• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of pattern transitions on water surface in contact with DC microplasmas

    2020-06-14 08:45:32YanfeiCHEN陳妍菲BowenFENG馮博文QingZHANG張卿RuoyuWANG王若愚KostyaKenOSTRIKOV歐思聰andXiaoxiaZHONG鐘曉霞
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:陳妍博文

    Yanfei CHEN (陳妍菲),Bowen FENG (馮博文),Qing ZHANG (張卿),Ruoyu WANG (王若愚),Kostya (Ken) OSTRIKOV (歐思聰) and Xiaoxia ZHONG (鐘曉霞)

    1 Key Laboratory for Laser Plasmas(Ministry of Education)and State Key Laboratory of Advanced Optical Communication Systems and Networks,Department of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of China

    2 School of Chemistry,Physics and Mechanical Engineering,Queensland University of Technology,Brisbane QLD 4000,Australia

    3 CSIRO-QUT Joint Sustainable Processes and Devices Laboratory,Lindfield NSW 2070,Australia

    Abstract

    Keywords:microplasma,self-organized pattern,optical emission spectroscopy

    1.Introduction

    Microplasmas are typically characterized with small size,stable operation atmospheric pressure,non-thermal characteristics,high electron density and non-Maxwellian electron energy distribution [1,2].Presenting the clear advantages of being vacuum free,clean,and environment friendly,and highly effective technology,microplasmas have recently attracted more and more attention [3,4].The areas of particular interest include the solution plasma processing [5–7],plasma biomedical technologies and medicine [8,9],nanoparticle synthesis[10–12],water purification[13,14],plasma agriculture and food processing [15,16],and some others.Self-organized pattern transition on the liquid surface has attracted a tremendous amount of interests from the plasma community [17–24]because it encompasses a diversity of physical and chemical process at the plasma-liquid interface.Wilson et al observed [19]that a luminous spot formed on the gold or water anode produced circular patterns,while the spot rotation speed depended on the gas composition,discharge current,and discharge length.Shirai et al reported that the concentration of the electronegative gas such as oxygen gas plays an important role in the observed pattern transitions [22].Verreycken et al[20]indicated that spots observed on the water anode clearly coexisted and the pattern was not made of a single or a few filaments moving across the water surface.Also,according to them,patterns appear at higher discharge currents and disappear when the water conductivity is increased,and the mechanisms of the observed pattern transition are of the electric nature rather than of the chemical nature [20].Later,Zhang et al suggested that the type of liquid (HCl,H2SO4) rather than the electrical conductivity of the liquid actually determines the discretization features of the patterns including the various types of rings,spots or strips [21].

    From the previous reports of other researchers,it appears difficult to single out the influence of two interlinked parameters such as the current and water conductivity on the pattern formation.For example,increasing the water conductivity but keeping the discharge current unchanged actually means that the power absorbed by the discharge system is decreasing.Likewise,it is very difficult to distinguish the influence of the water conductivity and the dissolved chemicals on the pattern formation,especially if the water conductivity is suitably adjusted by adding different amounts of chemicals into water.

    On the other hand,it can be noticed that the effects of the gas and electrode temperature variation have not been carefully studied,especially under realistic conditions when the conductivity,the current,gap distance,and gas composition are changed.The effects of the gas and electrode temperature on pattern formation still remain unclear.However,the water temperature is coupled with the conductivity and the discharge current due to Joule heating during the discharge and also affects its conductivity in turn,in addition,the gas temperature of the plasma is a function of discharge parameters such as current,gas flow,gas composition,gap distance,electrode conductivity,etc.Apparently,the effects of the gas and electrode temperature on pattern formation require particular attention because it was previously shown that originally homogeneous systems may become unstable and structured when the temperature changes [25].Moreover,nonlinearities arising due to the local gas heating may generate the nonlinear feedback between the localized electric field,ionization rates,and the working gas density in the discharge.The interplay of these factors ultimately determines the structure of the higher-order modes after the system has transitioned to a patterned state [26].

    In this paper,a dedicated experiment is designed and carried out to investigate the influence of the electrode and gas temperatures of the atmospheric-pressure microplasmas on the self-organized pattern transitions.The results show that the appearance and the shape of the luminous pattern formed on the water surface are coupled to the electrode and gas temperatures of the plasma,where specific pattern modes are observed for certain gas temperatures.

    2.Experimental

    Figure 1.(a) Schematic diagram of the experimental system.(b) A fitting of experimental rovibrational bands of the N2 second positive system,in the wavelength range of 392–400 nm.The discrete crossheads represent the experimental data,and the red curve is the simulation spectra.

