• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-port-plug transmission line design of the ITER plasma position reflectometer

    2020-06-28 06:15:58MARTNEZFERNNDEZCAPPASIMONETTOESTRADADELALUNAandBLANCO
    Plasma Science and Technology 2020年6期

    J MARTíNEZ-FERNáNDEZ , á CAPPA, A SIMONETTO, T ESTRADA ,E DE LA LUNA and E J BLANCO

    1 Laboratorio Nacional de Fusión. CIEMAT, Avda Complutense 40. Madrid 28040, Spain

    2 CNR-ISTP, via Cozzi 53, 20125 Milano, Italy

    Abstract This work describes the microwave design of the transmission line housed in the in-port-plug region of the ITER plasma position reflectometer(PPR).The design of the components of the inport-plug reflectometers (located in equatorial port-plug 10 (EPP10) and in upper-port-plug 01(UPP01))is presented.Using a 3D ray tracing code,the spatial position and optimum orientation angles of each set of emission and detection antennas were determined.A feasible path was then created from the obtained antenna positions and orientations to the primary vacuum window.Oversized tall waveguides were chosen to reduce ohmic losses. Due to space constraints in the ITER crowded environment, bends in oversized waveguides were unavoidable, and thus mode conversion was produced. To keep mode conversion losses at bay, hyperbolic secant curvature bends had to be used whenever possible. However, E-plane bends in tall waveguides proved to be especially critical, making it necessary to employ other approaches when higher bending angles were needed. Mode conversion results were obtained by evaluating the mode coupling equations. Ohmic losses have also been computed and their results compared with commercial simulators, obtaining a perfect agreement.

    Keywords: reflectometry, microwave technology, ITER diagnostic(Some figures may appear in colour only in the online journal)

    1. Introduction

    The ITER plasma position reflectometer (PPR) diagnostic system is designed to provide information related to the edge electron density profile, at four defined locations distributed both poloidally and toroidally in the ITER vacuum vessel,known as gap 3, gap 4, gap 5 and gap 6, operating in the 15–75 GHz frequency range in O-mode.The antennas of gaps 4 and 6 are installed in-vessel,viewing the plasma through cutouts in the blanket modules, while those of gaps 3 and 5 are installed inside the port plugs EPP10 and UPP01,respectively,viewing the plasma through apertures in the diagnostic first wall. This document describes the work leading to the design of the waveguides connecting the gap 3 and 5 antennas to their correspondent interfaces in the primary vacuum window.Design and analysis of the transmission lines from the primary window (ex-vessel) are already presented in [1], while their structural analysis can be found in [2].

    2. Antenna placement and orientation

    Starting from two selected ITER baseline scenarios(15 MA/5.3 T/ D-T and 7.5 /2.65 T/4He), the TRUBA code [3] has been used to perform ray tracing simulations for each frequency,which allows us to determine the optimum launching direction angles (?, φ) for which the wave radiated by the emission antenna is reflected towards the center of the detection antenna,thus maximizing the wave coupling.As an example, figure 1 shows a projection of the simulated rays in the poloidal plane of the device(left panel)for gap 5 antennas with optimum launching angles at 75 GHz for the 15 MA scenario. For each frequency and scenario, the beam orientation is such that the rays reflected by the O-mode cut-off layer (red solid curve) are traced back until they reach the center of the detection antenna. In the right panel, the intersection of the reflected rays with the plane perpendicular to the launching direction and containing the center of both antenna mouths is shown together with a representation of the antennas’ apertures. The launching antenna direction angles are given in each panel’s upper left corner.

    Figure 1.Side view (left) of ray tracing results at 75 GHz and for the 15 MA scenario and intersection of reflected rays with the detection antenna plane(right).The calculation has been performed using 8×8=64 rays.Frequency dependent optimum launching angles(? and φ)ensure that the central part of the reflected beam reaches the detection antenna.

    Table 1.Far field distances in the principal planes of a 44 mm×44 mm horn compared with traveling distances provided by ray tracing.

    Figure 2.Power coupling(system gain)for the 15 MA scenario with gap 5 antennas.Low frequencies always show worse power coupling due to stronger beam diffraction.

