• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    2015-04-22 02:39:02ZHANGHonggang張洪綱FANHuayu范花玉HEShaohua何少華LIUQuanhua劉泉華

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating (LFM) signal (i.e. chirp) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile (HRRP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field experimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent integration.

    multi-subpulse process; large time-bandwidth product; chirp signal; computational complexity; coherent integration

    In order to achieve high range resolution, radar transmits wideband pulses; while to get high signal-to-noise ratio (SNR), it is desirable to increase the pulsewidth. Pulse compression is a method which combines the high energy of a long pulsewidth with high range resolution. Among the various large time-bandwidth product signals, chirp signal is a popular choice. There are two commonly used pulse compression techniques for chirp signal: matched filter processing and stretch processing[1].

    The digital matched filter processing requires a sampling rate of at least twice the signal bandwidth according to the Nyquist sampling theorem. When radar transmits wideband chirp signals, ittypically requires an extremely high sampling rate for the analog-to-digital (A/D) converter, which increases the computational burden of real-time digital signal processing. Thus the matched filter processing is predominantly used for narrowband radar. To overcome this problem, the stretch processor is normally used in the extremely wide bandwidth chirp signal[2]. The sampling rate of this technique can be reduced significantly. The two methods have been compared and fully discussed in Refs.[3-5]. The stretch processing has two major disadvantages. It can only yield the high range resolution profile over a limited range window and long-time coherent integration is unachievable, which leads to the degradation of image quality and the failure of measuring the Doppler and micro-Doppler[6].

    Another method to process the wide bandwidth chirp signal is presented in Refs.[7-9] where pulse compression is performed in the subband domain. This method can decrease the sampling rate and reduce the processing time. However, it still has trouble in long-time coherent integration, especially for high speed targets.

    Inspired by the concept of using multi-frame stepped frequency signals to achieve long-time coherent integration[10-13], we proposed a multi-subpulse processing method for large time-bandwidth product chirp signal. It can not only decrease the computational complexity effectively, but also achieve coherent integration simultaneously for the wideband signal. To the best of the authors’ knowledge, this method has never been reported.

    1 Multi-subpulse process

    1.1 Basic concept

    The intermediate frequency (IF) chirp pulse can be expressed as

    (1)

    where

    (2)

    and wheretrepresents time,Tpdenotes the pulsewidth,fIis the intermediate frequency, andkis the chirp slope. The bandwidth is determined byB=kTp. To get high SNR and high range resolution, the signal should have a large time-bandwidth productD=BTp.

    The multi-subpulse processing method first averagely splits up chirp signal intoNsubpulses, whereNis an integer, as shown in Fig.1. The resulting subpulses are still chirp signals whose pulsewidth is denoted byT0=Tp/Nand bandwidth is determined byB0=Δf=B/N, where Δfis the frequency division interval.

    Fig.1 Division of large time-bandwidth product chirp signal in time-frequency domain

    1.2 Choice of division numberN

    The division numberNis properly chosen to meet the condition that time-bandwidth product of the subpulse should be much greater than one, i.e.B0T0?1. Thus the frequency spectrum of the subpulse is approximately close to rectangle so that pulse compression can be applied.

    The proposed division presented here is performed simultaneously inNchannels by firstly mixing with different phase detectors and then passing through lowpass filters. The phase detectors in different channels can be written as

    (3)

    wherendenotes thenth subpulse.

    After mixing with the phase detectors and lowpass filtering, we have

    (4)

    From Eq.(4), it is obvious that each subpulse has a pulse duration ofT0and has a bandwidth ofB0=kT0. TheNsubpulses become the stepped frequency like signal whose frequency stepping interval Δfis the single subpulse bandwidthB0. To make the two types of signals equivalent, the initial phase of theNsubpulses must be linear, that is to say, the adjacent two subpulses should have a constant phase difference.

    From Eq.(4), the phase of each subpulsecan be represented as

    (5)

    Its start frequency is -B/2+nB/Nand the bandwidth is determined byB0=B/N. The initial phase of each subpulse isφn(tn) whentn=-T/2+nT/N.