    The experimental system is presented in figure 1(a).The DC power source(SL2000,SPELLMAN)supplies a high voltage for the atmospheric-pressure microplasma discharge which is generated between a tungsten steel tube (1 mm inside diameter)and the tap water with the discharge current limited by a ballast resistor(about 30 kΩ).The helium gas is fed through the tungsten steel tube and the flow is controlled by a mass flow controller.A platinum electrode (anode) is immersed into the tap water contained in a glass dish.The tungsten steel tube served as the cathode and the tap water worked as the anode.The gap distance between the tube end and water surface is adjustable.The plasma is ignited when the voltage is increased to about 2000 V.Thereafter the voltage decreases to about 700–1100 V under different experimental conditions.The pictures of patterns formed on water surface were taken by a CCD camera (Manta G201C).A temperature probe(GM1312) is fixed in the water to measure the temperature,while another probe is fixed on the tungsten steel and the distance between the probe and the tube end is 2 cm.

    The spectra of the microplasma are collected using a spectrometer (AvaSpec-2048FT-4-DT).It is well known that the gas temperature can be estimated by the rotational temperature of nitrogen molecules in the plasma.This is why the wavelength range of 392–400 nm of the second positive system of nitrogen is chosen to analyze the gas temperature of the plasma [27]as shown in figure 1(b).Figure 1(b)demonstrates that both the vibrational and rotational temperature of N2molecules can be obtained by fitting the recorded experimental spectrum with the calculated spectrum.The calculated spectrum can be described by the following equation [27–30]

    Figure 2.(a) Dependence of pattern on temporal evolution.(b) Dependence of temperature of electrodes and gas temperature on temporal evolution.The gas flow rate is 30 sccm,the current is 40 mA,and the gap distance is 4.5 mm.

    where I is the light intensity,D is a constant,v',v"are the vibrational states,J',J"are the rotational states,λ is the wavelength of the emission spectra,qv',v"is the Franck–Condon factor [31].Here,SJ',J"is the Honl–London factor[28],Ev'andEJ'are the vibrational and rotational energy,respectively,k is the Boltzmann constant.Furthermore,TvandTrare the vibrational and rotational temperatures,respectively.

    3.Results and discussion

    3.1.Pattern versus time

    The temporal evolution of the microplasma pattern during the discharge is presented in figure 2(a),and the time dependence of the gas temperature (Tg) of the plasma,the water anode temperature (Ta),the tungsten cathode temperature (Tc) are given in figure 2(b).The pattern structure is labeled at each temperature point (Tg,Ta,Tc) where the gas flow rate is 30 sccm,the discharge current is 40 mA,and the gap distance is 4.5 mm.

    The pattern with the features of both ring-like and distinct spots structures is observed over the water anode surface at the initial moment when the water temperature is 25 °C(298.15 K),as seen in figure 2(a).1 min after the discharge,the pattern already transforms to feature both the distinct spots and gearwheel structures.2 min into the discharge,and pattern assumes the gearwheel structure,and remains unchanged later on.

    Figure 3.(a)Dependence of pattern on gap distance.(b)Dependence of temperature of electrodes and gas temperature on gap distance.The current is 30 mA,the helium gas flux is 30 sccm,and the gap distance ranges from 3.5 to 5 mm.

    On the other hand,the temperatures of both electrodes as well as the gas temperature rise faster within the initial 1 min discharge and tend to be stabilized thereafter,as shown in figure 2(b).The increment rates of the gas temperature,the anode temperature and the cathode temperature are around 66 K min-1,7 K min-1,and 13 K min-1,respectively at the beginning of the discharge.After 1 min into the discharge,the rates of change of the gas,anode,and cathode temperatures all decline.Comparing the temporal evolution of the gas temperature with that of the electrodes temperature,it can be seen that less time is required for the gas temperature to stabilize.The result indicates that the temperatures of the electrode have little influence on the gas temperature which is much higher than the electrode temperature.

    In comparison of the figures 2(a) and (b),one can see that the initial pattern (in between the ring-like and distinct spot structure) occurs at the temperature point (Tg=2362 K,Ta=298.15 K,Tc=468.15 K).The pattern later transforms into a combination of the distinct spots and gear wheel structures at the temperature point (Tg=2428 K,Ta=304.35 K,Tc=481.65 K).Subsequently,the pattern resembling the gearwheel structure emerges at the temperature point (Tg=2414 K,Ta=308.75 K,Tc=488.32 K).Later,the pattern of the gearwheel structure remains stable.Meanwhile,the values of the gas,anode,and cathode temperatures remain almost unchanged.Apparently,the temporal evolution of the pattern shape is closely related to the temporal variation of the temperatures of the gas and the electrodes.The result indicates that the shape of pattern in the atmospheric-pressure micro-discharge can be related to values of the temperatures of the gas and both electrodes.

