲2022精品成人| 亚洲av五月六月丁香网| 波多野结衣高清无吗| 亚洲成人国产一区在线观看| 亚洲国产精品一区二区三区在线| 国产色视频综合| 日韩大尺度精品在线看网址 | 亚洲中文av在线| 国产精品爽爽va在线观看网站 | 亚洲,欧美精品.| 久久午夜亚洲精品久久| 一区二区三区国产精品乱码| 91成人精品电影| 俄罗斯特黄特色一大片| 一级片'在线观看视频| 精品福利观看| 岛国视频午夜一区免费看| 后天国语完整版免费观看| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 国产午夜精品久久久久久| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 亚洲国产毛片av蜜桃av| 黑丝袜美女国产一区| 中出人妻视频一区二区| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 一进一出抽搐动态| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 国产三级在线视频| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 亚洲伊人色综图| 一夜夜www| 成人18禁在线播放| 纯流量卡能插随身wifi吗| 极品教师在线免费播放| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线播放一区| 日本a在线网址| www.熟女人妻精品国产| 女人被躁到高潮嗷嗷叫费观| 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 亚洲精品粉嫩美女一区| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 国产精品日韩av在线免费观看 | 亚洲专区字幕在线| 在线永久观看黄色视频| 三级毛片av免费| 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 在线观看免费午夜福利视频| 欧美国产精品va在线观看不卡| 久久天堂一区二区三区四区| 日本一区二区免费在线视频| 久久精品亚洲熟妇少妇任你| 亚洲av成人av| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看.| 国产精品二区激情视频| 在线av久久热| 精品国产超薄肉色丝袜足j| 国产精品日韩av在线免费观看 | 欧美精品啪啪一区二区三区| 宅男免费午夜| 亚洲成a人片在线一区二区| 9热在线视频观看99| 国产精品一区二区三区四区久久 | 亚洲熟妇中文字幕五十中出 | 国产精品一区二区精品视频观看| 首页视频小说图片口味搜索| 淫妇啪啪啪对白视频| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av在线| 国产一区二区三区在线臀色熟女 | 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 伦理电影免费视频| 亚洲精品在线美女| www.999成人在线观看| 人人妻人人澡人人看| 丝袜美足系列| 男女午夜视频在线观看| 大陆偷拍与自拍| 女人精品久久久久毛片| 黑人操中国人逼视频| 在线视频色国产色| 国产伦人伦偷精品视频| 国产精品偷伦视频观看了| √禁漫天堂资源中文www| 亚洲专区字幕在线| 黑人巨大精品欧美一区二区蜜桃| 国产黄a三级三级三级人| 后天国语完整版免费观看| 成人18禁高潮啪啪吃奶动态图| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 欧美在线一区亚洲| 精品午夜福利视频在线观看一区| 中文字幕精品免费在线观看视频| 人人妻,人人澡人人爽秒播| 美女高潮到喷水免费观看| 中文字幕人妻熟女乱码| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 叶爱在线成人免费视频播放| 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜 | 1024香蕉在线观看| 久99久视频精品免费| 国产1区2区3区精品| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区在线不卡| 久久国产精品影院| 亚洲伊人色综图| 90打野战视频偷拍视频| 久99久视频精品免费| 久久青草综合色| 国产伦一二天堂av在线观看| 99久久精品国产亚洲精品| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 一级a爱视频在线免费观看| 三上悠亚av全集在线观看| 久久久久久久午夜电影 | 韩国精品一区二区三区| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 涩涩av久久男人的天堂| 午夜亚洲福利在线播放| 精品久久蜜臀av无| 午夜91福利影院| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 国产成人啪精品午夜网站| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 可以在线观看毛片的网站| 97碰自拍视频| 国产伦人伦偷精品视频| 多毛熟女@视频| 久久精品91蜜桃| 国产一区二区在线av高清观看| 日本wwww免费看| 国产精品乱码一区二三区的特点 | 男女午夜视频在线观看| 日韩视频一区二区在线观看| 女人精品久久久久毛片| 欧美不卡视频在线免费观看 | 99精国产麻豆久久婷婷| 亚洲男人的天堂狠狠| 亚洲国产欧美日韩在线播放| 日韩三级视频一区二区三区| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址 | 老汉色∧v一级毛片| 19禁男女啪啪无遮挡网站| 超色免费av| 两个人看的免费小视频| 九色亚洲精品在线播放| 国产精品免费一区二区三区在线| 免费搜索国产男女视频| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 久久精品亚洲av国产电影网| 99精品在免费线老司机午夜| www.