    The phase difference betweenφn(tn) andφn+1(tn+1) can be calculated as

    (6)

    It contains two parts: the constant phase and the varying phase. The varying phase is rewritten as

    (7)

    Apparently, to ensure the two adjacent subpulses have a constant phase difference, 3BT/N2in the varying partφ(n) which prevents the phase of adjacent subpulses being constant should be an integer. Thereforeφ(n) will be an integer multiple of 2π. Under such condition, multi-subpulse process can be applied.

    1.3 Multi-subpulse process of chirp

    According to the aforementioned principal, subpulse numberNis properly chosen. Then multi-subpulse process can be performed for the large time-bandwidth product chirp signal. The flow chart of the processing is demonstrated in Fig.2.

    Fig.2 Flow chart of multi-subpulse process of large time-bandwidth product chirp signal

    As shown in Fig. 2, the intermediate frequency chirp signal is assigned intoNchannels. In each channel, the signal will firstly pass through the phase detectors, whose expression is given in Eq.(3). Then the frequency-shifted signals must be lowpass-filtered so that the large time-bandwidth product chirp signal can be divided up intoNsubpulses inNdifferent channels. To process the signal completely in the digital domain, the A/D converter and digital IQ processor are employed. Since each subpulse is a complex chirp signal whose time durance isT0and bandwidth isB0, the sampling rate of A/D converter can be dramatically decreased to 1/Nof the direct sampling case.

    To improve the SNR, pulse compression is performed to each subpulse using the matched filter processing. Meanwhile, the phase influence caused by the Doppler must be compensated so that the pulse train can be integrated coherently. Since the original chirp is a wideband signal, it cannot compensate the phase by using the uniform compensation coefficient. However, it is much easier for the subpulses to compensate the phase by using different coefficients in different frequency channels, because these subpulses are narrowband signals.

    Assuming the target moves towards radar in a constant velocityv, and it locates at an initial radial range ofR0. The IF chirp can be rewritten as

    (8)

    wherecis speed of light,fcis the carrier frequency,Ris determined by

    R=R0-mvTr,m=0,1,…,M-1

    (9)

    wheremis the pulse or frame number, andTris the pulse repetition interval.

    When the envelope movement of the totalMframe is less than half of the pulsewidth after compression, which is

    (10)

    The envelope movement can be ignored. From Eq.(10), we have

    v

    (11)

    It shows that the long coherent integration time requires that the target must have a limited velocity. Furthermore, with the bandwidth of the subpulse increase, the velocity limit gets stricter.

    Similarly, the target’s velocity will influence the phase. To get rid of these effects caused by the target’s motion, compensation must be applied for each subpulse.

    The first compensation coefficient which is applied in subpulse compression step eliminates the waveform dispersion caused by the target’s motion. That is

    p1(t)=exp(-j4πkvct2/c)

    (12)

    wherevcis the cued velocity which is provided by radar tracking. The second compensation coefficient is

    (13)

    wheref0=fc-B/2 is the start frequency. The first term compensates the frame influence, and the second term compensates the subpulse influence.

    Note that it is a predominant advantage for these subpulses to compensate the velocity influence, because each subpulse can be compensated at each frequency channel respectively. Hence, it makes the long-time coherent integration feasible.

    After the velocity compensation, PD process can be done for the same frequency subpulses in different frames by using FFT. This approach can distinguish targets from different velocities.

    Finally, we collect the data from same Doppler bins and obtain the high range resolution profile over a large range window by using inverse FFT (IFFT). This step is similar with the process of stepped frequency signal and it avoids the large range window problem in stretch processing. Then the two-dimension R-D high resolution profile can be obtained. The following constant false alarm detection is performed, and it results in the accurate range and velocity measurements of the detected target.

    1.4 Performance of proposed method

    Here we illustrate the performance of the proposed method and three methods in the literatures: the matched filter processor, the stretch processor and the subband pulse compression processor. Assume the chirp signal has a large time-bandwidth product, the comparisons are listed in Tab.1.