    3.2.Pattern versus gap distance

    The stabilized patterns formed over the water anode,and the temperatures of the gas and the electrodes at different gap distances are presented in figures 3(a) and (b),respectively.Here the discharge current is 30 mA,the gas flux is 30 sccm,and the pattern structure are also labeled at each temperature point (Tg,Ta,Tc) in figure 3(b).The homogeneous spot is observed at the gap distances of 3.5 and 4 mm,and it turns to the ring shape pattern at the gap distances of 4.5 and 5 mm.

    On the other hand,there is an obvious increasing trend in the gas temperature,the anode temperature and the cathode temperature at larger gap distances as presented in figure 5(b).As the gap is widened from 3.5 to 5 mm,the gas temperature,the anode temperature and the cathode temperature all show a consistent increase from 1589 to 1964 K,295.98 to 301.68 K,and 442.15 to 480.72 K,respectively.As we know,the gas temperature is determined by thermal balance between the heat energy absorbed by the plasma and the heat dissipated across the plasma boundary.By increasing the discharge gap distance,the surface to volume ratio of the plasma decreases,which weakens the dissipation of the heat energy,and leads to the rise of the gas temperature,and simultaneously to the rise of the temperatures of both electrodes [32].

    It can be seen that the pattern of a homogeneous spot is observed on the water anode at the temperature points(Tg,Ta,Tc) of (1589 K,295.98 K,442.15 K) and (1778 K,297.62 K,460.05 K).When the gap distance increases to 4.5 mm,the ring-like structure pattern is observed,the value of the temperature point (Tg,Ta,Tc) is (1811 K,299.45 K,472.48 K).Further increasing the gap distance to 5 mm,the value of the temperature point (Tg,Ta,Tc) is (1964 K,301.68 K,480.72 K),and the pattern formed on the water surface still presents a ring-like shape.The value of temperature point(Tg,Ta,Tc)at which the ring-like pattern appears is higher than the temperatures (Tg,Ta,Tc) when the homogeneous spot appears.This result is consistent with the result shown in figure 2 and confirms that the gas temperature of the plasma,the anode temperature and the cathode temperature do affect the observed pattern transitions.

    3.3.Pattern versus current and gas flux

    The effects of the current and gas flux on the observed pattern transition and the temperature of the neutral gas,the anode and the cathode are presented in figure 4,where the gap distance between the electrodes is 4.5 mm.The pattern shape is also labeled at each temperature point in figures 4(b)–(d).

    In the first column of figure 4(a),the gas flux is fixed at 30 sccm,and a homogeneous spot is observed when the current is 25 mA.As the current is increasing to 35 and 40 mA,a pattern with the ring-like structure appears on the water anode.Further increasing the current to 45 mA,the ring-like pattern changes into a pattern with several distinct spots distributed around the central homogeneous spot.In the second column of figure 4(a)when the gas flux is 45 sccm,the pattern turns to be a homogenous spot at a current of 25 mA,and a ring-like structure appears at the current values of 35,40,and 45 mA.Differently from the patterns formed at the gas flux of 30 sccm,there are no distinct luminous spots formed around the central spot when the current and gas flux are 45 mA and 45 sccm,respectively.In the third column when the gas flux is 60 sccm,the pattern formed at the current of 25 mA also turns to be a homogenous spot.Differently from the results obtained for the gas fluxes of 30 and 45 sccm,the pattern does not change into the ring-like or distinct spot structures at the current values of 35,40,45 mA when the gas flux is set to 60 sccm.

    Figure 4.Dependence of pattern on current and gas flux.The gap distance is 4.5 mm.(a) Dependence of pattern on current and gas flux.(b) Dependence of temperature of water on current and gas flux.(c) Dependence of temperature of tungsten steel on current and gas flux.(d) Dependence of gas temperature on current and gas flux.(e) Dependence of pattern on temperature.

    Figure 5.Temperature dependence of the observed pattern transitions.(a)Gas temperature.(b)Temperature of anode.(c)Temperature of cathode.

