• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of pattern transitions on water surface in contact with DC microplasmas

    2020-06-14 08:45:32YanfeiCHEN陳妍菲BowenFENG馮博文QingZHANG張卿RuoyuWANG王若愚KostyaKenOSTRIKOV歐思聰andXiaoxiaZHONG鐘曉霞
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:陳妍博文

    Yanfei CHEN (陳妍菲),Bowen FENG (馮博文),Qing ZHANG (張卿),Ruoyu WANG (王若愚),Kostya (Ken) OSTRIKOV (歐思聰) and Xiaoxia ZHONG (鐘曉霞)

    1 Key Laboratory for Laser Plasmas(Ministry of Education)and State Key Laboratory of Advanced Optical Communication Systems and Networks,Department of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of China

    2 School of Chemistry,Physics and Mechanical Engineering,Queensland University of Technology,Brisbane QLD 4000,Australia

    3 CSIRO-QUT Joint Sustainable Processes and Devices Laboratory,Lindfield NSW 2070,Australia

    Abstract

    Keywords:microplasma,self-organized pattern,optical emission spectroscopy

    1.Introduction

    Microplasmas are typically characterized with small size,stable operation atmospheric pressure,non-thermal characteristics,high electron density and non-Maxwellian electron energy distribution [1,2].Presenting the clear advantages of being vacuum free,clean,and environment friendly,and highly effective technology,microplasmas have recently attracted more and more attention [3,4].The areas of particular interest include the solution plasma processing [5–7],plasma biomedical technologies and medicine [8,9],nanoparticle synthesis[10–12],water purification[13,14],plasma agriculture and food processing [15,16],and some others.Self-organized pattern transition on the liquid surface has attracted a tremendous amount of interests from the plasma community [17–24]because it encompasses a diversity of physical and chemical process at the plasma-liquid interface.Wilson et al observed [19]that a luminous spot formed on the gold or water anode produced circular patterns,while the spot rotation speed depended on the gas composition,discharge current,and discharge length.Shirai et al reported that the concentration of the electronegative gas such as oxygen gas plays an important role in the observed pattern transitions [22].Verreycken et al[20]indicated that spots observed on the water anode clearly coexisted and the pattern was not made of a single or a few filaments moving across the water surface.Also,according to them,patterns appear at higher discharge currents and disappear when the water conductivity is increased,and the mechanisms of the observed pattern transition are of the electric nature rather than of the chemical nature [20].Later,Zhang et al suggested that the type of liquid (HCl,H2SO4) rather than the electrical conductivity of the liquid actually determines the discretization features of the patterns including the various types of rings,spots or strips [21].

    From the previous reports of other researchers,it appears difficult to single out the influence of two interlinked parameters such as the current and water conductivity on the pattern formation.For example,increasing the water conductivity but keeping the discharge current unchanged actually means that the power absorbed by the discharge system is decreasing.Likewise,it is very difficult to distinguish the influence of the water conductivity and the dissolved chemicals on the pattern formation,especially if the water conductivity is suitably adjusted by adding different amounts of chemicals into water.

    On the other hand,it can be noticed that the effects of the gas and electrode temperature variation have not been carefully studied,especially under realistic conditions when the conductivity,the current,gap distance,and gas composition are changed.The effects of the gas and electrode temperature on pattern formation still remain unclear.However,the water temperature is coupled with the conductivity and the discharge current due to Joule heating during the discharge and also affects its conductivity in turn,in addition,the gas temperature of the plasma is a function of discharge parameters such as current,gas flow,gas composition,gap distance,electrode conductivity,etc.Apparently,the effects of the gas and electrode temperature on pattern formation require particular attention because it was previously shown that originally homogeneous systems may become unstable and structured when the temperature changes [25].Moreover,nonlinearities arising due to the local gas heating may generate the nonlinear feedback between the localized electric field,ionization rates,and the working gas density in the discharge.The interplay of these factors ultimately determines the structure of the higher-order modes after the system has transitioned to a patterned state [26].

    In this paper,a dedicated experiment is designed and carried out to investigate the influence of the electrode and gas temperatures of the atmospheric-pressure microplasmas on the self-organized pattern transitions.The results show that the appearance and the shape of the luminous pattern formed on the water surface are coupled to the electrode and gas temperatures of the plasma,where specific pattern modes are observed for certain gas temperatures.

    2.Experimental

    Figure 1.(a) Schematic diagram of the experimental system.(b) A fitting of experimental rovibrational bands of the N2 second positive system,in the wavelength range of 392–400 nm.The discrete crossheads represent the experimental data,and the red curve is the simulation spectra.