    Tab.1 Difference of the four methods

    From Tab.1, we can see that multi-subpulse process requires a sampling rate of 2B/N, which is greatly reduced compared to the matched filter processor. Since the original chirp is divided intoNsubpulses,Nparallel channels can be processed simultaneously. Thus the computation time decreases sharply. Moreover, the subpulse process makes motion compensation at different frequencies possible. And it obtains HRRP over a large range window unlike the stretch processing. The most significant benefit is that the proposed method can realize long-time coherent integration for high speed target.

    2 Simulations and field experiments

    2.1 Simulations

    In order to validate the correctness of the proposed method, simulations are performed. Suppose theXband chirp has a pulsewidth of 20 μs and its bandwidth is 1 GHz. The time repetition interval is 100 μs. According to the principal of choosing subpulse number, the number is set to 20. Thus the pulse duration of subpulse is 1 μs and the bandwidth is 50 MHz. The sampling rate is 100 MHz. Assuming the target locates at a distance of 265 m relative to the range window, its velocity is 400 m/s and the cued velocity is 370 m/s. The SNR level of original signal is -20 dB.

    According to the parameter listed above, the maximum unambiguous range is 3 m, the maximum unambiguous velocity is 150 m/s. And the maximum velocity with which the envelope movement can be neglected is 937.5 m/s. It is much larger than the target speed in our scene. The one-dimension HRRP of matched filter processor and multi-subpulse process are plotted in Fig.3.

    Fig.3 One-dimension HRRP using matched filter and multi-subpulse process

    From Fig.3, it can be seen that the multi-subpulse process approximately has the same performance with matched filter processor. Their HRRPs almost have the same peak side lobe ratio (PSLR) and the same mainbeam width. However, the latter method requires much smaller sampling rate and much shorter computation time.

    The two-dimension high resolution profiles using matched filter processor and multi-subpulse process are presented respectively in Fig.4. The integration pulse number is 16. We can evidently see that multi-subpulse process of the large time-bandwidth product chirp signal can integrate the pulses coherently in spite of the high speed motion of target. In contrast,the matched filter processor fails to integrate coherently. Therefore the R-D profile disperses due to the high speed motion.

    Fig.4 Two-dimension R-D high resolution profile of matched filter and multi-subpulse process

    2.2 Field experiments

    To further prove the feasibility of the proposed method, field experiments are carried out. The original chirp signal operates atXband with pulsewidth of 200 μs and bandwidth of 1 GHz. The subpulse number is chosen as 20. Fig.5a is the HRRP of a civil airplane using matched filter processor while Fig.5b using the multi-subpulse process. Note that thex-axis just indicates the relative range but not the absolute range. Comparing the two HRRPs, they are almost the same except that the HRRP after multi-subpulse process contains grating lobes with a level of -25 dB. And eliminating the grating lobes will be our major work in the following research.

    Fig.5 HRRP of civil airplane using matched filter and multi-subpulse process

    3 Conclusion

    We have proposed a method called multi-subpulse process for the large time-bandwidth product chirp signal. The proposed method compresses the original chirp signal with a relatively low sampling rate so that the computation time can be decreased significantly. It also circumvents the large range window problem in stretch processing. More importantly, pulses can be integrated coherently in a long time using the proposed method. To verify the feasibility of the presented method, simulations and field experiments have been performed and promising results have been achieved. Hence, the presented novel method provides a well performed solution to the real time and coherent integration problem of wideband chirp signal.

    [1] Mahafza B M, Elsherbeni A Z. MATLAB simulations for radar systems design[M]. Florida: CRC Press, 2004.

    [2] Caputi W J. Stretch: a time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic System, 1971, 7(2): 269-278.

    [3] Middleton R J C. Dechirp-on-receive linearly frequency modulated radar as a matched-filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 3(3): 2716-2718.

    [4] Long T, Wang Y, Zeng T. Signal-to-noise ratio in stretch processing[J]. Electronics Letters, 2010, 46(10): 720-721.