自偷自拍.com| 精品国产乱码久久久久久男人| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 在线观看www视频免费| 欧美日本中文国产一区发布| 日本wwww免费看| 超碰成人久久| a级片在线免费高清观看视频| 麻豆国产av国片精品| 亚洲av片天天在线观看| 国产真人三级小视频在线观看| 99久久国产精品久久久| 国产无遮挡羞羞视频在线观看| 夜夜爽天天搞| av电影中文网址| 国产精品日韩av在线免费观看 | 国产精品1区2区在线观看.| 香蕉丝袜av| 看片在线看免费视频| 人人妻人人爽人人添夜夜欢视频| 一进一出抽搐gif免费好疼 | 老司机在亚洲福利影院| av有码第一页| 国产片内射在线| 在线观看一区二区三区激情| 国产亚洲欧美98| 国产成人欧美| 国产黄色免费在线视频| 国产精品98久久久久久宅男小说| 在线看a的网站| 久久精品国产综合久久久| 亚洲熟妇中文字幕五十中出 | 超碰成人久久| 真人一进一出gif抽搐免费| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 久久久久亚洲av毛片大全| 久久人妻熟女aⅴ| xxx96com| 神马国产精品三级电影在线观看 | 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 香蕉国产在线看| 色老头精品视频在线观看| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 欧美人与性动交α欧美软件| 午夜a级毛片| 午夜福利在线观看吧| 一级片'在线观看视频| 国产视频一区二区在线看| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 曰老女人黄片| 免费高清视频大片| 国产成人欧美在线观看| 亚洲欧美日韩另类电影网站| 国产一区二区三区视频了| 在线观看免费视频网站a站| av超薄肉色丝袜交足视频| 亚洲欧美日韩高清在线视频| 80岁老熟妇乱子伦牲交| 欧洲精品卡2卡3卡4卡5卡区| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 很黄的视频免费| 欧美+亚洲+日韩+国产| 久久久国产成人免费| 妹子高潮喷水视频| 国产精品成人在线| 欧美亚洲日本最大视频资源| 99精品久久久久人妻精品| 国产一区二区三区视频了| av网站免费在线观看视频| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| netflix在线观看网站| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 美女高潮喷水抽搐中文字幕| 国产精品永久免费网站| 欧美午夜高清在线| 两个人看的免费小视频| 十八禁网站免费在线| 黄色a级毛片大全视频| 亚洲av美国av| 高清在线国产一区| 欧美午夜高清在线| av天堂久久9| 婷婷六月久久综合丁香| 免费av中文字幕在线| 久热这里只有精品99| 法律面前人人平等表现在哪些方面| 国产主播在线观看一区二区| 亚洲精品国产色婷婷电影| 午夜免费观看网址| 午夜免费鲁丝| 88av欧美| xxxhd国产人妻xxx| 琪琪午夜伦伦电影理论片6080| 啦啦啦在线免费观看视频4| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| 午夜福利,免费看| 亚洲在线自拍视频| 女生性感内裤真人,穿戴方法视频| 啦啦啦在线免费观看视频4| 欧美激情极品国产一区二区三区| 亚洲av片天天在线观看| 天堂中文最新版在线下载| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 欧美国产精品va在线观看不卡| а√天堂www在线а√下载| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 亚洲 欧美 日韩 在线 免费| 欧美人与性动交α欧美精品济南到| 身体一侧抽搐| av福利片在线| 欧美+亚洲+日韩+国产| 色婷婷av一区二区三区视频| 亚洲第一av免费看| 在线播放国产精品三级| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 美女高潮到喷水免费观看| 热re99久久国产66热| 淫秽高清视频在线观看| 精品卡一卡二卡四卡免费| 极品教师在线免费播放| 岛国在线观看网站| 麻豆av在线久日| 亚洲成人免费电影在线观看| 欧美乱妇无乱码| 悠悠久久av| 黄色片一级片一级黄色片| 亚洲精品在线观看二区| 性欧美人与动物交配| 欧美在线黄色| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 