    As a result of these simulations, a matching set of optimum launching angles were found,depending on the scenario,the frequency and the antenna pair. Taking into account that the antennas would be fixed, the computed angles which produce direct reflection would move from the antennas’physical launching angles.Therefore,a global optimization was carried out to get the best physical orientation angles (?optand φopt)and antenna dimensions. The objective of this optimization is to maximize the detected power in the worst case, namely the frequency and scenario combination with the worst coupling.In order to compute this coupling, radiation patterns of the antennas should be considered to account for the power drop out of the antenna maximum radiation direction. To alleviate the computational effort and make the global optimization possible, analytical expressions for the radiation pattern of symmetrical horns have been used together with the Friis transmission equation to get the power coupling [4] when the plasma is not present. These expressions require that the far field conditions are met [4], namely that the wave travelling distance is higher than the one at which the fields from an antenna are considered at far field. Table 1 compares the far field distances in the principal planes of the chosen 44 mm×44 mm horns with the wave traveling distances obtained by the ray tracing simulations for each angle and scenario.For these chosen antennas,only the gap 3 antennas in the 15 MA scenario at high frequency do not fulfill the far field condition(and even then maximum error can be delimited and taken into account). For all the remaining cases, the condition is fulfilled, and the analytical approximation is therefore valid for obtaining the power coupling between antennas. After the final optimum orientation angles are obtained,power coupling can be obtained for each scenario. As an example, figure 2 presents the power coupling of the system for the 15 MA scenario in the gap 5 antennas.

    Figure 3.Ohmic losses in a 0.62 m long 2 mm×12 mm E-plane bend.The left panel shows the theoretical results compared with a full wave simulation (HFSS), while the right panel compares the downtapered (2 mm×12 mm) bend with the regular one (20 mm×12 mm) using canonical theory.

    Two-dimensional full wave simulations using a finite difference time domain (FDTD) code were performed afterwards to obtain the complex wave amplitudes and phases at the detection antenna end. Performing the spectrogram of these data allows us then to obtain the time delay of the signal, which is then used to reconstruct the plasma density profile. This sort of synthetic diagnostic is used to get an estimation of the error in the determination of the position of the last closed flux surface in both static and turbulent plasmas [5].

    3. Transmission line

    Once the launching/receiving antennas have been designed and their positions and orientations have been decided, the waveguides carrying the signal must be specified. Rectangular oversized 20 mm×12 mm waveguides have been used for the transmission of the signal.In addition to the oversized dimensions of the waveguide, the TE01mode is chosen in what is called a ‘tall’ waveguide configuration in order to reduce ohmic losses. It is important to note that due to this mode choice, the cut-off frequency depends on the narrow wall dimension instead of the broad one as in the case of the fundamental TE10mode.

    One possibility that allows us to get rid of mode coupling at the bends at the cost of additional ohmic losses is downtapering of the waveguide.In particular,wherever the E-plane bends’ performance is unacceptable, the 20 mm×12 mm waveguide can be downtapered into a 2 mm ×12 mm waveguide.In an E-plane bend,power from the TE01mode can be coupled to any of the TEn1/TMn1degenerate mode pairs with n odd,being the TE11/TM11the one with the largest coupling coefficient. By performing a downtaper in the broad dimension of the waveguide, the TE11and TM11modes (degenerate) are at cut-off, and are therefore not degrading performance due to mode conversion. As the narrow dimension is not altered, the cut-off frequency of the operating(TE01) mode is the same, hence allowing normal operation,albeit the reduced dimensions provoke an increase in ohmic losses. Figure 3 shows in the left panel the ohmic losses of a 0.62 m long 2 mm×12 mm downtapered E-plane bend with a 13.17° bending angle and a minimum radius of curvature of 310.88 mm, both calculated analytically using perturbation theory, assuming a straight waveguide of the same length propagating a canonical TE01mode[9],and simulated with a full wave simulation (high frequency structure simulator(HFSS)). For illustrative purposes, it is convenient to highlight that this bend is the S-bend from the downtapered branch of gap 3 routing,which will be described in section 5.Additionally, in the right panel, a comparison using perturbation theory between the same bend using the original 20 mm×12 mm waveguide and the 2 mm ×12 mm one is presented. As the figure shows, despite not being completely rigorous, calculations using the straight waveguide approximation present negligible differences with full wave simulations.Moreover,the comparison between both downtapered and regular waveguides shows that approximately 1 dB loss difference can be obtained in a 0.62 m long bend.