    [5] Wang Jun, Cai Duoduo, Wen Yaya. Comparison of matched filter and dechirp processing used in Linear Frequency Modulation[C]∥International Conference on Computing, Control and Industrial Engineering, Piscataway, NJ, USA, 2011.

    [6] Zhu Fengbo, Yang Wenjun, Deng Zhenmiao. A study on coherent wideband phased-array radar systems based on dechirp processing[J]. Modern Radar, 2011, 33(2): 42-46. (in Chinese)

    [7] Rabinkin D, Truong N. Optimum subband filterbank design for radar array signal processing with pulse compression[C]∥the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, Piscataway, NJ, USA, 2000.

    [8] Fu Wei, Li Ming, Liu Fang. A radar wideband receiving method based on subband pulse compression[J]. Fire Control Radar Technology, 2010, 39(4): 47-51. (in Chinese)

    [9] Shui Penglang, Bao Zheng. A pulse compression method of UWB radar based on intersection of frequency spectrum[J]. Acta Electronica Sinica, 1999, 27(6): 50-53. (in Chinese)

    [10] Yuan Haojuan, Gao Meiguo. Signal processing of mutli-frame stepped frequency radar based on keystone transform[J]. Transaction of Beijing Institute of Technology, 2008, 28(11): 1023-1026. (in Chinese)

    [11] Liu Haibo, Lu Jundao. Target motion compensation algorithm based on keystone transform for wideband pulse Doppler radar[J]. Transaction of Beijing Institute of Technology, 2012, 32(6): 625-630. (in Chinese)

    [12] Liu Haibo, Zhao Xiaona, Lü Huihui. Parameter design of stepped frequency waveform and its signal processing algorithm in cluter[J]. Transaction of Beijing Institute of Technology, 2013, 33(6): 638-643. (in Chinese)

    [13] Yuan Haojuan, Gao Meiguo, Mu Jianchao. Multi-frame stepped frequency signal processing based on Doppler bin alignment[J]. Journal of Electronics & Information Technology,2009, 31(7): 1659-1663. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0411

    TN 957.51 Document code: A Article ID: 1004- 0579(2015)04- 0501- 07

    Received 2014- 02- 09

    Supported by the National Natural Science Foundation of China (61301189)