    The experimental system is presented in figure 1(a).The DC power source(SL2000,SPELLMAN)supplies a high voltage for the atmospheric-pressure microplasma discharge which is generated between a tungsten steel tube (1 mm inside diameter)and the tap water with the discharge current limited by a ballast resistor(about 30 kΩ).The helium gas is fed through the tungsten steel tube and the flow is controlled by a mass flow controller.A platinum electrode (anode) is immersed into the tap water contained in a glass dish.The tungsten steel tube served as the cathode and the tap water worked as the anode.The gap distance between the tube end and water surface is adjustable.The plasma is ignited when the voltage is increased to about 2000 V.Thereafter the voltage decreases to about 700–1100 V under different experimental conditions.The pictures of patterns formed on water surface were taken by a CCD camera (Manta G201C).A temperature probe(GM1312) is fixed in the water to measure the temperature,while another probe is fixed on the tungsten steel and the distance between the probe and the tube end is 2 cm.

    The spectra of the microplasma are collected using a spectrometer (AvaSpec-2048FT-4-DT).It is well known that the gas temperature can be estimated by the rotational temperature of nitrogen molecules in the plasma.This is why the wavelength range of 392–400 nm of the second positive system of nitrogen is chosen to analyze the gas temperature of the plasma [27]as shown in figure 1(b).Figure 1(b)demonstrates that both the vibrational and rotational temperature of N2molecules can be obtained by fitting the recorded experimental spectrum with the calculated spectrum.The calculated spectrum can be described by the following equation [27–30]

    Figure 2.(a) Dependence of pattern on temporal evolution.(b) Dependence of temperature of electrodes and gas temperature on temporal evolution.The gas flow rate is 30 sccm,the current is 40 mA,and the gap distance is 4.5 mm.

    where I is the light intensity,D is a constant,v',v"are the vibrational states,J',J"are the rotational states,λ is the wavelength of the emission spectra,qv',v"is the Franck–Condon factor [31].Here,SJ',J"is the Honl–London factor[28],Ev'andEJ'are the vibrational and rotational energy,respectively,k is the Boltzmann constant.Furthermore,TvandTrare the vibrational and rotational temperatures,respectively.

    3.Results and discussion

    3.1.Pattern versus time

    The temporal evolution of the microplasma pattern during the discharge is presented in figure 2(a),and the time dependence of the gas temperature (Tg) of the plasma,the water anode temperature (Ta),the tungsten cathode temperature (Tc) are given in figure 2(b).The pattern structure is labeled at each temperature point (Tg,Ta,Tc) where the gas flow rate is 30 sccm,the discharge current is 40 mA,and the gap distance is 4.5 mm.

    The pattern with the features of both ring-like and distinct spots structures is observed over the water anode surface at the initial moment when the water temperature is 25 °C(298.15 K),as seen in figure 2(a).1 min after the discharge,the pattern already transforms to feature both the distinct spots and gearwheel structures.2 min into the discharge,and pattern assumes the gearwheel structure,and remains unchanged later on.

    Figure 3.(a)Dependence of pattern on gap distance.(b)Dependence of temperature of electrodes and gas temperature on gap distance.The current is 30 mA,the helium gas flux is 30 sccm,and the gap distance ranges from 3.5 to 5 mm.

    On the other hand,the temperatures of both electrodes as well as the gas temperature rise faster within the initial 1 min discharge and tend to be stabilized thereafter,as shown in figure 2(b).The increment rates of the gas temperature,the anode temperature and the cathode temperature are around 66 K min-1,7 K min-1,and 13 K min-1,respectively at the beginning of the discharge.After 1 min into the discharge,the rates of change of the gas,anode,and cathode temperatures all decline.Comparing the temporal evolution of the gas temperature with that of the electrodes temperature,it can be seen that less time is required for the gas temperature to stabilize.The result indicates that the temperatures of the electrode have little influence on the gas temperature which is much higher than the electrode temperature.

    In comparison of the figures 2(a) and (b),one can see that the initial pattern (in between the ring-like and distinct spot structure) occurs at the temperature point (Tg=2362 K,Ta=298.15 K,Tc=468.15 K).The pattern later transforms into a combination of the distinct spots and gear wheel structures at the temperature point (Tg=2428 K,Ta=304.35 K,Tc=481.65 K).Subsequently,the pattern resembling the gearwheel structure emerges at the temperature point (Tg=2414 K,Ta=308.75 K,Tc=488.32 K).Later,the pattern of the gearwheel structure remains stable.Meanwhile,the values of the gas,anode,and cathode temperatures remain almost unchanged.Apparently,the temporal evolution of the pattern shape is closely related to the temporal variation of the temperatures of the gas and the electrodes.The result indicates that the shape of pattern in the atmospheric-pressure micro-discharge can be related to values of the temperatures of the gas and both electrodes.

