• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma

    2020-06-28 06:14:56ZahidIqbalKHATTAKAbdulWaheedKHANFaiqJANandMuhammadSHAFIQ
    Plasma Science and Technology 2020年6期

    Zahid Iqbal KHATTAK, Abdul Waheed KHAN, Faiq JAN and Muhammad SHAFIQ

    1 Department of Physics, Quaid-i-Azam University, 45320 Islamabad, Pakistan

    2 Department of Physics, Gomal University, 29050 D. I. Khan, Pakistan

    3 Department of Physics, Govt. Post Graduate College Nowshera, 24100 Nowshera, Pakistan

    Abstract In this paper,E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction (0%–100%), operating pressure (1 Pa, 5 Pa, 10 Pa and 50 Pa), and radio frequency (RF) power (5–100 W). An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study. Owing to the lower ionization potential and higher collision cross-section of argon, when its fraction in the discharge is increased, the mode transition occurs at lower RF power; i.e. for 0% argon and 1 Pa pressure,the threshold power of the E–H mode transition is 65 W,which reduces to 20 W when the argon fraction is increased.The electron density increases with the argon fraction at a fixed pressure, whereas the temperature decreases with the argon fraction. The relaxation length of the low-energy electrons increases, and decreases for high-energy electrons with argon fraction, due to the Ramseur effect. However, the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path. The electron energy probability function (EEPF) profiles are non-Maxwellian in E-mode, attributable to the nonlocal electron kinetics in this mode;however,they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode.The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased, because argon has a much lower excitation potential (11.5 eV) than neon (16.6 eV).

    Keywords: Ne–Ar MaPE-ICP, Langmuir probe, OES, electron temperature, electron density,mode transition(Some figures may appear in colour only in the online journal)

    1. Introduction

    A mixture of gas discharges comprising noble gases has been frequently investigated to enhance the efficiency of both lower and higher pressure (atmospheric) discharges in various technological and scientific applications,such as the sterilization of medical instruments[1–3],metallic surface nitriding[4–6]and chemical analysis [7]. Material processing with plasma discharges is usually performed by using a combination of various gases simultaneously. For instance, in the etching process of silicon dioxide,discharges of numerous fluorocarbon gases are used with Ar, Xe or H2contents to improve the etching selectivity to the silicon underlayer [8]. Ne–Xe discharges are used for high lighting intensity and easy breakdown in plasma display panels (PDPs). However, PDPs face a significant challenge in the composition of mixed gases in which neon is present [9]. Another instance of mixture discharge that has been explored is the behavior of plasma parameters such as the electron energy distribution function(EEDF) of a high-energy tail, through accumulation of noble gases by means of a trace rare gas technique [10]. Many researchers have explored the mixing gas effect on plasma parameters. For instance, Monuz et al[11]studied the Ar–Ne discharge at atmospheric pressure in a microwave system, they reported the variation in gas temperature, since this temperature is associated with the energy of the heavy plasma species. Rehman et al [12]investigated plasma parameter variation with neon percentage,radio frequency (RF) power, and the pressure of feed gas. It was reported that,as the neon content in the mixture increases,the electron temperature also grows and the EEDF tail gains height and expands towards higher energy.The features of the H-mode and hybrid mode of Ar–N2mixture discharges in magnetic-pole-enhanced inductively coupled plasma (MaPEICP)is discussed by Jan et al[13]through an RF compensated single Langmuir probe (LP). They reported that, as N2concentration and pressure are increased, the critical power required to sustain H-mode is enhanced,and for pure nitrogen discharge this increase is more prominent at higher pressures.Ma et al [14] analyzed the influence of the addition of noble gases on various parameters of nitrogen discharges. It is reported thatTedepends on the variation of gas composition in N2/Ar and N2/He plasmas.