    E-mail: liuquanhua@bit.edu.cn

    精品人妻1区二区| 亚洲九九香蕉| 国产亚洲av高清不卡| 极品人妻少妇av视频| 亚洲中文av在线| 搡老岳熟女国产| 动漫黄色视频在线观看| 搞女人的毛片| 欧美乱妇无乱码| av在线播放免费不卡| 国产亚洲精品av在线| 免费久久久久久久精品成人欧美视频| 久久午夜亚洲精品久久| 国产精品,欧美在线| 欧美一区二区精品小视频在线| 国产一区二区三区视频了| 精品日产1卡2卡| 深夜精品福利| 大型黄色视频在线免费观看| 亚洲av五月六月丁香网| 欧美国产日韩亚洲一区| 亚洲免费av在线视频| 国产精品 国内视频| 黄频高清免费视频| 99精品欧美一区二区三区四区| 久久狼人影院| 精品电影一区二区在线| ponron亚洲| 色哟哟哟哟哟哟| 黄色毛片三级朝国网站| 免费在线观看日本一区| 色av中文字幕| 人人妻人人澡人人看| 嫩草影视91久久| 啦啦啦韩国在线观看视频| 91麻豆av在线| www.www免费av| 99国产精品免费福利视频| 欧美av亚洲av综合av国产av| 久久午夜综合久久蜜桃| 中亚洲国语对白在线视频| 久久亚洲精品不卡| 精品卡一卡二卡四卡免费| 国产黄a三级三级三级人| 一二三四在线观看免费中文在| 可以免费在线观看a视频的电影网站| 中文字幕另类日韩欧美亚洲嫩草| 少妇被粗大的猛进出69影院| 日韩 欧美 亚洲 中文字幕| 久久久久久人人人人人| 亚洲午夜精品一区,二区,三区| 久久人人爽av亚洲精品天堂| 亚洲色图 男人天堂 中文字幕| 久久人妻福利社区极品人妻图片| 国产精品久久久av美女十八| 亚洲精品在线美女| 九色国产91popny在线| 老司机午夜十八禁免费视频| 99热只有精品国产| 18禁观看日本| 亚洲电影在线观看av| 级片在线观看| 国产又爽黄色视频| 国产精品国产高清国产av| 精品国内亚洲2022精品成人| 午夜久久久在线观看| 成年人黄色毛片网站| 岛国视频午夜一区免费看| 日韩成人在线观看一区二区三区| 一级毛片高清免费大全| 香蕉国产在线看| 91av网站免费观看| 亚洲精品久久成人aⅴ小说| 99国产精品一区二区三区| 人妻丰满熟妇av一区二区三区| 国内久久婷婷六月综合欲色啪| 中文字幕av电影在线播放| 无限看片的www在线观看| 少妇熟女aⅴ在线视频| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| 搡老熟女国产l中国老女人| 日韩国内少妇激情av| 精品国产乱子伦一区二区三区| 多毛熟女@视频| 国产成人啪精品午夜网站| 很黄的视频免费| 性欧美人与动物交配| 国产区一区二久久| 国产精品亚洲av一区麻豆| 午夜成年电影在线免费观看| 欧美一级毛片孕妇| 国产精品久久电影中文字幕| 精品午夜福利视频在线观看一区| 日本三级黄在线观看| 久久午夜综合久久蜜桃| 欧美乱码精品一区二区三区| 色老头精品视频在线观看| 侵犯人妻中文字幕一二三四区| 欧美一区二区精品小视频在线| 欧美成人午夜精品| 欧美国产精品va在线观看不卡| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 天天一区二区日本电影三级 | 亚洲精品久久国产高清桃花| 国产精品精品国产色婷婷| 亚洲一码二码三码区别大吗| 成在线人永久免费视频| 黑丝袜美女国产一区| 久久久久久国产a免费观看| 国产一卡二卡三卡精品| 岛国视频午夜一区免费看| 日韩欧美一区视频在线观看| 国产亚洲精品第一综合不卡| 精品久久久久久,| 亚洲成人久久性| 91字幕亚洲| 国产欧美日韩一区二区三区在线| 亚洲精品一区av在线观看| 欧美日韩黄片免| 精品一区二区三区视频在线观看免费| 国产精品亚洲美女久久久| 色老头精品视频在线观看| 午夜激情av网站| 国产亚洲精品av在线| 欧美日本视频| 国产亚洲精品av在线| 韩国av一区二区三区四区| 黄色a级毛片大全视频| 久久久精品国产亚洲av高清涩受| 久久天躁狠狠躁夜夜2o2o| 亚洲性夜色夜夜综合| 欧美午夜高清在线| 欧美av亚洲av综合av国产av| 国产精品98久久久久久宅男小说| 99久久99久久久精品蜜桃| 人妻丰满熟妇av一区二区三区| √禁漫天堂资源中文www| 午夜精品久久久久久毛片777| 亚洲中文av在线| 精品一品国产午夜福利视频| 欧美性长视频在线观看| 精品一区二区三区av网在线观看| 久9热在线精品视频| 在线观看午夜福利视频| 国产av又大| 可以在线观看的亚洲视频| 99精品久久久久人妻精品| 成人国语在线视频| 国产亚洲欧美98| 人人澡人人妻人| 国产激情久久老熟女| 欧美国产日韩亚洲一区| 久久久久国产一级毛片高清牌| 精品无人区乱码1区二区| 桃色一区二区三区在线观看| 久久亚洲真实| 国产单亲对白刺激| 看免费av毛片| 国产免费男女视频| 一二三四在线观看免费中文在| 亚洲中文字幕日韩| 日韩 欧美 