窝窝影院91人妻| 久久久精品欧美日韩精品| 亚洲少妇的诱惑av| 大型黄色视频在线免费观看| 久久这里只有精品19| 国产av在哪里看| 国产成人欧美在线观看| 日韩精品免费视频一区二区三区| 成人影院久久| 欧美激情极品国产一区二区三区| 91在线观看av| 大型av网站在线播放| 亚洲精品一卡2卡三卡4卡5卡| www.www免费av| 色哟哟哟哟哟哟| 免费在线观看黄色视频的| 18禁观看日本| 十分钟在线观看高清视频www| 国产xxxxx性猛交| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 亚洲av五月六月丁香网| 青草久久国产| 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 亚洲五月婷婷丁香| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 欧美午夜高清在线| 国产激情欧美一区二区| 国产亚洲精品久久久久5区| 欧美精品亚洲一区二区| 一区在线观看完整版| 国产精品影院久久| av网站在线播放免费| 国产一卡二卡三卡精品| 丁香六月欧美| 精品免费久久久久久久清纯| 亚洲人成网站在线播放欧美日韩| 真人一进一出gif抽搐免费| 亚洲精品在线观看二区| 多毛熟女@视频| 亚洲久久久国产精品| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 国产精品免费视频内射| 99精品久久久久人妻精品| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 欧美日本中文国产一区发布| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 亚洲专区中文字幕在线| av网站在线播放免费| 久久精品国产清高在天天线| 免费在线观看日本一区| 欧美激情高清一区二区三区| 国产精品亚洲一级av第二区| 精品无人区乱码1区二区| 亚洲国产看品久久| 久久人妻av系列| 90打野战视频偷拍视频| 亚洲色图av天堂| 午夜免费激情av| 日韩欧美国产一区二区入口| 一级片'在线观看视频| 深夜精品福利| 日韩免费高清中文字幕av| 夜夜爽天天搞| 国产精品综合久久久久久久免费 | 黄片大片在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 人妻久久中文字幕网| 国产精品一区二区三区四区久久 | 国产欧美日韩一区二区精品| 在线视频色国产色| 欧美久久黑人一区二区| 99国产综合亚洲精品| 少妇 在线观看| 女警被强在线播放| 国产又色又爽无遮挡免费看| 国产99久久九九免费精品| 黄频高清免费视频| 热re99久久精品国产66热6| 97超级碰碰碰精品色视频在线观看| 精品人妻在线不人妻| 国产精品野战在线观看 | 黑人巨大精品欧美一区二区mp4| 国产国语露脸激情在线看| 国产又色又爽无遮挡免费看| 黄色怎么调成土黄色| 久久人妻熟女aⅴ| 欧美成人午夜精品| 99久久精品国产亚洲精品| 国产免费av片在线观看野外av| 在线观看免费高清a一片| 免费人成视频x8x8入口观看| 日韩免费av在线播放| 高清av免费在线| 亚洲精品粉嫩美女一区| 激情在线观看视频在线高清| 久99久视频精品免费| avwww免费| 琪琪午夜伦伦电影理论片6080| 国产成人欧美在线观看| 精品久久久久久,| 成熟少妇高潮喷水视频| 久久国产精品男人的天堂亚洲| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 精品日产1卡2卡| 久久狼人影院| 成人亚洲精品av一区二区 | 日韩大码丰满熟妇| 国产精品1区2区在线观看.| 午夜免费激情av| 亚洲精品国产区一区二| 高清毛片免费观看视频网站 | 亚洲自拍偷在线| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 校园春色视频在线观看| 黄色女人牲交| 国产在线精品亚洲第一网站| 天堂动漫精品| 日日摸夜夜添夜夜添小说| 露出奶头的视频| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 大香蕉久久成人网| 国产精品综合久久久久久久免费 | 国产精品日韩av在线免费观看 | 丝袜美足系列| 国产有黄有色有爽视频| 欧美日韩瑟瑟在线播放| 久久亚洲真实| 亚洲人成网站在线播放欧美日韩| 两性夫妻黄色片| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 久久久国产一区二区| av视频免费观看在线观看| 亚洲情色 制服丝袜| 亚洲国产毛片av蜜桃av| 亚洲成人国产一区在线观看| 成人18禁高潮啪啪吃奶动态图| 免费av毛片视频| 人人妻人人添人人爽欧美一区卜| 啦啦啦 在线观看视频| 黄片播放在线免费| 国产黄a三级三级三级人| 人妻丰满熟妇av一区二区三区| 色综合站精品国产| 黑人操中国人逼视频| 日本免费a在线| 岛国在线观看网站| 18美女黄网站色大片免费观看| 久久香蕉精品热| 亚洲成国产人片在线观看| 日本黄色日本黄色录像| 欧美精品亚洲一区二区| e午夜精品久久久久久久| 一二三四社区在线视频社区8| 99国产精品99久久久久| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| av网站免费在线观看视频| 97人妻天天添夜夜摸| 日韩大码丰满熟妇| 欧美日韩亚洲高清精品|