    Plasma sources established at various electromagnetic power coupling mechanisms have been introduced for the manufacturing of large-scale semiconductors. Among these,capacitively coupled plasmas (CCPs) as well as very highfrequency CCPs (VHF-CCPs), inductively coupled plasmas(ICPs)and plasmas with a ferrite core have been the leading generation sources investigated [15, 16]. However, the MaPE-ICP is a new and an innovative source, which offers many advantages such as high and uniform density of plasma with great area capability, enhanced power coupling efficiency and a lower electron temperature. This source is therefore potentially more appropriate for material processing[17].The key feature of ICP/MaPE-ICP is its operation in two distinctive (E- and H-) modes, based on external plasma conditions, for instance input power and filling pressure[18–20],and gas composition[21].In recent years,many studies have been performed in the two modes of the ICP/MaPE-ICP, due to the attractive characteristics of the discharge and the underlying physics. Lee [22] performed a comprehensive review of the current knowledge of mode transition and hysteresis of ICPs, their basic understanding,and the application of ICPs in various fields. Gao et al [23]investigated Ar discharges experimentally in ICP configuration and observed a hysteresis loop during the mode transitions from E- to H-mode at several matching conditions. Jing Xu et al [24] investigatedH2-ICP at various pressures and reported the characteristics of the hysteresis loop and mode transition behavior by changing the capacitance of the series capacitor of the matching box. Liu et al

    [25] studied mode transitions (from E to H) by using a hairpin probe and optical emission spectroscopy (OES) in CF4/ Ar -ICP. It was observed thatneand the intensity of emission lines are continuously enhanced during E- to H-mode transition at low pressure, whereas at higher pressure, they jump up discontinuously. Gao et al [26] investigated the variation in electron dynamics ofH2RF-ICP discharges with the help of an intensified charged coupled device (ICCD) and a hairpin probe. It was reported thatne,emission intensity, and applied current jump up intermittently. It was also found that at E–H mode transition points,the external voltage jumps down,whereas a decrease in threshold power for the mode transition happened with an increase of pressure. Gao et al [27] also studied theneand emission intensity of the Ar–ICP discharge during mode transition by employing LP and ICCD.It was reported that in the E-mode,neis low and emission intensity is weak,however,bothneand emission intensity are higher when the discharge switches to H-mode. Lee et al [21] analyzed the mode transition of O2/Ar and N2/Ar ICP at low pressure by employing an LP and OES.It was reported that the threshold power for transition was reduced with pressure and argon content. Lee et al [28] investigated the mode transition with a gas mixing ratio in an ICP ofAr / O2/N2mixture discharges. It was reported that the threshold power for mode transition (from E to H) was lower for a smaller ratio of molecular gases and a high ratio of rare gases.

    The EEDFs are a consequence of the electric field interaction with plasma and resultantly describe the electron kinetics in the discharge. Therefore, the investigation of EEDFs becomes significant, since it provides information on energy transmission mechanisms such as electron heating in the discharge [29, 30]. Bang et al [31] inspected the characteristics of EEDFs with helium proportion in Ar–He ICP discharges. It is reported that when the helium fraction increases, the EEDFs transform from Druyvesteyn-type to a bi-Maxwellian distribution. Han et al [32] examined the characteristics of EEDFs with helium proportion in Ar–He discharges at a constant pressure of 5 mTorr,and observed that the EEDFs transformed from bi-Maxwellian to Maxwellian and finally became a Druyvesteyn-type distribution.

    Even though numerous reports have been published on inert gas discharges, the effects of gas mixing on the threshold power of mode transition, and the evolution of EEPF close to the transition region in the low and high pressure range of rare gases, such as Ne–Ar MaPE-ICP discharges, have not been frequently investigated. The results show interesting behavior in the E-mode and in the transition region of the discharge. The characteristics of the plasma parameters and EEPFs in all the three regions reported are of importance for identifying the working region for applications. Spectroscopic results supported the electrical probe data to a greater extent and showed that an OES investigation is a robust technique to understand discharge behavior. The evolution of EEPFs with argon fraction variation is also included for a better understanding of the three discharge regions.