亚洲 中文字幕| 999久久久精品免费观看国产| 在线观看www视频免费| 侵犯人妻中文字幕一二三四区| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩精品网址| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久久久毛片| 国产午夜福利久久久久久| 国产亚洲精品久久久久久毛片| 夜夜看夜夜爽夜夜摸| 麻豆成人av在线观看| 9191精品国产免费久久| 国产亚洲精品综合一区在线观看 | 777久久人妻少妇嫩草av网站| 啦啦啦韩国在线观看视频| 欧美激情久久久久久爽电影 | 91麻豆精品激情在线观看国产| 长腿黑丝高跟| 亚洲人成77777在线视频| www.www免费av| 久99久视频精品免费| 18禁黄网站禁片午夜丰满| 无人区码免费观看不卡| 老司机午夜福利在线观看视频| 久久人人爽av亚洲精品天堂| 看免费av毛片| 成人永久免费在线观看视频| 91在线观看av| 在线十欧美十亚洲十日本专区| 国产亚洲精品一区二区www| 国产日韩一区二区三区精品不卡| 天堂影院成人在线观看| 日本三级黄在线观看| 麻豆一二三区av精品| 午夜老司机福利片| 亚洲精华国产精华精| 亚洲欧美一区二区三区黑人| 国产精品自产拍在线观看55亚洲| 淫秽高清视频在线观看| 亚洲九九香蕉| 亚洲一码二码三码区别大吗| 亚洲欧美一区二区三区黑人| 久久人妻福利社区极品人妻图片| 叶爱在线成人免费视频播放| 免费观看人在逋| 一个人免费在线观看的高清视频| 亚洲av日韩精品久久久久久密| 99热只有精品国产| 91精品三级在线观看| 在线天堂中文资源库| 国产一卡二卡三卡精品| 变态另类丝袜制服| 亚洲中文av在线| 精品国产乱码久久久久久男人| 国产精品爽爽va在线观看网站 | 中出人妻视频一区二区| www.精华液| 欧洲精品卡2卡3卡4卡5卡区| 久久人人爽av亚洲精品天堂| 日韩大尺度精品在线看网址 | 亚洲精品一区av在线观看| 久久精品国产亚洲av香蕉五月| 在线永久观看黄色视频| 亚洲精品美女久久久久99蜜臀| 黄色女人牲交| 最好的美女福利视频网| 亚洲精品在线观看二区| 美女大奶头视频| 亚洲少妇的诱惑av| 亚洲三区欧美一区| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜福利久久久久久| 久久久国产欧美日韩av| 男女床上黄色一级片免费看| 一个人免费在线观看的高清视频| 丝袜人妻中文字幕| 成年人黄色毛片网站| 国产成人啪精品午夜网站| 9色porny在线观看| 一本综合久久免费| 欧美 亚洲 国产 日韩一| 9热在线视频观看99| 国产高清视频在线播放一区| 亚洲国产看品久久| 99国产精品免费福利视频| 91成年电影在线观看| 欧美在线一区亚洲| 大香蕉久久成人网| 女警被强在线播放| 亚洲成国产人片在线观看| 法律面前人人平等表现在哪些方面| 91大片在线观看| 中文字幕高清在线视频| 曰老女人黄片| 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱 | 桃色一区二区三区在线观看| 日本三级黄在线观看| 亚洲在线自拍视频| 免费在线观看视频国产中文字幕亚洲| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 精品免费久久久久久久清纯| 夜夜夜夜夜久久久久| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 午夜福利18| 深夜精品福利| 丝袜美腿诱惑在线| 日日干狠狠操夜夜爽| 最近最新免费中文字幕在线| 后天国语完整版免费观看| 中出人妻视频一区二区| 精品高清国产在线一区| 欧美乱码精品一区二区三区| 欧美激情久久久久久爽电影 | 国产私拍福利视频在线观看| 亚洲熟妇熟女久久| 午夜福利免费观看在线| 日韩高清综合在线| 99久久国产精品久久久| 精品午夜福利视频在线观看一区| 久久久久久久久免费视频了| 好看av亚洲va欧美ⅴa在| 曰老女人黄片| 久久久久久人人人人人| 午夜影院日韩av| 视频区欧美日本亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 精品第一国产精品| 午夜精品国产一区二区电影| 久久久久久大精品| 欧美丝袜亚洲另类 | 久久这里只有精品19| 性少妇av在线| 日日摸夜夜添夜夜添小说| 亚洲成人久久性| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久,| 嫩草影院精品99| 人人妻人人澡人人看| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 亚洲自偷自拍图片 自拍| 免费看a级黄色片| 在线观看免费视频网站a站| 亚洲欧美一区二区三区黑人| 