    The gas temperature of the plasma,the anode temperature and the cathode temperature in dependence of discharge current and gas flux are shown in figures 4(b)–(d),respectively.According to figure 4(b),with the discharge current increasing from 25 to 45 mA,the gas temperature increases from 1592 to 2252 K at the gas flux of 30 sccm.The gas temperature increases from 1518 to 1958 K at the gas flux of 45 sccm,while the corresponding increase at the gas flux of 60 sccm is from 1390 to 1776 K.Obviously,the gas temperature decreases with the increasing of gas flux if the discharge current is fixed.The effects of the current and the gas flux on the temperature of electrodes are the same as the effect of the gas temperature of the plasma.As the current increases from 25 to 45 mA,the anode temperature increases from 298.72 to 305.65 K at the gas flux of 30 sccm.The anode temperature increases from 297.55 to 303.45 K at the gas flux of 45 sccm,as well as from 295.88 to 300.48 K at the gas flux of 60 sccm as shown in figure 4(c).By fixing the discharge current,one can also reduce the anode temperature while raising the gas flux.Likewise,as the current increases in the range from 25 to 45 mA,the cathode temperature increases from 408.92 to 463.88 K at the gas flux of 30 sccm,from 403.78 to 446.78 K at the gas flux of 45 sccm,and from 390.88 to 417.02 K at the gas flux of 60 sccm as shown in figure 4(d).Similarly,the drop of the cathode temperature with the higher gas flux is also seen in figure 4(d).

    As the current is directly correlated to the power input into the discharge system,and the gas flow is beneficial to energy dissipation,the behavior that the gas temperature and the electrode temperature varied with the discharge current and the gas flow rate shown in figures 4(b)–(d) can be easily understood.

    The values of the temperature points(Tg,Ta,Tc)uniquely corresponding to each pattern are shown in figures 4(b)-(d).One can see that the values of temperature points (Tg,Ta,Tc)are (1592 K,298.72 K,408.92 K),(1518 K,297.55 K,403.78 K),(1390 K,295.88 K,390.88 K),(1582 K,297.42 K,398.25 K),(1691 K,298.95 K,410.68 K) and (1776 K,300.48 K,417.02 K)at which the homogeneous spot formed.The following temperature points (1991 K,302.05 K,428.12 K),(2191 K,304.52 K,447.72 K),(1747 K,299.48 K,420.88 K),(1838 K,301.12 K,434.55 K) and (1958 K,303.45 K,446.78 K) produce the ring-like shapes.Likewise,temperatures(2252 K,305.65 K,463.88 K)correspond to the point when several distinct spots instead of a ring are observed around the central spot.This result is similar to the result presented in figures 2(b)and 3(b),and reveals the vital effect of the gas temperature of the plasma,the anode temperature and the cathode temperature on the pattern transitions.

    To clarify the temperature dependence of the observed pattern transitions,all patterns presented in figures 2–4 are drawn in figures 5(a)–(c) as a function of the gas temperature,anode temperature and cathode temperature,respectively.It can be seen that the homogenous pattern can only exist at the relatively low gas temperature and electrode temperature.Meanwhile,the pattern changes from the homogenous spot to the ring-like pattern as the gas temperature and the electrode temperature rise.The appearances of the patterns with distinct spots and gearwheel shape are accompanied by the high gas,anode,and cathode temperatures.One can also notice that there are the overlapping temperature regions in figures 5(a)–(c)between the two adjacent kinds of patterns,namely between the homogenous spot and the ring-like spot,between the ring-like spot and the distinct spot,and between the distinct spot and the gearwheel structure.The overlapping temperature regions between the adjacent kinds of the patterns may reveal the dominant temperature that affects the pattern transition.When the overlapping temperature region is larger,the effect of temperature on the pattern transition becomes smaller.One can notice that the overlapping region in the gas temperature is much smaller than that in the anode temperature shown in figure 5(b) and the cathode temperature shown in figure 5(c)when the pattern transits from the homogeneous spot to the ring-like structure.

    The results indicate that the gas temperature plays a key role in discretizing the pattern from the homogeneous spot to the ring-like structure.This finding can be understood since the pattern transformation is determined by the local temperature at the plasma-water interface,which in turn depends on the gas temperature in the plasma discharge and the water temperature.Since the water temperature is much lower than the gas temperature of the plasma discharge,the interface temperature(which plays an important role in the pattern formation) is mainly dependent on the gas temperature.If the gas temperature is the main factor that determines the pattern structure,it can be understood that the pattern evolves with gas composition [22],liquid conductivity[20,33,34]and liquid composition[21],all of which affect the gas temperature.Apparently,to unveil the mechanisms of the pattern transitions,more theoretical and experimental studies are necessary.