    Figure 2. Relaxation length of low- and high-energy electrons with argon contents in the mixture at (a) 1 Pa, (b) 5 Pa, and (c) 10 Pa.

    Figure 3.Variation of electron energy relaxation length with pressure for (a) neon discharge and (b) argon discharge.

    Thenevariation versus Ar fraction is shown in figure 6 for various RF powers at constant pressure. An increasing trend of density is observed with Ar fraction.This may be due to the difference in the metastable density of the two gases.The metastable density of Ne atoms seems to be smaller than the Ar atoms, because high-energy electrons are needed to populate the metastable levels of Ne (~16.60 eV), compared to the Ar metastable level (~11.50 eV). So, the Ne atom ionization is less probable from the metastable level and fundamentally, electrons come from the ionization of Ar.When Ar is added to the discharge, however, the relaxation length of high-energy electronsλε,H( ) available in the discharge decreases,as shown in figure 2,and these high-energy electrons encounter inelastic collisions with neutral particles and ionize them. Consequently the electron density increases with Ar fraction. These circumstances produce a partial reduction of the high-energy tail of the EEPFs, which directs to a smaller population of the Ne metastable level, and accordingly electron density increases [11].This may also be explained as follows: whenever a gas of lower ionization energy, for instance Ar, is introduced in a gas of higher ionization energy such as Ne, then the ionization process of neutral Ar atoms enhances owing to the collision of highenergy electrons present in the discharge; as a result electron density increases and electron temperature decreases [8], as shown in figures 6 and 7. The variation ofneandTewith pressure is expressed in figures 8 and 9, at constant Ar fraction and RF power. The decrease in electron temperature can be related to the increase in electron density with pressure.

    Figure 4. E–H mode transition in ne with RF power for various argon fractions at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figure 5.Variation of TeLP with RF power for different argon fractions at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figure 6.Variation of ne with argon fraction for different RF powers at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    The Ne emission line585.24 nm,which arises due to the transition of 2p1→1s2(in Paschen’s notation)involves highenergy electrons. Figure 10 describes the variation of Ne emission line (5 85.24 nm) intensity with increase in RF power and Ar fraction at the pressure of 1 and 5 Pa. The emission intensity shows an increasing trend similar to theneas revealed in figure 4, because the ionization/excitation process enhances with the increase of power.The presence of E- and H-modes is also obvious from the intensity graph. In E-mode,the intensity is low,while in H-mode,the intensity is high and continuously increasing with RF power.

    Figure 7.Variation of electron temperature with argon fraction for different RF powers at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figures 11 and 12 describe the measured EEPFs’profile close to the transition region as a function of the Ar fraction for different gas pressures of 1, 5 and 10 Pa. In E-mode, the EEPFs exhibit non-Maxwellian characteristics,however,the EEPFs describe the Maxwellian distribution in H-mode.

    Figure 8.Variation of ne with pressure for different argon fractions at RF power of (a) 20 W and (b) 100 W.

    Figure 11(a) shows that the EEPF profiles of discharge in E-mode are bi-Maxwellian,which is a distinctive property of the nonlocal electron kinetics of plasma at low-pressure[39]. The electron–neutral collision frequency (ν-en) at lower pressure is much smaller than the driving frequency(ωRF) of the source. Generally, nearby the antenna coil,collision-less heating of electrons by the skin layer is dominant. The high-energy electrons penetrate the ambipolar potential barrier and reach the skin layer where further enhancement in their energies takes place and contributes to inelastic collisions. However, low-energy electrons cannot access the sheath layer where the collision-less heating of electrons takes place. Similarly, these electrons cannot contribute in the collisional heating where electrons gain energy from thermalization of electron–neutral collisions.Thus,these electrons absorb a slight quantity of energy from either collisional or collision-less heating and just fluctuate in the barrier of the ambipolar potential [40]. The EEPF transition from bi-Maxwellian to Druyvesteyn distribution in E-mode at a pressure of 5 and 10 Pa takes place as shown in figures 11(b)and(c).At higher pressure,the EEPF transition to Druyvesteyn behavior is owing to the transformation in the heating mechanism of electrons (from stochastic to Ohmic heating). This distribution is mainly due to effective heating of low-energy electrons in the collisional regime [41].