    Figure 4.Transmission due to mode conversion in a 200 mm long 2 mm×12 mm to 20 mm×12 mm parabolic uptaper. High frequency spikes may be artefacts of the finite element calculation.

    Additionally, an uptaper should be added to the system in order to regain the correct 20 mm×12 mm dimensions. Mode conversion does occur both in the down and uptapers, although it is easier to cope with that in the case of E-plane bends. For instance, figure 4 depicts the mode conversion of a 200 mm length 2 mm×12 mm to 20 mm×12 mm parabolic taper [10]. Although no special optimization was performed on it, very low mode conversion is obtained, therefore making this solution a feasible one.

    4. Gap 5 routing

    The gap 5 reflectometer involves the use of two pairs of antennas with slightly different launching angles in order to cover different scenarios. Both routings (upper/lower antennas)are very similar,and only the upper antenna pair routing will be shown here. Due to the large distances involved, the whole routing of this gap can be carried out using hyperbolic secant curvature bends, even in the case of E-plane turns.Bending angles could be kept low enough with sufficiently large radii of curvature for acceptable mode conversion losses. Figure 5 shows an image of the final routing from the antennas (from the left) to the primary window (in the lower right corner of the figure) in the upper left image. Additionally,the integrated losses due to mode coupling are shown in the upper right image and the ohmic losses in the lower left one,leading to the total integrated losses that are shown in the lower right panel.

    5. Gap 3 routing

    In the case of gap 3, available space for the antennas is not on the axis of the port, thus making it necessary to perform some bending to run parallel to the axis. This fact, added to the reduced distance from the antennas to the primary window and the angle between the antennas,made it impossible to design E-plane bends with an acceptable performance.To minimize mode coupling,it was decided to make the design so that one of the branches was straight (in terms of horizontal bending),therefore increasing the horizontal bending in the other one, thus provoking even more mode coupling.To overcome this hindrance, it was decided to perform a downtaper to a 2 mm×12 mm waveguide (just adjusting the final dimensions of the antenna mouth) and then an uptaper to regain 20 mm×12 mm, as described before.Figure 6 shows in the upper left image the computer aided design representation of this solution and the mode conversion losses in the upper right image. It is important to highlight that as there is no noticeable mode conversion in the 2 mm×12 mm E-plane bends and it is negligible in the H-plane bends, these integrated mode conversion losses are dominated by mode conversion in the 200 mm length uptaper from 2 mm ×12 mm to 20 mm×12 mm, as a comparison with figure 4 reveals. Ohmic losses have also been depicted in the lower left image, splitting results into the losses due to the 2 mm×12 mm waveguide branch and the ones from the 20 mm×12 mm branch for comparison purposes. Finally, the lower right panel shows the total integrated losses when considering ohmic and mode conversion altogether.

    6. Conclusions

    Figure 5.Gap 5 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Figure 6.Gap 3 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Both the routings and their performance results for gap 5 and gap 3 of the ITER PPR reflectometer have been presented. In both cases 20 mm×12 mm rectangular oversized waveguides have been used to carry the signal using the TE01mode in order to minimize ohmic losses. Hyperbolic secant curvature bends have been used for the bending needs of the routing and have proven the best solution for H-plane bends. In case of E-plane bends, the degradation of performance has forced us to keep bending angles low, and whenever this was not possible, downtapering to a 2 mm×12 mm waveguide has proven to be a valid solution to get rid of mode conversion at the cost of extra ohmic loses. Nevertheless, ohmic losses have also been calculated and simulated, and acceptable results have been obtained.