    4.Conclusion

    The self-organized patterns generated by atmosphericpressure DC microplasmas have been formed on the water surface.It is observed that the discharge time,discharge gap width,plasma current and gas flux all influence the pattern transitions as well as the gas temperature of the plasma and the temperature of the electrodes.Analyzing the pattern at each temperature point determined by the gas temperature Tgand the electrode temperatures (Taand Tc),one can conclude that the gas temperature is related to the discretization features of the patterns and plays a role in the successive pattern transitions from the homogeneous spot to the ring-like shape,the distinct spots and the gearwheel structures.Our results are consistent with the earlier findings [25]that the originally homogeneous systems may be destabilized to assume nonuniform self-organized patterns.Our results further indicate that the gas temperature Tgis the important parameter that may affect the reaction–diffusion instability,likely leading to the pattern transitions from the homogeneous spots to the gearwheel structure.The outcomes of this work are relevant to the diverse applications where microplasma discharges are brought into contact with liquids.

    Acknowledgments

    This research is supported by National Natural Science Foundation of China (No.11675109) and Biomedical Engineering Cross Research Foundation of Shanghai Jiao Tong University(YG2016MS12).K Ostrikov thanks the Australian Research Council for partial support.

    猜你喜歡
    陳妍博文
    中國(guó)兩會(huì)
    第一次掙錢
    鐘浩瑜 陳妍 賈靈璐
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    雪雀一家的新房
    誰(shuí)和誰(shuí)好
    養(yǎng)狗夢(mèng)
    陳妍希
    意林(2017年2期)2017-02-06 07:20:47
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    一本一本久久a久久精品综合妖精| 国产免费一区二区三区四区乱码| 国产精品99久久99久久久不卡| 老司机午夜十八禁免费视频| 国产精品 国内视频| 男人操女人黄网站| 久久国产精品人妻蜜桃| 国产深夜福利视频在线观看| 在线精品无人区一区二区三| 久久久国产精品麻豆| 国产免费福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品一级二级三级| 亚洲欧美清纯卡通| 久久人人97超碰香蕉20202| 亚洲人成网站在线观看播放| 国产成人精品久久二区二区91| 国产精品成人在线| 高清av免费在线| 热re99久久国产66热| 久久国产精品影院| 青春草视频在线免费观看| 九草在线视频观看| 免费观看a级毛片全部| 国产成人啪精品午夜网站| 9191精品国产免费久久| 97人妻天天添夜夜摸| 丝瓜视频免费看黄片| 久久精品aⅴ一区二区三区四区| av有码第一页| 成人黄色视频免费在线看| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 亚洲精品一区蜜桃| 人成视频在线观看免费观看| 中文字幕色久视频| 亚洲 欧美一区二区三区| 国产黄色视频一区二区在线观看| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 亚洲熟女精品中文字幕| 亚洲欧美日韩高清在线视频 | 精品人妻1区二区| 欧美黑人欧美精品刺激| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产av影院在线观看| 亚洲av电影在线观看一区二区三区| 青青草视频在线视频观看| 高清欧美精品videossex| 嫩草影视91久久| 91精品三级在线观看| 最新的欧美精品一区二区| 亚洲美女黄色视频免费看| 