    3.2.Pattern versus gap distance

    The stabilized patterns formed over the water anode,and the temperatures of the gas and the electrodes at different gap distances are presented in figures 3(a) and (b),respectively.Here the discharge current is 30 mA,the gas flux is 30 sccm,and the pattern structure are also labeled at each temperature point (Tg,Ta,Tc) in figure 3(b).The homogeneous spot is observed at the gap distances of 3.5 and 4 mm,and it turns to the ring shape pattern at the gap distances of 4.5 and 5 mm.

    On the other hand,there is an obvious increasing trend in the gas temperature,the anode temperature and the cathode temperature at larger gap distances as presented in figure 5(b).As the gap is widened from 3.5 to 5 mm,the gas temperature,the anode temperature and the cathode temperature all show a consistent increase from 1589 to 1964 K,295.98 to 301.68 K,and 442.15 to 480.72 K,respectively.As we know,the gas temperature is determined by thermal balance between the heat energy absorbed by the plasma and the heat dissipated across the plasma boundary.By increasing the discharge gap distance,the surface to volume ratio of the plasma decreases,which weakens the dissipation of the heat energy,and leads to the rise of the gas temperature,and simultaneously to the rise of the temperatures of both electrodes [32].

    It can be seen that the pattern of a homogeneous spot is observed on the water anode at the temperature points(Tg,Ta,Tc) of (1589 K,295.98 K,442.15 K) and (1778 K,297.62 K,460.05 K).When the gap distance increases to 4.5 mm,the ring-like structure pattern is observed,the value of the temperature point (Tg,Ta,Tc) is (1811 K,299.45 K,472.48 K).Further increasing the gap distance to 5 mm,the value of the temperature point (Tg,Ta,Tc) is (1964 K,301.68 K,480.72 K),and the pattern formed on the water surface still presents a ring-like shape.The value of temperature point(Tg,Ta,Tc)at which the ring-like pattern appears is higher than the temperatures (Tg,Ta,Tc) when the homogeneous spot appears.This result is consistent with the result shown in figure 2 and confirms that the gas temperature of the plasma,the anode temperature and the cathode temperature do affect the observed pattern transitions.

    3.3.Pattern versus current and gas flux

    The effects of the current and gas flux on the observed pattern transition and the temperature of the neutral gas,the anode and the cathode are presented in figure 4,where the gap distance between the electrodes is 4.5 mm.The pattern shape is also labeled at each temperature point in figures 4(b)–(d).

    In the first column of figure 4(a),the gas flux is fixed at 30 sccm,and a homogeneous spot is observed when the current is 25 mA.As the current is increasing to 35 and 40 mA,a pattern with the ring-like structure appears on the water anode.Further increasing the current to 45 mA,the ring-like pattern changes into a pattern with several distinct spots distributed around the central homogeneous spot.In the second column of figure 4(a)when the gas flux is 45 sccm,the pattern turns to be a homogenous spot at a current of 25 mA,and a ring-like structure appears at the current values of 35,40,and 45 mA.Differently from the patterns formed at the gas flux of 30 sccm,there are no distinct luminous spots formed around the central spot when the current and gas flux are 45 mA and 45 sccm,respectively.In the third column when the gas flux is 60 sccm,the pattern formed at the current of 25 mA also turns to be a homogenous spot.Differently from the results obtained for the gas fluxes of 30 and 45 sccm,the pattern does not change into the ring-like or distinct spot structures at the current values of 35,40,45 mA when the gas flux is set to 60 sccm.

    Figure 4.Dependence of pattern on current and gas flux.The gap distance is 4.5 mm.(a) Dependence of pattern on current and gas flux.(b) Dependence of temperature of water on current and gas flux.(c) Dependence of temperature of tungsten steel on current and gas flux.(d) Dependence of gas temperature on current and gas flux.(e) Dependence of pattern on temperature.

    Figure 5.Temperature dependence of the observed pattern transitions.(a)Gas temperature.(b)Temperature of anode.(c)Temperature of cathode.