    Acknowledgments

    This work has been partially funded by the Ministerio de Ciencia, Innovacion y Universidades of Spain under project FIS2017-88892-P, and by Fusion for Energy under Specific Grant Agreement F4E-FPA-375-SG05. This publication reflects only the views of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein.

    ORCID iDs

    J MARTíNEZ-FERNáNDEZ https://orcid.org/0000-0002-5583-8420

    T ESTRADA https://orcid.org/0000-0001-6205-2656

    91久久精品电影网| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 婷婷色综合大香蕉| 最近中文字幕2019免费版| av专区在线播放| 婷婷色av中文字幕| 午夜福利视频精品| 最后的刺客免费高清国语| 午夜91福利影院| 我要看黄色一级片免费的| 老司机亚洲免费影院| 18禁在线播放成人免费| 啦啦啦中文免费视频观看日本| 国产男女内射视频| 亚洲熟女精品中文字幕| 日本wwww免费看| 我的女老师完整版在线观看| 一级a做视频免费观看| 欧美少妇被猛烈插入视频| 亚洲怡红院男人天堂| 少妇人妻久久综合中文| xxx大片免费视频| 色哟哟·www| 校园人妻丝袜中文字幕| 欧美日韩国产mv在线观看视频| 中文字幕精品免费在线观看视频 | 女人久久www免费人成看片| 国产精品一区二区在线观看99| 极品少妇高潮喷水抽搐| 狂野欧美白嫩少妇大欣赏| 最近2019中文字幕mv第一页| 最近2019中文字幕mv第一页| 纯流量卡能插随身wifi吗| av黄色大香蕉| 久久这里有精品视频免费| 久久久欧美国产精品| 亚洲国产日韩一区二区| 老司机影院毛片| 亚洲欧美精品自产自拍| 中文天堂在线官网| 黄片无遮挡物在线观看| 国产熟女午夜一区二区三区 | 精华霜和精华液先用哪个| 亚洲欧洲国产日韩| 99久久中文字幕三级久久日本| 大片电影免费在线观看免费| 人人澡人人妻人| 国产成人a∨麻豆精品| av不卡在线播放| 水蜜桃什么品种好| 久热久热在线精品观看| 久久久国产欧美日韩av| 日韩欧美一区视频在线观看 | 国产精品免费大片| 欧美少妇被猛烈插入视频| av在线播放精品| 亚洲欧美清纯卡通| 在线免费观看不下载黄p国产| 亚洲精品456在线播放app| 高清在线视频一区二区三区| 久久狼人影院| 久久亚洲国产成人精品v| 日韩熟女老妇一区二区性免费视频| 大话2 男鬼变身卡| 哪个播放器可以免费观看大片| 99久久精品热视频| 日本猛色少妇xxxxx猛交久久| 成人漫画全彩无遮挡| 男男h啪啪无遮挡| 国内精品宾馆在线| 丰满饥渴人妻一区二区三| 亚洲精品国产av蜜桃| 精品一区二区三卡| 久久久欧美国产精品| 精品酒店卫生间| 熟女电影av网| 99re6热这里在线精品视频| 久久亚洲国产成人精品v| 男女无遮挡免费网站观看| 免费看不卡的av| av福利片在线观看| 伊人亚洲综合成人网| 久久99精品国语久久久| 最新中文字幕久久久久| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 性色avwww在线观看| 国产黄色视频一区二区在线观看| 欧美日韩亚洲高清精品| 国产色爽女视频免费观看| 日韩成人伦理影院| 九九在线视频观看精品| 婷婷色麻豆天堂久久| 搡女人真爽免费视频火全软件| 十分钟在线观看高清视频www | av国产久精品久网站免费入址| 国产 精品1| 如何舔出高潮| 大又大粗又爽又黄少妇毛片口| 99国产精品免费福利视频| 中文字幕人妻丝袜制服| 久久久午夜欧美精品| 搡女人真爽免费视频火全软件| 精品久久国产蜜桃| 啦啦啦中文免费视频观看日本| 男人和女人高潮做爰伦理| 麻豆精品久久久久久蜜桃| 91成人精品电影| 日韩成人伦理影院| 黑丝袜美女国产一区| 国产亚洲5aaaaa淫片| 九九久久精品国产亚洲av麻豆| 午夜激情久久久久久久| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| av女优亚洲男人天堂| 亚洲国产成人一精品久久久| 亚洲丝袜综合中文字幕| 欧美激情极品国产一区二区三区 | 我要看黄色一级片免费的| 超碰97精品在线观看| 涩涩av久久男人的天堂| 亚洲无线观看免费| 大话2 男鬼变身卡| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 久久 成人 亚洲| 热99国产精品久久久久久7| 男人狂女人下面高潮的视频| 新久久久久国产一级毛片| 午夜福利,免费看| 国产精品久久久久久久电影| 国产精品福利在线免费观看| 亚洲国产欧美在线一区| 国产高清有码在线观看视频| 成年人午夜在线观看视频| 女的被弄到高潮叫床怎么办| 久久久国产欧美日韩av| 