欧美在线黄色| 人人妻人人澡人人爽人人夜夜| 青草久久国产| 国产一区二区 视频在线| 亚洲五月色婷婷综合| 一区福利在线观看| 大香蕉久久成人网| 真人做人爱边吃奶动态| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 人妻一区二区av| 久久性视频一级片| 国产成人免费无遮挡视频| 欧美成人精品欧美一级黄| 国产精品二区激情视频| 精品国产一区二区久久| 一区二区三区乱码不卡18| 18禁观看日本| 国产免费福利视频在线观看| 男女国产视频网站| 久热爱精品视频在线9| 韩国高清视频一区二区三区| 亚洲av美国av| 免费高清在线观看视频在线观看| 日日夜夜操网爽| 色播在线永久视频| 中文字幕制服av| 日韩 欧美 亚洲 中文字幕| av有码第一页| 日韩制服骚丝袜av| 在线 av 中文字幕| a级片在线免费高清观看视频| 婷婷色麻豆天堂久久| 国产精品一区二区在线不卡| 亚洲精品第二区| 热99久久久久精品小说推荐| 日本午夜av视频| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 老司机影院毛片| av片东京热男人的天堂| a 毛片基地| 国产av一区二区精品久久| 视频在线观看一区二区三区| 国产99久久九九免费精品| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 人人妻,人人澡人人爽秒播 | 精品一区二区三区四区五区乱码 | 老汉色av国产亚洲站长工具| 操美女的视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 秋霞在线观看毛片| 国产精品.久久久| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 日本91视频免费播放| 国产伦理片在线播放av一区| 成人午夜精彩视频在线观看| 久久狼人影院| 亚洲,欧美,日韩| 大话2 男鬼变身卡| 中文欧美无线码| 免费不卡黄色视频| 日日夜夜操网爽| 飞空精品影院首页| h视频一区二区三区| 男女下面插进去视频免费观看| 日韩制服骚丝袜av| 精品第一国产精品| 超碰成人久久| 纯流量卡能插随身wifi吗| 国产免费又黄又爽又色| www.av在线官网国产| 亚洲精品自拍成人| 久久久久视频综合| 色播在线永久视频| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区| 99国产综合亚洲精品| 美女主播在线视频| 久久午夜综合久久蜜桃| 日本欧美国产在线视频| 18禁观看日本| 男女床上黄色一级片免费看| 中国美女看黄片| 成人三级做爰电影| 五月天丁香电影| 亚洲欧美色中文字幕在线| 欧美激情高清一区二区三区| 人人澡人人妻人| 成人国产一区最新在线观看 | 99国产精品一区二区三区| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 啦啦啦在线免费观看视频4| 亚洲成人免费av在线播放| 老鸭窝网址在线观看| 天堂8中文在线网| 91字幕亚洲| 国产成人精品久久久久久| 欧美另类一区| 人人妻,人人澡人人爽秒播 | 亚洲午夜精品一区,二区,三区| 久久久欧美国产精品| 国产熟女午夜一区二区三区| 夜夜骑夜夜射夜夜干| 久久精品aⅴ一区二区三区四区| 国产精品一国产av| 欧美性长视频在线观看| 国产欧美亚洲国产| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| 日韩 欧美 亚洲 中文字幕| 成人手机av| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| 曰老女人黄片| 人人妻人人澡人人爽人人夜夜| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院| 看十八女毛片水多多多| 又黄又粗又硬又大视频| 久久精品久久精品一区二区三区| 热re99久久国产66热| 一本大道久久a久久精品| 亚洲欧美日韩另类电影网站| 国产视频一区二区在线看| 每晚都被弄得嗷嗷叫到高潮| 美女午夜性视频免费| 精品视频人人做人人爽| 99re6热这里在线精品视频| 黄色一级大片看看| 国产不卡av网站在线观看| 日本五十路高清| www.自偷自拍.com| 午夜精品国产一区二区电影| 国产精品免费视频内射| 天天躁日日躁夜夜躁夜夜| 91精品伊人久久大香线蕉| 亚洲精品日本国产第一区| 亚洲自偷自拍图片 自拍| 国产亚洲av高清不卡| 亚洲精品国产av成人精品| 国产日韩欧美视频二区| 悠悠久久av| 欧美精品高潮呻吟av久久| 国产在线视频一区二区| cao死你这个sao货| 久久精品久久久久久噜噜老黄| 夫妻午夜视频| 久久精品国产综合久久久| 亚洲一区中文字幕在线| 黄色 视频免费看| 成年av动漫网址| 国产精品香港三级国产av潘金莲 | 日韩中文字幕视频在线看片| 777米奇影视久久| 中文字幕av电影在线播放| 欧美日韩国产mv在线观看视频| 精品少妇内射三级| 天天躁日日躁夜夜躁夜夜| 一级a爱视频在线免费观看| 一本久久精品| 在线观看www视频免费| 国产精品久久久av美女十八| 一本一本久久a久久精品综合妖精| 精品免费久久久久久久清纯 | 亚洲精品日韩在线中文字幕| 亚洲精品自拍成人| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 国产免费视频播放在线视频| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 狂野欧美激情性xxxx| 啦啦啦视频在线资源免费观看| 亚洲熟女毛片儿| 男女午夜视频在线观看| 国产欧美日韩一区二区三 | 日日爽夜夜爽网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品自拍成人| 