    The gas temperature of the plasma,the anode temperature and the cathode temperature in dependence of discharge current and gas flux are shown in figures 4(b)–(d),respectively.According to figure 4(b),with the discharge current increasing from 25 to 45 mA,the gas temperature increases from 1592 to 2252 K at the gas flux of 30 sccm.The gas temperature increases from 1518 to 1958 K at the gas flux of 45 sccm,while the corresponding increase at the gas flux of 60 sccm is from 1390 to 1776 K.Obviously,the gas temperature decreases with the increasing of gas flux if the discharge current is fixed.The effects of the current and the gas flux on the temperature of electrodes are the same as the effect of the gas temperature of the plasma.As the current increases from 25 to 45 mA,the anode temperature increases from 298.72 to 305.65 K at the gas flux of 30 sccm.The anode temperature increases from 297.55 to 303.45 K at the gas flux of 45 sccm,as well as from 295.88 to 300.48 K at the gas flux of 60 sccm as shown in figure 4(c).By fixing the discharge current,one can also reduce the anode temperature while raising the gas flux.Likewise,as the current increases in the range from 25 to 45 mA,the cathode temperature increases from 408.92 to 463.88 K at the gas flux of 30 sccm,from 403.78 to 446.78 K at the gas flux of 45 sccm,and from 390.88 to 417.02 K at the gas flux of 60 sccm as shown in figure 4(d).Similarly,the drop of the cathode temperature with the higher gas flux is also seen in figure 4(d).

    As the current is directly correlated to the power input into the discharge system,and the gas flow is beneficial to energy dissipation,the behavior that the gas temperature and the electrode temperature varied with the discharge current and the gas flow rate shown in figures 4(b)–(d) can be easily understood.

    The values of the temperature points(Tg,Ta,Tc)uniquely corresponding to each pattern are shown in figures 4(b)-(d).One can see that the values of temperature points (Tg,Ta,Tc)are (1592 K,298.72 K,408.92 K),(1518 K,297.55 K,403.78 K),(1390 K,295.88 K,390.88 K),(1582 K,297.42 K,398.25 K),(1691 K,298.95 K,410.68 K) and (1776 K,300.48 K,417.02 K)at which the homogeneous spot formed.The following temperature points (1991 K,302.05 K,428.12 K),(2191 K,304.52 K,447.72 K),(1747 K,299.48 K,420.88 K),(1838 K,301.12 K,434.55 K) and (1958 K,303.45 K,446.78 K) produce the ring-like shapes.Likewise,temperatures(2252 K,305.65 K,463.88 K)correspond to the point when several distinct spots instead of a ring are observed around the central spot.This result is similar to the result presented in figures 2(b)and 3(b),and reveals the vital effect of the gas temperature of the plasma,the anode temperature and the cathode temperature on the pattern transitions.

    To clarify the temperature dependence of the observed pattern transitions,all patterns presented in figures 2–4 are drawn in figures 5(a)–(c) as a function of the gas temperature,anode temperature and cathode temperature,respectively.It can be seen that the homogenous pattern can only exist at the relatively low gas temperature and electrode temperature.Meanwhile,the pattern changes from the homogenous spot to the ring-like pattern as the gas temperature and the electrode temperature rise.The appearances of the patterns with distinct spots and gearwheel shape are accompanied by the high gas,anode,and cathode temperatures.One can also notice that there are the overlapping temperature regions in figures 5(a)–(c)between the two adjacent kinds of patterns,namely between the homogenous spot and the ring-like spot,between the ring-like spot and the distinct spot,and between the distinct spot and the gearwheel structure.The overlapping temperature regions between the adjacent kinds of the patterns may reveal the dominant temperature that affects the pattern transition.When the overlapping temperature region is larger,the effect of temperature on the pattern transition becomes smaller.One can notice that the overlapping region in the gas temperature is much smaller than that in the anode temperature shown in figure 5(b) and the cathode temperature shown in figure 5(c)when the pattern transits from the homogeneous spot to the ring-like structure.

    The results indicate that the gas temperature plays a key role in discretizing the pattern from the homogeneous spot to the ring-like structure.This finding can be understood since the pattern transformation is determined by the local temperature at the plasma-water interface,which in turn depends on the gas temperature in the plasma discharge and the water temperature.Since the water temperature is much lower than the gas temperature of the plasma discharge,the interface temperature(which plays an important role in the pattern formation) is mainly dependent on the gas temperature.If the gas temperature is the main factor that determines the pattern structure,it can be understood that the pattern evolves with gas composition [22],liquid conductivity[20,33,34]and liquid composition[21],all of which affect the gas temperature.Apparently,to unveil the mechanisms of the pattern transitions,more theoretical and experimental studies are necessary.