桃色一区二区三区在线观看| 欧美精品啪啪一区二区三区| 巨乳人妻的诱惑在线观看| 久久人妻福利社区极品人妻图片| 成年女人毛片免费观看观看9| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 制服丝袜大香蕉在线| 亚洲一区高清亚洲精品| 午夜日韩欧美国产| 久久久久亚洲av毛片大全| 露出奶头的视频| 成年人黄色毛片网站| 久久人妻av系列| 日本黄色视频三级网站网址| 欧美老熟妇乱子伦牲交| 成人手机av| 性少妇av在线| 搡老熟女国产l中国老女人| 亚洲精品国产区一区二| 午夜免费观看网址| 中亚洲国语对白在线视频| bbb黄色大片| 一级毛片精品| 男女午夜视频在线观看| 国产一区二区激情短视频| 青草久久国产| 日日夜夜操网爽| 激情视频va一区二区三区| 久久婷婷人人爽人人干人人爱 | 两个人看的免费小视频| 午夜免费成人在线视频| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 亚洲,欧美精品.| 成人三级做爰电影| 国产精品综合久久久久久久免费 | 亚洲欧美激情综合另类| 久久国产亚洲av麻豆专区| av中文乱码字幕在线| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频| 亚洲国产精品合色在线| 久久国产精品男人的天堂亚洲| 精品久久久久久久毛片微露脸| av福利片在线| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 日韩三级视频一区二区三区| 久久久久国内视频| 欧美中文综合在线视频| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 男女下面插进去视频免费观看| 精品久久蜜臀av无| 精品国产亚洲在线| 国产精品精品国产色婷婷| 黄片播放在线免费| 久久欧美精品欧美久久欧美| 国产成人系列免费观看| 十八禁人妻一区二区| 国产精品野战在线观看| 黄色女人牲交| 日韩有码中文字幕| 国产熟女xx| 亚洲片人在线观看| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 91麻豆精品激情在线观看国产| 好男人在线观看高清免费视频 | 高清在线国产一区| 嫩草影视91久久| 制服丝袜大香蕉在线| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月天丁香| 亚洲一区二区三区不卡视频| 国产av一区二区精品久久| 很黄的视频免费| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 9色porny在线观看| 久久狼人影院| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 午夜a级毛片| 91国产中文字幕| netflix在线观看网站| 男人舔女人下体高潮全视频| 夜夜爽天天搞| 我的亚洲天堂| 最好的美女福利视频网| 18禁美女被吸乳视频| 亚洲免费av在线视频| 欧美日韩精品网址| 欧美黑人欧美精品刺激| tocl精华| 亚洲一区二区三区不卡视频| av中文乱码字幕在线| 久久人妻福利社区极品人妻图片| x7x7x7水蜜桃| 国产亚洲精品综合一区在线观看 | or卡值多少钱| 很黄的视频免费| 欧美乱色亚洲激情| 国产xxxxx性猛交| 老鸭窝网址在线观看| 50天的宝宝边吃奶边哭怎么回事| 色在线成人网| 欧美成人性av电影在线观看| 精品国产乱子伦一区二区三区| 午夜影院日韩av| 夜夜爽天天搞| 91精品国产国语对白视频| 国产欧美日韩一区二区精品| 久久久久国产一级毛片高清牌| 99久久久亚洲精品蜜臀av| av网站免费在线观看视频| 人妻丰满熟妇av一区二区三区| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 亚洲国产欧美一区二区综合| 精品久久久久久久人妻蜜臀av | 久久久久国内视频| 亚洲专区字幕在线| 精品乱码久久久久久99久播| www国产在线视频色| 久久人人97超碰香蕉20202| 99riav亚洲国产免费| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 韩国av一区二区三区四区| 午夜福利免费观看在线| 窝窝影院91人妻| 在线天堂中文资源库| 91大片在线观看| 在线视频色国产色| 很黄的视频免费| 成人国产一区最新在线观看| 国产亚洲av嫩草精品影院| 国产精品99久久99久久久不卡| 国产精品精品国产色婷婷| 久久青草综合色| 亚洲成人精品中文字幕电影| 国产精品秋霞免费鲁丝片| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 亚洲第一青青草原| 亚洲avbb在线观看| 91成人精品电影| 