日韩av不卡免费在线播放| 又粗又硬又长又爽又黄的视频| 好男人视频免费观看在线| 精品国产超薄肉色丝袜足j| 男女无遮挡免费网站观看| 成在线人永久免费视频| 香蕉国产在线看| 制服人妻中文乱码| 国产精品久久久久久精品电影小说| 晚上一个人看的免费电影| 亚洲国产看品久久| 欧美日本中文国产一区发布| 久久女婷五月综合色啪小说| 国产精品国产三级专区第一集| 99热网站在线观看| 亚洲情色 制服丝袜| 中文字幕精品免费在线观看视频| 亚洲av综合色区一区| 久久狼人影院| 久久女婷五月综合色啪小说| 国产精品成人在线| 搡老乐熟女国产| 亚洲午夜精品一区,二区,三区| 少妇精品久久久久久久| 日本a在线网址| 在线av久久热| 久久精品国产综合久久久| 亚洲 国产 在线| 日本黄色日本黄色录像| a级毛片在线看网站| 日本色播在线视频| 免费av中文字幕在线| 亚洲国产精品一区三区| 亚洲欧美一区二区三区久久| 久久国产精品影院| www.自偷自拍.com| 国产午夜精品一二区理论片| 人人妻人人澡人人爽人人夜夜| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看国产h片| 国语对白做爰xxxⅹ性视频网站| 狂野欧美激情性bbbbbb| 自线自在国产av| 美女高潮到喷水免费观看| 纵有疾风起免费观看全集完整版| 日韩大片免费观看网站| 国产成人免费无遮挡视频| 蜜桃国产av成人99| 国产欧美日韩一区二区三 | 天天影视国产精品| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 黄色 视频免费看| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 99久久精品国产亚洲精品| 久久青草综合色| 秋霞在线观看毛片| 人妻 亚洲 视频| 1024香蕉在线观看| 天天躁夜夜躁狠狠久久av| 色婷婷av一区二区三区视频| 美女福利国产在线| 欧美日韩亚洲高清精品| 亚洲成色77777| 国产成人一区二区三区免费视频网站 | 国产一区二区在线观看av| 黑人猛操日本美女一级片| 国产片特级美女逼逼视频| 欧美黑人精品巨大| 交换朋友夫妻互换小说| 免费av中文字幕在线| 亚洲专区国产一区二区| 欧美老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 久久久久久久精品精品| 国产精品熟女久久久久浪| 日韩电影二区| 国产黄色免费在线视频| www.精华液| 亚洲av综合色区一区| 国产高清不卡午夜福利| 色综合欧美亚洲国产小说| 又紧又爽又黄一区二区| 久久狼人影院| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| videos熟女内射| 人体艺术视频欧美日本| 国产精品人妻久久久影院| 手机成人av网站| 人妻 亚洲 视频| 国产黄色免费在线视频| 久久久久久久精品精品| 国产爽快片一区二区三区| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频 | 久久久久久免费高清国产稀缺| 成人免费观看视频高清| 首页视频小说图片口味搜索 | 亚洲人成电影免费在线| 国产一区二区 视频在线| 日韩中文字幕欧美一区二区 | 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 91字幕亚洲| 久久中文字幕一级| 大片电影免费在线观看免费| 老司机影院成人| 在线观看免费视频网站a站| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 欧美日韩黄片免| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 国产在线免费精品| 一本色道久久久久久精品综合| 在现免费观看毛片| 岛国毛片在线播放| 在线av久久热| a 毛片基地| 亚洲男人天堂网一区| 99热网站在线观看| 天堂俺去俺来也www色官网| 19禁男女啪啪无遮挡网站| 一区二区av电影网| 亚洲精品日本国产第一区| 一区福利在线观看| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| av又黄又爽大尺度在线免费看| 国产视频一区二区在线看| 亚洲一码二码三码区别大吗| 99九九在线精品视频| 午夜福利乱码中文字幕| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 精品免费久久久久久久清纯 | 精品欧美一区二区三区在线| 国产精品免费视频内射| 美女高潮到喷水免费观看| 激情五月婷婷亚洲| 国产在线一区二区三区精| 日本av免费视频播放| 亚洲欧美日韩另类电影网站| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 一区二区日韩欧美中文字幕| 国产精品成人在线| 国产在视频线精品| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 在线亚洲精品国产二区图片欧美| 久久99一区二区三区| 国产成人精品久久二区二区免费| 啦啦啦 在线观看视频| 日本猛色少妇xxxxx猛交久久| 亚洲伊人色综图| 亚洲天堂av无毛| 亚洲av综合色区一区| 男女边摸边吃奶| 国产成人精品久久二区二区免费| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 国产精品一二三区在线看| 国产有黄有色有爽视频| 熟女少妇亚洲综合色aaa.