    The EEPFs exhibit Maxwellian distribution in H-mode for all the pressures tested, as shown in figures 12(a)–(c).This may be attributed to the way in which, with RF power and Ar fraction, the density enhances and electron–electron collision frequency increases. As a result, the EEPF profiles become Maxwellian. However, when the Ar fraction increases, the high-energy tail of the EEPF is depleted.This may be due to the increase in the Ar fraction providing large energy relaxation lengthλε,L( ) for low-energy electrons due to Ramsauer effects, as shown in figure 2. The Ar ionization energy(15.7 eV)is less than that of Ne(21.5 eV),therefore, the inelastic collisions of high-energy electrons present in the discharge take place with Ar atoms and ionize them. Consequently, the high-energy tail of EEPFs is depleted whereas the density of low-energy electrons is enhanced.

    5. Conclusions

    In this article, E–H mode transition and the evolution of EEPFs close to the transition region (E- and H-modes) are reported in a mixture of Ne–Ar plasma for numerous RF powers, gas pressures and Ar fractions. Various plasma parameters such as electron density,electron temperature,and emission intensity variation have been studied by using an RF compensated single Langmuir probe and OES. It is observed that, at fixed pressure and Ar fraction, the electron density grows while the electron temperature shrinks with RF power.It is also perceived that the mode transition power is reduced with the increase of Ar fraction in the mixture because RF power coupling efficiency increases with increase in electron density. It is found that electron density of pure Ne is 1.13 × 108cm-3, which increases with Ar fraction and reaches up to1.35 × 1012cm-3in pure Ar discharge, while the electron temperature of pure Ne is 8.14 eV which decreases to0.57 eV in pure Ar at a fixed RF power and gas pressure. It is also found that the intensity of Ne585.24 nm emission line increases with RF power at a constant pressure.However, the intensity in H-mode is greater than E-mode,which is in good agreement with the theoretical concept of E–H mode.The behavior of electron energy relaxation length(λε) is also studied with variation of Ar fraction in the discharge and gas pressure. For low-energy electrons,λε,Lincreases,while for high–energy electrons,λε,Hdecreases with Ar fraction.However,the relaxation length of both the groups of electrons decreases with pressure. The evolution of the measured EEPFs with Ar fraction is also included for a better understanding of the three discharge regions. It is observed that, at fixed RF power and pressure, the EEPFs exhibit non-Maxwellian characteristics in E-mode with Ar fraction, while in H-mode(close to the transition region)Maxwellian behavior is observed. However, in both modes, the tails of EEPFs are depleted when the Ar fraction in the discharge is increased,because it provides a large mean free path for low-energy electrons to gain energy, and the excitation/ionization process is enhanced.Consequently,the density of low-energy electrons is increased, whereas the density of high-energy electrons is depleted. Spectroscopic results are found to be in good agreement with the electrical probe analysis to a significant extent,showing that OES can be employed to assist the probe results and understand the discharge behavior more clearly.

    Figure 9. Variation of with pressure for various argon fractions at RF power of (a) 20 W and (b) 100 W.

    Figure 10.Emission intensity variation of 585.24 nm line with RF power for various argon fractions at a pressure of (a) 1 Pa and (b) 5 Pa.

    Figure 11.Evolution of EEPF in E-mode of discharge with argon fraction at a fixed RF power of 10 W and pressure of(a)1 Pa,(b)5 Pa and(c) 10 Pa.