    4.Conclusion

    The self-organized patterns generated by atmosphericpressure DC microplasmas have been formed on the water surface.It is observed that the discharge time,discharge gap width,plasma current and gas flux all influence the pattern transitions as well as the gas temperature of the plasma and the temperature of the electrodes.Analyzing the pattern at each temperature point determined by the gas temperature Tgand the electrode temperatures (Taand Tc),one can conclude that the gas temperature is related to the discretization features of the patterns and plays a role in the successive pattern transitions from the homogeneous spot to the ring-like shape,the distinct spots and the gearwheel structures.Our results are consistent with the earlier findings [25]that the originally homogeneous systems may be destabilized to assume nonuniform self-organized patterns.Our results further indicate that the gas temperature Tgis the important parameter that may affect the reaction–diffusion instability,likely leading to the pattern transitions from the homogeneous spots to the gearwheel structure.The outcomes of this work are relevant to the diverse applications where microplasma discharges are brought into contact with liquids.

    Acknowledgments

    This research is supported by National Natural Science Foundation of China (No.11675109) and Biomedical Engineering Cross Research Foundation of Shanghai Jiao Tong University(YG2016MS12).K Ostrikov thanks the Australian Research Council for partial support.

    猜你喜歡
    陳妍博文
    中國(guó)兩會(huì)
    第一次掙錢
    鐘浩瑜 陳妍 賈靈璐
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    雪雀一家的新房
    誰(shuí)和誰(shuí)好
    養(yǎng)狗夢(mèng)
    陳妍希
    意林(2017年2期)2017-02-06 07:20:47
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    波野结衣二区三区在线| 伦精品一区二区三区| 欧美一级a爱片免费观看看| 国产 一区 欧美 日韩| 99热这里只有精品一区| 亚洲成人一二三区av| a 毛片基地| 亚洲国产最新在线播放| 午夜免费鲁丝| 亚洲av电影在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 精品久久国产蜜桃| 日日撸夜夜添| 99久久中文字幕三级久久日本| 日日撸夜夜添| 亚洲av福利一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲自偷自拍三级| 日韩av免费高清视频| 久久久久视频综合| 免费播放大片免费观看视频在线观看| 黄片wwwwww| 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 一区二区av电影网| 精品人妻视频免费看| 观看av在线不卡| 日本色播在线视频| 最黄视频免费看| 精品一区二区免费观看| 久久久久久久久大av| 久久久成人免费电影| 日本wwww免费看| 少妇被粗大猛烈的视频| 精品久久久久久电影网| 欧美日韩视频精品一区| 久久精品久久久久久噜噜老黄| 亚洲精品日韩av片在线观看| 欧美日韩在线观看h| 久久国产乱子免费精品| av国产免费在线观看| 亚洲怡红院男人天堂| 少妇人妻久久综合中文| 日韩av免费高清视频| 国产精品福利在线免费观看| 少妇熟女欧美另类| 日韩不卡一区二区三区视频在线| 伦理电影大哥的女人| 国产老妇伦熟女老妇高清| 少妇的逼好多水| 国产一区亚洲一区在线观看| 日韩伦理黄色片| 三级经典国产精品| 精品亚洲成a人片在线观看 | 