| 亚洲精品国产区一区二| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 精品亚洲乱码少妇综合久久| 麻豆av在线久日| 午夜福利视频精品| 男女无遮挡免费网站观看| 成人黄色视频免费在线看| 高清欧美精品videossex| 美女中出高潮动态图| 午夜av观看不卡| 老司机影院成人| 国产在线免费精品| 国产精品三级大全| av线在线观看网站| 免费看十八禁软件| 色播在线永久视频| 欧美激情 高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 伦理电影免费视频| 免费黄频网站在线观看国产| 成年人黄色毛片网站| 最近手机中文字幕大全| 国产精品国产av在线观看| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 国产一区二区三区av在线| a级毛片黄视频| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 国产免费福利视频在线观看| 国产精品一区二区免费欧美 | 国产精品国产三级国产专区5o| 亚洲九九香蕉| 午夜福利视频精品| 人妻一区二区av| 狂野欧美激情性xxxx| 妹子高潮喷水视频| 久久人妻福利社区极品人妻图片 | 赤兔流量卡办理| 精品国产一区二区久久| 亚洲午夜精品一区,二区,三区| www.av在线官网国产| 美女扒开内裤让男人捅视频| 国产一级毛片在线| 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| av欧美777| 国产成人一区二区三区免费视频网站 | 如日韩欧美国产精品一区二区三区| 日韩免费高清中文字幕av| 亚洲精品美女久久av网站| 午夜久久久在线观看| 欧美av亚洲av综合av国产av| 日本av免费视频播放| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 丁香六月欧美| 国产不卡av网站在线观看| 777米奇影视久久| 极品少妇高潮喷水抽搐| 日本av免费视频播放| 亚洲成人免费电影在线观看 | 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 国产日韩欧美视频二区| 亚洲精品自拍成人| 日韩一区二区三区影片| 国产色视频综合| 一区二区三区激情视频| 日本av免费视频播放| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 人妻 亚洲 视频| 国产男女内射视频| 成年动漫av网址| 国产一区亚洲一区在线观看| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 好男人电影高清在线观看| 国产成人91sexporn| 亚洲精品中文字幕在线视频| 亚洲av国产av综合av卡| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 999久久久国产精品视频| 人人妻人人澡人人看| 久久久久久久国产电影| 亚洲国产av新网站| 新久久久久国产一级毛片| 久久这里只有精品19| 国产在线一区二区三区精| 久久久久视频综合| 国产亚洲精品第一综合不卡| 欧美精品一区二区大全| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| av在线播放精品| 九草在线视频观看| 丁香六月欧美| 狠狠婷婷综合久久久久久88av| 青春草亚洲视频在线观看| 美女午夜性视频免费| e午夜精品久久久久久久| 美女中出高潮动态图| 搡老乐熟女国产| 午夜福利,免费看| 久久精品久久精品一区二区三区| 亚洲国产日韩一区二区| 久久 成人 亚洲| 人体艺术视频欧美日本| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 天堂8中文在线网| 国产伦理片在线播放av一区| 国产视频首页在线观看| 一本一本久久a久久精品综合妖精| 午夜免费鲁丝| 亚洲中文av在线| 99九九在线精品视频| 满18在线观看网站| 亚洲午夜精品一区,二区,三区| 麻豆av在线久日| 黄色 视频免费看| 亚洲伊人久久精品综合| 精品一区二区三卡| 黄片播放在线免费| 国产三级黄色录像| 婷婷色综合www| 视频在线观看一区二区三区| 性色av一级| 亚洲欧美成人综合另类久久久| 日本五十路高清| 少妇人妻久久综合中文| 午夜福利乱码中文字幕| 9色porny在线观看| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 亚洲黑人精品在线| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 极品人妻少妇av视频| avwww免费| 黄片播放在线免费| 久久久国产精品麻豆| 亚洲欧美清纯卡通| 美女大奶头黄色视频| 亚洲三区欧美一区| 日韩伦理黄色片| 波多野结衣av一区二区av| 国产精品三级大全| 十八禁网站网址无遮挡| 好男人视频免费观看在线| 欧美激情高清一区二区三区| 亚洲欧美中文字幕日韩二区| 又大又爽又粗| 中文字幕制服av| 亚洲伊人久久精品综合| 在线观看免费视频网站a站| 人人妻人人添人人爽欧美一区卜| 亚洲成色77777| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区免费开放| 97在线人人人人妻| 多毛熟女@视频| 在线天堂中文资源库| 超碰成人久久| 亚洲av国产av综合av卡| 亚洲专区中文字幕在线| 精品欧美一区二区三区在线| 亚洲av美国av| 男男h啪啪无遮挡| 国产高清不卡午夜福利| 国产精品一区二区精品视频观看| 在线观看免费日韩欧美大片| 亚洲 国产 在线| 亚洲国产中文字幕在线视频| 亚洲,欧美,日韩| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版| 婷婷色av中文字幕| 亚洲一码二码三码区别大吗| 性色av一级| 在线av久久热| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 悠悠久久av| 一级毛片 在线播放|