    Figure 12.Evolution of EEPF in H-mode of discharge with argon fraction at a fixed RF power and pressure of(a)1 Pa,(b)5 Pa and(c)10 Pa.

    Acknowledgments

    This work is partially supported by Quaid-i-Azam University URF for the year 2019–2020 and Higher Education Commission (HEC) P. No. 820 for Plasma Physics Gomal University (D I Khan).

    精品一区二区免费观看| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 美女被艹到高潮喷水动态| 亚洲成色77777| 神马国产精品三级电影在线观看| 舔av片在线| 99久国产av精品国产电影| 极品教师在线视频| 少妇高潮的动态图| 国产精品无大码| 久久久久久久午夜电影| 51国产日韩欧美| 精品久久久噜噜| 成人亚洲欧美一区二区av| 国产精品无大码| 久久影院123| 乱系列少妇在线播放| 涩涩av久久男人的天堂| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 91久久精品国产一区二区成人| 成年免费大片在线观看| 久久精品国产亚洲av涩爱| 亚洲精品乱码久久久久久按摩| 国产亚洲91精品色在线| 亚洲欧美中文字幕日韩二区| 久久这里有精品视频免费| 精品熟女少妇av免费看| 亚洲av免费在线观看| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久| 波野结衣二区三区在线| 七月丁香在线播放| 男人和女人高潮做爰伦理| 中文字幕人妻熟人妻熟丝袜美| 白带黄色成豆腐渣| 国产成人91sexporn| 亚洲精品久久午夜乱码| 毛片女人毛片| 免费大片18禁| 亚洲国产精品专区欧美| 三级国产精品欧美在线观看| 日韩av免费高清视频| 亚洲精品国产av成人精品| 久久精品国产鲁丝片午夜精品| 精品酒店卫生间| 免费观看a级毛片全部| 欧美一区二区亚洲| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看 | 一级a做视频免费观看| 中文乱码字字幕精品一区二区三区| tube8黄色片| 一级毛片黄色毛片免费观看视频| 亚洲av福利一区| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 三级国产精品欧美在线观看| 舔av片在线| 在线免费观看不下载黄p国产| 欧美97在线视频| 制服丝袜香蕉在线| 国产欧美另类精品又又久久亚洲欧美| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品国产精品| 身体一侧抽搐| 国产高清国产精品国产三级 | 亚洲国产精品999| 日日啪夜夜撸| 听说在线观看完整版免费高清| 少妇人妻精品综合一区二区| 亚洲在久久综合| 日韩欧美精品v在线| 国产综合精华液| 欧美3d第一页| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 久久精品国产亚洲网站| 五月开心婷婷网| 国内揄拍国产精品人妻在线| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 精品熟女少妇av免费看| 国产视频首页在线观看| 国产v大片淫在线免费观看| 国产一区二区三区综合在线观看 | 欧美成人a在线观看| 内地一区二区视频在线| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 亚洲不卡免费看| 国产高清不卡午夜福利| 丰满乱子伦码专区| 欧美 日韩 精品 国产| 九草在线视频观看| 丰满人妻一区二区三区视频av| 插阴视频在线观看视频| 赤兔流量卡办理| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 在线观看一区二区三区| av国产免费在线观看| 综合色av麻豆| 亚洲精品乱久久久久久| 黄片wwwwww| 美女国产视频在线观看| 在线观看三级黄色| 日韩强制内射视频| 少妇裸体淫交视频免费看高清| 王馨瑶露胸无遮挡在线观看| 毛片一级片免费看久久久久| 99九九线精品视频在线观看视频| 欧美少妇被猛烈插入视频| 少妇的逼好多水| 久久99热这里只频精品6学生| 日韩免费高清中文字幕av| 国产高清三级在线| 午夜福利高清视频| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 中文字幕制服av| 波野结衣二区三区在线| 欧美另类一区| 亚洲国产成人一精品久久久| 日本黄大片高清| 夫妻午夜视频| 