亚洲精华国产精华液的使用体验| 亚洲成色77777| 国产极品天堂在线| 国产成人91sexporn| 免费大片18禁| 亚洲精品日本国产第一区| 免费看日本二区| 秋霞伦理黄片| 国产高清不卡午夜福利| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 日韩亚洲欧美综合| 性色av一级| 男人添女人高潮全过程视频| 国产精品一区二区三区四区免费观看| 边亲边吃奶的免费视频| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 免费观看的影片在线观看| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 免费大片黄手机在线观看| 欧美精品一区二区大全| 极品人妻少妇av视频| 国产日韩一区二区三区精品不卡 | 亚洲一级一片aⅴ在线观看| 国精品久久久久久国模美| 欧美日韩av久久| 国产精品久久久久久久久免| 少妇的逼水好多| 亚洲欧美精品自产自拍| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 欧美 亚洲 国产 日韩一| 自线自在国产av| 成年人免费黄色播放视频 | 久久午夜综合久久蜜桃| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 国产男女超爽视频在线观看| 欧美bdsm另类| 黄色毛片三级朝国网站 | 国产一区二区在线观看日韩| 精品久久国产蜜桃| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| 国产一区二区三区综合在线观看 | 九九爱精品视频在线观看| 精品少妇黑人巨大在线播放| 伊人亚洲综合成人网| av又黄又爽大尺度在线免费看| 国产成人免费无遮挡视频| 一本久久精品| 妹子高潮喷水视频| 少妇的逼水好多| 久久免费观看电影| 国产国拍精品亚洲av在线观看| 亚洲高清免费不卡视频| 热re99久久精品国产66热6| 国产午夜精品一二区理论片| 精品人妻偷拍中文字幕| 国产亚洲欧美精品永久| 亚洲精品国产av成人精品| 中文字幕免费在线视频6| 岛国毛片在线播放| 美女大奶头黄色视频| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 在线播放无遮挡| 日日啪夜夜撸| 男女边吃奶边做爰视频| 国产 精品1| 青春草视频在线免费观看| 两个人的视频大全免费| 国产精品秋霞免费鲁丝片| 免费观看性生交大片5| 久久99热6这里只有精品| 国产午夜精品一二区理论片| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 久久久国产欧美日韩av| 99视频精品全部免费 在线| 少妇人妻 视频| 高清不卡的av网站| 日韩一区二区三区影片| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 免费av中文字幕在线| 国产成人aa在线观看| 日韩精品免费视频一区二区三区 | 久久6这里有精品| 亚洲精品456在线播放app| 免费看不卡的av| 美女大奶头黄色视频| 亚洲欧洲日产国产| 最近手机中文字幕大全| 三上悠亚av全集在线观看 | 国产精品女同一区二区软件| 日韩一区二区三区影片| 欧美老熟妇乱子伦牲交| 只有这里有精品99| 人人妻人人添人人爽欧美一区卜| 久久精品久久久久久久性| 欧美+日韩+精品| 精品久久久久久久久亚洲| 91久久精品国产一区二区成人| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 久久久久视频综合| 夜夜骑夜夜射夜夜干| av在线老鸭窝| 亚洲欧美精品自产自拍| 免费久久久久久久精品成人欧美视频 | 国产视频首页在线观看| 国产中年淑女户外野战色| 免费看不卡的av| 免费高清在线观看视频在线观看| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 久久99热这里只频精品6学生| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 中文天堂在线官网| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 熟女av电影| 国产熟女午夜一区二区三区 | 女性被躁到高潮视频| 国产精品国产av在线观看| 国产黄频视频在线观看| 国产日韩一区二区三区精品不卡 | 99久国产av精品国产电影| 99热这里只有是精品50| 制服丝袜香蕉在线| 国产男女内射视频| 99热全是精品| 久久av网站| 少妇丰满av| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 亚洲精品乱码久久久v下载方式| 九九在线视频观看精品| 国产亚洲欧美精品永久| 麻豆乱淫一区二区| 亚洲性久久影院| 九九久久精品国产亚洲av麻豆| av不卡在线播放| 赤兔流量卡办理| 午夜av观看不卡| 大片免费播放器 马上看| 中文字幕人妻熟人妻熟丝袜美| 日本黄大片高清| 丰满乱子伦码专区| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 