三级国产精品片| 91精品国产国语对白视频| 国产免费一区二区三区四区乱码| 欧美成人一区二区免费高清观看| 亚洲高清免费不卡视频| 久久韩国三级中文字幕| videossex国产| 毛片女人毛片| 精品一区二区三区视频在线| 国产精品99久久99久久久不卡 | 久久这里有精品视频免费| 97超碰精品成人国产| 亚洲无线观看免费| 99国产精品免费福利视频| 在线精品无人区一区二区三 | 欧美另类一区| 高清av免费在线| 亚洲国产欧美人成| 天堂8中文在线网| 久久97久久精品| 国精品久久久久久国模美| 午夜老司机福利剧场| 最近2019中文字幕mv第一页| 久久99热6这里只有精品| 欧美成人精品欧美一级黄| 国产久久久一区二区三区| av在线老鸭窝| 男女无遮挡免费网站观看| 午夜免费男女啪啪视频观看| 久久av网站| 伦精品一区二区三区| 亚洲最大成人中文| 九九在线视频观看精品| 国产高潮美女av| 中国三级夫妇交换| 亚洲国产精品专区欧美| 国产精品一及| 久久人人爽人人爽人人片va| 黄色怎么调成土黄色| 丰满少妇做爰视频| 简卡轻食公司| 一级av片app| 久久久a久久爽久久v久久| 免费人成在线观看视频色| 一个人看视频在线观看www免费| 少妇高潮的动态图| 欧美xxⅹ黑人| 国产精品福利在线免费观看| 久久精品国产自在天天线| 又粗又硬又长又爽又黄的视频| 免费大片18禁| 中文字幕精品免费在线观看视频 | 久久精品国产a三级三级三级| 国产久久久一区二区三区| 国产在线男女| 看免费成人av毛片| 亚洲av日韩在线播放| 日本色播在线视频| 高清av免费在线| 美女福利国产在线 | 青春草视频在线免费观看| 色5月婷婷丁香| av福利片在线观看| 人妻夜夜爽99麻豆av| 久久久午夜欧美精品| 欧美区成人在线视频| 欧美xxⅹ黑人| 国产精品一区二区在线观看99| 精品人妻偷拍中文字幕| 视频区图区小说| 大片电影免费在线观看免费| 搡老乐熟女国产| 亚洲va在线va天堂va国产| 国产视频内射| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 亚洲成色77777| 久久热精品热| 国产成人免费观看mmmm| 久久综合国产亚洲精品| 一区二区三区乱码不卡18| 欧美3d第一页| 大又大粗又爽又黄少妇毛片口| 欧美激情极品国产一区二区三区 | 黄片wwwwww| av一本久久久久| 久久国内精品自在自线图片| 国产精品一二三区在线看| 在线观看人妻少妇| 日韩一区二区视频免费看| 久久国产精品大桥未久av | 黄片wwwwww| 我要看日韩黄色一级片| 老司机影院成人| 热re99久久精品国产66热6| 乱码一卡2卡4卡精品| 亚洲精品一二三| 免费观看av网站的网址| 26uuu在线亚洲综合色| 久久久久人妻精品一区果冻| 2021少妇久久久久久久久久久| 一级av片app| 午夜免费观看性视频| 国产精品一区二区三区四区免费观看| 亚洲av中文av极速乱| 国产精品一及| 高清不卡的av网站| 最近2019中文字幕mv第一页| av黄色大香蕉| 国产精品99久久久久久久久| 交换朋友夫妻互换小说| 国内揄拍国产精品人妻在线| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩卡通动漫| 51国产日韩欧美| 美女视频免费永久观看网站| 欧美一级a爱片免费观看看| 看免费成人av毛片| freevideosex欧美| 啦啦啦在线观看免费高清www| 嫩草影院入口| 国产精品久久久久久精品古装| 精品一区二区三卡| 精品国产露脸久久av麻豆| 精品久久久久久久久亚洲| 丰满乱子伦码专区| 美女内射精品一级片tv| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 在线天堂最新版资源| 亚洲av国产av综合av卡| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 91精品国产国语对白视频| 狂野欧美激情性bbbbbb| 又爽又黄a免费视频| 免费大片黄手机在线观看| 亚洲精品视频女| 我的女老师完整版在线观看| 综合色丁香网| 乱系列少妇在线播放| 内地一区二区视频在线| 国产成人午夜福利电影在线观看| videossex国产| 一级黄片播放器| 美女中出高潮动态图| 亚洲色图av天堂| 精品人妻视频免费看| 亚洲精品国产成人久久av| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 亚洲精品aⅴ在线观看| 99久久精品热视频| av在线播放精品| 成年免费大片在线观看| 精品一品国产午夜福利视频| 国产熟女欧美一区二区| 精品人妻视频免费看| 精品久久国产蜜桃| 日韩免费高清中文字幕av| 18禁动态无遮挡网站| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| av免费在线看不卡| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| 午夜视频国产福利| 国产高潮美女av| 大片电影免费在线观看免费| 色婷婷久久久亚洲欧美| 97在线人人人人妻| 国产精品一区二区三区四区免费观看| 亚洲精品视频女| 日本猛色少妇xxxxx猛交久久| 日本一二三区视频观看| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 1000部很黄的大片| 久久99热这里只有精品18| 91精品伊人久久大香线蕉| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看| 成人毛片60女人毛片免费| xxx大片免费视频| 国产精品熟女久久久久浪| 亚洲av在线观看美女高潮| 99国产精品免费福利视频| 