国产麻豆69| 久久婷婷成人综合色麻豆| 18美女黄网站色大片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 美女大奶头视频| 精品国产一区二区久久| 国产一级毛片七仙女欲春2 | 免费人成视频x8x8入口观看| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 99在线视频只有这里精品首页| netflix在线观看网站| 宅男免费午夜| 很黄的视频免费| 999精品在线视频| 真人一进一出gif抽搐免费| 亚洲中文字幕一区二区三区有码在线看 | 少妇被粗大的猛进出69影院| 国产亚洲欧美精品永久| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆 | 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 在线av久久热| 亚洲国产看品久久| 国产激情久久老熟女| av视频免费观看在线观看| 午夜久久久在线观看| 亚洲自拍偷在线| 人成视频在线观看免费观看| 黄色成人免费大全| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 亚洲人成电影观看| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看 | 99香蕉大伊视频| 身体一侧抽搐| 三级毛片av免费| 免费看a级黄色片| 精品午夜福利视频在线观看一区| 一区福利在线观看| 日韩欧美国产在线观看| 天堂动漫精品| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 天天一区二区日本电影三级 | 激情视频va一区二区三区| 一区在线观看完整版| 韩国精品一区二区三区| 三级毛片av免费| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 欧美久久黑人一区二区| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 久久精品国产亚洲av高清一级| 老熟妇乱子伦视频在线观看| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 精品无人区乱码1区二区| 搡老岳熟女国产| www.熟女人妻精品国产| 岛国视频午夜一区免费看| 免费一级毛片在线播放高清视频 | 欧美国产精品va在线观看不卡| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 热99re8久久精品国产| 美女大奶头视频| 国产av一区在线观看免费| 日本精品一区二区三区蜜桃| 热re99久久国产66热| 日本a在线网址| 久久国产精品影院| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 久久狼人影院| 久久影院123| 国产黄a三级三级三级人| 亚洲午夜理论影院| 欧美成人性av电影在线观看| 一级a爱视频在线免费观看| 欧美成狂野欧美在线观看| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 亚洲中文av在线| 中文字幕精品免费在线观看视频| 免费人成视频x8x8入口观看| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 亚洲色图 男人天堂 中文字幕| 日韩精品青青久久久久久| 成人三级做爰电影| 99精品欧美一区二区三区四区| 色播在线永久视频| 亚洲aⅴ乱码一区二区在线播放 | 午夜成年电影在线免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av片天天在线观看| 高清黄色对白视频在线免费看| 成人特级黄色片久久久久久久| bbb黄色大片| 日本欧美视频一区| xxx96com| 天天添夜夜摸| 精品福利观看| 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 日本 av在线| 脱女人内裤的视频| 黄频高清免费视频| 亚洲人成网站在线播放欧美日韩| 免费在线观看黄色视频的| 亚洲成人精品中文字幕电影| 国产精品永久免费网站| 黄色视频不卡| 99国产精品一区二区三区| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 在线播放国产精品三级| 变态另类丝袜制服| 亚洲自偷自拍图片 自拍| 视频在线观看一区二区三区| 亚洲专区中文字幕在线| 精品欧美一区二区三区在线| 岛国视频午夜一区免费看| 女人爽到高潮嗷嗷叫在线视频| 久久天躁狠狠躁夜夜2o2o| 成人国产一区最新在线观看| 国产亚洲欧美精品永久| 亚洲精品美女久久久久99蜜臀| 欧美乱色亚洲激情|