欧美极品一区二区三区四区| 欧美精品一区二区大全| 69人妻影院| av线在线观看网站| 蜜臀久久99精品久久宅男| 最近中文字幕高清免费大全6| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 国产乱来视频区| 欧美+日韩+精品| 久久热精品热| 在线观看免费高清a一片| 国产成人精品一,二区| 国产乱人视频| 国产精品久久久久久av不卡| 亚洲av中文字字幕乱码综合| 日韩精品有码人妻一区| 丝袜脚勾引网站| 免费看光身美女| 七月丁香在线播放| 国产精品久久久久久精品古装| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 成年免费大片在线观看| 国产免费福利视频在线观看| 色视频在线一区二区三区| 新久久久久国产一级毛片| 三级国产精品欧美在线观看| 国产av国产精品国产| 久久久久久久亚洲中文字幕| 只有这里有精品99| 午夜福利视频1000在线观看| 国产精品不卡视频一区二区| 一级毛片 在线播放| 精品人妻熟女av久视频| 在线a可以看的网站| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 亚洲av欧美aⅴ国产| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 丝瓜视频免费看黄片| 国产免费一级a男人的天堂| 免费大片18禁| 亚洲丝袜综合中文字幕| 国产精品av视频在线免费观看| 春色校园在线视频观看| 十八禁网站网址无遮挡 | 日本色播在线视频| 下体分泌物呈黄色| 精品国产露脸久久av麻豆| 国国产精品蜜臀av免费| 内地一区二区视频在线| 2021天堂中文幕一二区在线观| 日日摸夜夜添夜夜爱| 成人美女网站在线观看视频| 黄片wwwwww| 久久久久精品性色| 精品国产一区二区三区久久久樱花 | 免费高清在线观看视频在线观看| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 99久久精品热视频| 国产精品久久久久久久久免| 在线观看av片永久免费下载| 日韩欧美精品免费久久| 免费看光身美女| 国产成人精品婷婷| 欧美成人午夜免费资源| 国产亚洲5aaaaa淫片| 国产成人a∨麻豆精品| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 亚洲欧美精品自产自拍| 免费黄频网站在线观看国产| 午夜亚洲福利在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 色综合色国产| 亚洲精品日韩av片在线观看| 青春草亚洲视频在线观看| 午夜爱爱视频在线播放| 内地一区二区视频在线| 尾随美女入室| 国产av码专区亚洲av| 精品国产三级普通话版| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区| 精品久久久噜噜| 亚洲av日韩在线播放| 国产精品福利在线免费观看| 有码 亚洲区| 亚洲人与动物交配视频| 亚洲人成网站高清观看| av天堂中文字幕网| 美女主播在线视频| 久久影院123| 久久精品国产鲁丝片午夜精品| av在线观看视频网站免费| 高清欧美精品videossex| 日本熟妇午夜| 久久ye,这里只有精品| 老女人水多毛片| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 嫩草影院入口| 五月开心婷婷网| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 一区二区av电影网| 国产精品伦人一区二区| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 国产有黄有色有爽视频| 久久午夜福利片| 熟女av电影| 国产精品人妻久久久影院| 99热这里只有精品一区| 免费看a级黄色片| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 在线观看国产h片| 日本一本二区三区精品| 国产成人免费观看mmmm| 欧美3d第一页| 亚洲真实伦在线观看| 国产老妇伦熟女老妇高清| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 少妇被粗大猛烈的视频| 香蕉精品网在线| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 九草在线视频观看| 69人妻影院| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| a级毛色黄片| 纵有疾风起免费观看全集完整版| 亚洲精品国产av成人精品| 伦理电影大哥的女人| 免费大片18禁| 人妻一区二区av| 亚洲内射少妇av| 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 