国产爱豆传媒在线观看| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区免费毛片| 18禁动态无遮挡网站| 亚洲最大成人中文| 街头女战士在线观看网站| 中国国产av一级| 乱系列少妇在线播放| 国产免费又黄又爽又色| 黑丝袜美女国产一区| 日韩精品有码人妻一区| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| h日本视频在线播放| 搡女人真爽免费视频火全软件| videossex国产| 最近最新中文字幕大全电影3| 国产精品久久久久久久电影| 亚洲国产精品专区欧美| av国产久精品久网站免费入址| 在线观看人妻少妇| 欧美最新免费一区二区三区| 亚洲国产av新网站| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 欧美激情极品国产一区二区三区 | 一区二区av电影网| 成人无遮挡网站| 在线亚洲精品国产二区图片欧美 | 欧美性感艳星| 国产视频内射| 国产伦在线观看视频一区| 久久久午夜欧美精品| 亚洲av电影在线观看一区二区三区| 国产69精品久久久久777片| 亚洲性久久影院| 欧美精品一区二区免费开放| 丰满迷人的少妇在线观看| 色视频www国产| 国产成人freesex在线| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 国产 精品1| 日韩一区二区视频免费看| 亚洲精品视频女| 男女国产视频网站| 成年免费大片在线观看| 91精品一卡2卡3卡4卡| 亚洲美女黄色视频免费看| 午夜免费鲁丝| 国产91av在线免费观看| 久久国产精品大桥未久av | xxx大片免费视频| 亚洲国产色片| kizo精华| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 交换朋友夫妻互换小说| 欧美性感艳星| 狠狠精品人妻久久久久久综合| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 久久热精品热| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产最新在线播放| 成人美女网站在线观看视频| 91午夜精品亚洲一区二区三区| 久久人人爽av亚洲精品天堂 | 亚洲激情五月婷婷啪啪| 国产精品人妻久久久影院| 欧美少妇被猛烈插入视频| 51国产日韩欧美| 午夜福利视频精品| 久久久久久久久久久丰满| 精品国产一区二区三区久久久樱花 | 高清午夜精品一区二区三区| 777米奇影视久久| 秋霞在线观看毛片| 国产成人freesex在线| 亚洲av.av天堂| 免费黄色在线免费观看| 九草在线视频观看| 国产精品人妻久久久影院| 久久久久性生活片| 大香蕉久久网| 日日撸夜夜添| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 一区二区三区精品91| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| 国产av国产精品国产| 新久久久久国产一级毛片| av网站免费在线观看视频| 少妇裸体淫交视频免费看高清| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 久久人人爽av亚洲精品天堂 | 久久精品国产自在天天线| 一区二区三区乱码不卡18| 久热这里只有精品99| 欧美bdsm另类| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 精品国产乱码久久久久久小说| 老司机影院成人| 国产毛片在线视频| 精华霜和精华液先用哪个| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久丰满| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 成人影院久久| 久久精品久久久久久久性| 大陆偷拍与自拍| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 亚洲成人一二三区av| 免费观看av网站的网址| 欧美性感艳星| 亚洲精品国产av蜜桃| 永久网站在线| 亚洲国产精品一区三区| 亚洲国产精品国产精品| 亚洲精品乱码久久久久久按摩| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 国产精品成人在线| 嫩草影院入口| 成人午夜精彩视频在线观看| 欧美日韩视频精品一区| 我要看黄色一级片免费的| 国产成人一区二区在线| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 亚洲成人av在线免费| 亚洲内射少妇av| 内地一区二区视频在线| 身体一侧抽搐| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频| 亚洲一区二区三区欧美精品| 毛片一级片免费看久久久久| 精品一区二区三卡| 精品国产乱码久久久久久小说| 精品一区二区三区视频在线| 亚洲欧美日韩东京热| 在线观看三级黄色| 亚洲精品中文字幕在线视频 | 美女中出高潮动态图| 哪个播放器可以免费观看大片| 嫩草影院入口| 大又大粗又爽又黄少妇毛片口| 国产黄频视频在线观看| 99久国产av精品国产电影| 亚洲欧美日韩东京热| 2018国产大陆天天弄谢| 高清毛片免费看| 欧美亚洲 丝袜 人妻 在线| 18禁在线无遮挡免费观看视频| 午夜免费观看性视频| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 免费大片黄手机在线观看| 亚洲欧洲日产国产| 