女人精品久久久久毛片| 国产淫片久久久久久久久| 国产成人一区二区在线| 国产精品偷伦视频观看了| 少妇猛男粗大的猛烈进出视频| 老女人水多毛片| 成人毛片a级毛片在线播放| 亚洲国产精品一区三区| 免费黄网站久久成人精品| 精品熟女少妇av免费看| 大片电影免费在线观看免费| 欧美xxxx性猛交bbbb| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品| 天美传媒精品一区二区| 亚洲美女搞黄在线观看| 精品熟女少妇av免费看| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 人体艺术视频欧美日本| 午夜久久久在线观看| 妹子高潮喷水视频| 成人亚洲欧美一区二区av| 多毛熟女@视频| 国产一级毛片在线| 国产av码专区亚洲av| 国产亚洲欧美精品永久| 国产精品一二三区在线看| 亚洲图色成人| 九九在线视频观看精品| 免费av中文字幕在线| 超碰97精品在线观看| 国产熟女欧美一区二区| 一级毛片电影观看| 亚洲国产欧美日韩在线播放 | 少妇猛男粗大的猛烈进出视频| 亚洲国产精品国产精品| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看 | 国产极品粉嫩免费观看在线 | 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 2022亚洲国产成人精品| 久久国产亚洲av麻豆专区| 成人美女网站在线观看视频| 久久久午夜欧美精品| 中文字幕av电影在线播放| 久久狼人影院| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 色视频www国产| 伦理电影大哥的女人| 日韩一本色道免费dvd| 欧美另类一区| 自线自在国产av| 午夜福利网站1000一区二区三区| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 精品少妇久久久久久888优播| 久久久久久久亚洲中文字幕| 亚洲精品乱码久久久久久按摩| 啦啦啦视频在线资源免费观看| 欧美一级a爱片免费观看看| av在线观看视频网站免费| 国产免费一区二区三区四区乱码| 亚洲人成网站在线观看播放| 亚洲精品日韩av片在线观看| 插阴视频在线观看视频| 午夜影院在线不卡| 亚洲精品,欧美精品| 插阴视频在线观看视频| 久热这里只有精品99| 99热国产这里只有精品6| 老司机影院成人| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| 亚洲人成网站在线播| 日韩av不卡免费在线播放| 精品卡一卡二卡四卡免费| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| 久久久久网色| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 精品亚洲成国产av| 国产午夜精品久久久久久一区二区三区| 99久久精品国产国产毛片| 不卡视频在线观看欧美| 国产男人的电影天堂91| 如何舔出高潮| 男女边摸边吃奶| 亚洲精品国产av成人精品| 伊人久久精品亚洲午夜| 有码 亚洲区| 国产爽快片一区二区三区| 一区二区三区精品91| av不卡在线播放| 欧美人与善性xxx| 国产精品人妻久久久影院| 三上悠亚av全集在线观看 | 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av | 欧美高清成人免费视频www| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 三级国产精品片| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 成年女人在线观看亚洲视频| www.色视频.com| 免费看日本二区| 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 亚洲中文av在线| 噜噜噜噜噜久久久久久91| 国产一区有黄有色的免费视频| 少妇丰满av| 韩国高清视频一区二区三区| 九九在线视频观看精品| 色视频在线一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 乱码一卡2卡4卡精品| 精华霜和精华液先用哪个| 国产老妇伦熟女老妇高清| 国产中年淑女户外野战色| av天堂中文字幕网| 嫩草影院新地址| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| av黄色大香蕉| 26uuu在线亚洲综合色| 欧美3d第一页| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 日韩在线高清观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 男女边摸边吃奶| 最后的刺客免费高清国语| 精品酒店卫生间| 日本av手机在线免费观看| 赤兔流量卡办理| 国产亚洲欧美精品永久| 丝袜喷水一区| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频 | 一级毛片电影观看| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 妹子高潮喷水视频| 日产精品乱码卡一卡2卡三| 下体分泌物呈黄色| 欧美三级亚洲精品| 一区二区三区乱码不卡18| 成人亚洲精品一区在线观看| 亚洲欧美日韩卡通动漫| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| av有码第一页| 91在线精品国自产拍蜜月| 午夜福利,免费看| 欧美少妇被猛烈插入视频| 国产伦精品一区二区三区四那| 高清av免费在线| 久久狼人影院| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 精品国产乱码久久久久久小说| 91精品国产九色| 国产精品福利在线免费观看| 一级黄片播放器| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 老司机影院毛片| 91精品国产国语对白视频| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 久久久欧美国产精品| 亚洲综合色惰| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 男女国产视频网站| 日本黄色片子视频| 精品酒店卫生间| 国产成人免费观看mmmm| 亚洲va在线va天堂va国产| 观看免费一级毛片| 永久网站在线| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 自拍欧美九色日韩亚洲蝌蚪91 | 国产欧美日韩综合在线一区二区 | www.av在线官网国产| 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 十八禁网站网址无遮挡 | 精品人妻熟女毛片av久久网站| 观看美女的网站| 看免费成人av毛片| 高清不卡的av网站| av有码第一页| 国产免费视频播放在线视频| 大香蕉久久网| 久久国产亚洲av麻豆专区| 国产成人精品福利久久| 黄色毛片三级朝国网站 | 日日摸夜夜添夜夜爱| 国产成人精品福利久久| 亚洲欧美日韩卡通动漫| 五月开心婷婷网| 嫩草影院入口| 成人亚洲欧美一区二区av| 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 我要看黄色一级片免费的| 在线看a的网站| 乱系列少妇在线播放| 男女边摸边吃奶| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 在线观看www视频免费| av免费观看日本| 九九爱精品视频在线观看| 国产成人91sexporn| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品三级大全| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区| 伦精品一区二区三区| 亚洲,一卡二卡三卡| 免费av不卡在线播放| 高清欧美精品videossex| 久久99一区二区三区| 日韩 亚洲 欧美在线| 免费人妻精品一区二区三区视频| 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 乱人伦中国视频| 国产欧美另类精品又又久久亚洲欧美| 欧美97在线视频| 丰满乱子伦码专区| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 国产精品.久久久| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 下体分泌物呈黄色| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 亚洲欧美成人综合另类久久久| 国产亚洲av片在线观看秒播厂| 日韩三级伦理在线观看| 人妻 亚洲 视频| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 精品国产国语对白av| 国产免费福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 如日韩欧美国产精品一区二区三区 | 免费观看a级毛片全部| 内地一区二区视频在线| 日韩三级伦理在线观看| 赤兔流量卡办理| 久久综合国产亚洲精品| 亚洲av二区三区四区| 国产精品熟女久久久久浪| 亚洲精品视频女| 性色av一级| 草草在线视频免费看| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 好男人视频免费观看在线| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 日本与韩国留学比较| 亚洲精品乱码久久久v下载方式| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 最近中文字幕高清免费大全6| 熟女电影av网| 国产美女午夜福利| 深夜a级毛片| 精品亚洲成国产av| 成人特级av手机在线观看| 欧美激情国产日韩精品一区| av国产久精品久网站免费入址|