2022亚洲国产成人精品| 国产精品久久久久久精品电影小说 | 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91 | 成人鲁丝片一二三区免费| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 丰满乱子伦码专区| 秋霞伦理黄片| 精品久久久久久久久av| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 欧美 日韩 精品 国产| 一区二区三区精品91| 久久久久精品性色| 欧美精品人与动牲交sv欧美| 日韩亚洲欧美综合| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 亚洲精品aⅴ在线观看| 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 一级片'在线观看视频| 观看免费一级毛片| 精品一区二区免费观看| 中文在线观看免费www的网站| 亚洲欧美成人综合另类久久久| 欧美成人精品欧美一级黄| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 午夜激情福利司机影院| 2022亚洲国产成人精品| 久久精品久久久久久久性| 男女边摸边吃奶| 久久久久网色| 日韩欧美 国产精品| 五月天丁香电影| 全区人妻精品视频| 春色校园在线视频观看| 国内精品美女久久久久久| 亚洲最大成人手机在线| 1000部很黄的大片| 亚洲欧美一区二区三区国产| 日韩人妻高清精品专区| 简卡轻食公司| 男的添女的下面高潮视频| 亚洲av免费高清在线观看| 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 99久国产av精品国产电影| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 国产精品无大码| 亚洲精品中文字幕在线视频 | 九草在线视频观看| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 成人无遮挡网站| 最近中文字幕2019免费版| 一级毛片我不卡| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 国产午夜福利久久久久久| 大香蕉97超碰在线| 人妻夜夜爽99麻豆av| 男人爽女人下面视频在线观看| 制服丝袜香蕉在线| 亚洲成人久久爱视频| 亚洲精品aⅴ在线观看| 久久久久精品性色| 亚洲精品视频女| 久久精品国产亚洲网站| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 男女下面进入的视频免费午夜| 如何舔出高潮| 五月伊人婷婷丁香| 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| tube8黄色片| 亚洲国产欧美在线一区| 成年女人在线观看亚洲视频 | 精品酒店卫生间| 毛片一级片免费看久久久久| 欧美日韩一区二区视频在线观看视频在线 | 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 日日啪夜夜爽| 久久人人爽人人爽人人片va| 国产又色又爽无遮挡免| 国产综合精华液| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 精品酒店卫生间| 美女内射精品一级片tv| 日本免费在线观看一区| 熟女人妻精品中文字幕| 国产极品天堂在线| 国产精品久久久久久精品古装| 3wmmmm亚洲av在线观看| 涩涩av久久男人的天堂| 亚洲内射少妇av| 高清在线视频一区二区三区| 亚洲天堂av无毛| 亚洲精品国产色婷婷电影| 欧美另类一区| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 国产精品熟女久久久久浪| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 国产亚洲5aaaaa淫片| 久久精品夜色国产| 男的添女的下面高潮视频| 久久久久久久精品精品| 丝袜美腿在线中文| 国产精品人妻久久久久久| 亚州av有码| 久久精品国产鲁丝片午夜精品| 欧美日韩视频精品一区| 午夜激情福利司机影院| 永久免费av网站大全| 日韩免费高清中文字幕av| 成人免费观看视频高清| 中国国产av一级| 午夜免费观看性视频| av又黄又爽大尺度在线免费看| 内地一区二区视频在线| 免费观看a级毛片全部| 青春草国产在线视频| 22中文网久久字幕| 男人和女人高潮做爰伦理| 精品国产一区二区三区久久久樱花 | 天天一区二区日本电影三级| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 国产亚洲5aaaaa淫片| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 