国产乱人偷精品视频| 2022亚洲国产成人精品| 99久久精品国产国产毛片| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线 | 直男gayav资源| 亚洲精品,欧美精品| 一本一本综合久久| 成人亚洲精品一区在线观看 | 韩国av在线不卡| 1000部很黄的大片| av国产久精品久网站免费入址| 中文资源天堂在线| 亚洲av福利一区| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 99久久精品国产国产毛片| 波野结衣二区三区在线| 超碰av人人做人人爽久久| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 乱系列少妇在线播放| 国产av码专区亚洲av| 91精品伊人久久大香线蕉| 熟女av电影| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频 | 99国产精品免费福利视频| 午夜激情久久久久久久| 久久久久久久国产电影| 亚洲精品日韩在线中文字幕| 大片免费播放器 马上看| 另类亚洲欧美激情| 大码成人一级视频| 一本久久精品| 这个男人来自地球电影免费观看 | 韩国av在线不卡| 免费观看在线日韩| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区视频9| 51国产日韩欧美| 欧美区成人在线视频| 免费观看性生交大片5| 久久久精品免费免费高清| 成人国产av品久久久| 色哟哟·www| 极品教师在线视频| 久久精品人妻少妇| 中文字幕精品免费在线观看视频 | 边亲边吃奶的免费视频| 国产综合精华液| 亚洲av中文字字幕乱码综合| 少妇人妻久久综合中文| 国产亚洲一区二区精品| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 午夜日本视频在线| 性色avwww在线观看| 免费大片黄手机在线观看| 黑人猛操日本美女一级片| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 久久精品久久久久久噜噜老黄| 亚洲成人av在线免费| 欧美+日韩+精品| 国产成人91sexporn| 欧美成人a在线观看| 欧美日韩亚洲高清精品| 伦理电影大哥的女人| 亚洲天堂av无毛| 久久国内精品自在自线图片| 国产精品麻豆人妻色哟哟久久| 国产在线男女| 久久久久国产网址| 一区二区av电影网| 99久久精品一区二区三区| 成人国产麻豆网| 高清不卡的av网站| 国产午夜精品一二区理论片| 亚洲成人av在线免费| 嫩草影院入口| 日韩欧美一区视频在线观看 | 日产精品乱码卡一卡2卡三| 国产精品精品国产色婷婷| 精品一品国产午夜福利视频| 在线观看一区二区三区| 久久精品久久久久久久性| 婷婷色麻豆天堂久久| 成年人午夜在线观看视频| 看十八女毛片水多多多| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 在线观看三级黄色| 精品亚洲成a人片在线观看 | 亚洲美女搞黄在线观看| 精品久久久久久久久亚洲| 妹子高潮喷水视频| av在线观看视频网站免费| 一本久久精品| 在线天堂最新版资源| 好男人视频免费观看在线| 亚洲中文av在线| 天天躁日日操中文字幕| 男的添女的下面高潮视频| 国产精品久久久久久久久免| 久久久久久久久大av| 少妇的逼水好多| 国产成人a∨麻豆精品| 国产女主播在线喷水免费视频网站| 啦啦啦啦在线视频资源| av免费在线看不卡| 小蜜桃在线观看免费完整版高清| 亚洲色图综合在线观看| 国产成人精品久久久久久| 超碰97精品在线观看| 97超视频在线观看视频| 高清视频免费观看一区二区| 春色校园在线视频观看| 久久99蜜桃精品久久| 极品少妇高潮喷水抽搐| a级毛片免费高清观看在线播放| 女人久久www免费人成看片| 五月天丁香电影| 日韩伦理黄色片| 久久婷婷青草| 久久韩国三级中文字幕| 22中文网久久字幕| 亚洲不卡免费看| 夫妻午夜视频| 成人亚洲精品一区在线观看 | 肉色欧美久久久久久久蜜桃| 国产亚洲一区二区精品| 丰满人妻一区二区三区视频av| 久久亚洲国产成人精品v| 午夜老司机福利剧场| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| 日韩一区二区三区影片| 成人国产av品久久久| 亚洲av综合色区一区| 久久久久视频综合| 日韩国内少妇激情av| 色婷婷久久久亚洲欧美| 欧美bdsm另类| 成人午夜精彩视频在线观看| 亚洲高清免费不卡视频| freevideosex欧美| 在线观看一区二区三区激情| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 亚洲精品国产av蜜桃| 国产亚洲午夜精品一区二区久久| 99re6热这里在线精品视频| 亚洲欧美中文字幕日韩二区| 日韩不卡一区二区三区视频在线| 亚洲三级黄色毛片| 国精品久久久久久国模美| av在线蜜桃| 国产欧美日韩一区二区三区在线 | 我要看黄色一级片免费的| 观看av在线不卡| 午夜免费观看性视频| 好男人视频免费观看在线| 欧美精品一区二区免费开放| 老女人水多毛片| 观看美女的网站| 九九在线视频观看精品| 亚洲精品中文字幕在线视频 | 亚洲色图综合在线观看| 亚洲精品乱码久久久久久按摩| 97在线人人人人妻| 国产综合精华液| 成人毛片60女人毛片免费| 伊人久久国产一区二区| 久久人人爽av亚洲精品天堂 | 男人狂女人下面高潮的视频| 久久久国产一区二区| 欧美日韩综合久久久久久| 欧美成人精品欧美一级黄| 久久ye,这里只有精品| 欧美三级亚洲精品| 91精品国产九色| 一级a做视频免费观看| 欧美激情极品国产一区二区三区 |