国产亚洲精品久久久com| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 国产伦在线观看视频一区| 夫妻午夜视频| 欧美潮喷喷水| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 国产亚洲最大av| 亚洲美女搞黄在线观看| 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 亚洲国产高清在线一区二区三| 美女内射精品一级片tv| 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| av国产久精品久网站免费入址| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 老师上课跳d突然被开到最大视频| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 男人爽女人下面视频在线观看| 亚洲国产高清在线一区二区三| 日本欧美国产在线视频| 精品酒店卫生间| 亚洲,一卡二卡三卡| 亚洲在久久综合| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 99re6热这里在线精品视频| 舔av片在线| 免费看不卡的av| 毛片一级片免费看久久久久| 国内少妇人妻偷人精品xxx网站| 欧美 日韩 精品 国产| 国产一区亚洲一区在线观看| 欧美+日韩+精品| 国产在视频线精品| 国产精品福利在线免费观看| 最近最新中文字幕大全电影3| 噜噜噜噜噜久久久久久91| 亚洲成色77777| 最近2019中文字幕mv第一页| 搡女人真爽免费视频火全软件| 国产探花在线观看一区二区| 女人十人毛片免费观看3o分钟| av在线蜜桃| 啦啦啦啦在线视频资源| 亚洲av.av天堂| 亚洲精品一二三| av国产久精品久网站免费入址| 男女边摸边吃奶| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久 | 亚洲精品国产成人久久av| 白带黄色成豆腐渣| 久久久色成人| 日本-黄色视频高清免费观看| 大片免费播放器 马上看| 99视频精品全部免费 在线| 精品一区二区三区视频在线| 亚洲精品乱码久久久久久按摩| 青春草国产在线视频| 精华霜和精华液先用哪个| 伊人久久国产一区二区| 黑人高潮一二区| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 少妇的逼好多水| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 欧美成人a在线观看| 九九在线视频观看精品| 日本欧美国产在线视频| 久久久久久九九精品二区国产| 久久人人爽人人片av| 亚洲成人精品中文字幕电影| 亚洲成人一二三区av| 久久精品国产自在天天线| 99久久人妻综合| 久久久久久久久大av| 青春草视频在线免费观看| 国产黄a三级三级三级人| 人妻 亚洲 视频| 国产精品爽爽va在线观看网站| 99re6热这里在线精品视频| 69av精品久久久久久| 麻豆久久精品国产亚洲av| 欧美极品一区二区三区四区| 欧美另类一区| 欧美区成人在线视频| 性色av一级| 亚洲av福利一区| 久久鲁丝午夜福利片| 国产淫片久久久久久久久| 精品国产乱码久久久久久小说| 夜夜爽夜夜爽视频| 女人十人毛片免费观看3o分钟| 三级国产精品欧美在线观看| 18禁动态无遮挡网站| 国产成人福利小说| 大香蕉久久网| 狂野欧美白嫩少妇大欣赏| 亚洲国产av新网站| 国产在线男女| 国产免费一区二区三区四区乱码| 亚洲精品亚洲一区二区| 丝瓜视频免费看黄片| 国产精品爽爽va在线观看网站| av天堂中文字幕网| 青春草国产在线视频| 亚洲精品乱久久久久久| 国产探花极品一区二区| 亚洲国产精品成人久久小说| 搡女人真爽免费视频火全软件| 波多野结衣巨乳人妻| 国语对白做爰xxxⅹ性视频网站| 亚洲精品,欧美精品| 国产一区有黄有色的免费视频| 一级毛片久久久久久久久女| 午夜福利网站1000一区二区三区| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 看十八女毛片水多多多| 亚洲人与动物交配视频| 一级毛片 在线播放| 内射极品少妇av片p| 一本一本综合久久| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 久久久久九九精品影院| 国产真实伦视频高清在线观看| 一级毛片aaaaaa免费看小| 亚洲高清免费不卡视频| 男人舔奶头视频| 99热这里只有是精品50| 欧美激情在线99| 在线观看av片永久免费下载| 精品人妻一区二区三区麻豆| 午夜亚洲福利在线播放| 国产高潮美女av| 九九爱精品视频在线观看| 舔av片在线| 免费观看av网站的网址| 中文字幕制服av| 91久久精品国产一区二区三区| 国产精品久久久久久久电影|