• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    2017-12-21 09:09:06YAOChanLIGuoYanXUYanHong
    物理化學(xué)學(xué)報(bào) 2017年9期
    關(guān)鍵詞:共軛羧酸基團(tuán)

    YAO Chan LI Guo-Yan XU Yan-Hong,2,*

    ?

    Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption

    YAO Chan1LI Guo-Yan1XU Yan-Hong1,2,*

    (1;2)

    Polar groups in the skeletons of conjugated microporous polymers (CMPs) play an important role in determining their porosity and gas sorption performance. Understanding the effect of the polar group on the properties of CMPs is essential for further advances in this field. To address this fundamental issue, we used benzene, the simplest aromatic system, as a monomer for the construction of two novel CMPs with multi-carboxylic acid groups in their skeletons (CMP-COOH@1 and CMP-COOH@2). We then explored the profound effect the amount of free carboxylic acid in each polymer had on their porosity, isosteric heat, gas adsorption, and gas selectivity. CMP-COOH@1 and CMP-COOH@2 showed Brunauer-Emmett-Teller (BET) surface areas of 835 and 765 m2?g?1, respectively, displaying high potential for carbon dioxide storage applications. CMP-COOH@1 and CMP-COOH@2exhibited CO2capture capabilities of 2.17 and 2.63 mmol?g?1(at 273 K and 1.05 × 105Pa), respectively, which were higher than those of their counterpart polymers, CMP-1 and CMP-2, which showed CO2capture capabilities of 1.66 and2.28mmol?g?1, respectively. Our results revealed that increasing the number of carboxylic acid groups in polymers could improve their adsorption capacity and selectivity.

    Conjugated microporous polymers; Carboxylic acid; Pore; Gas adsorption;selectivity

    1 Introduction

    Carbon dioxide is one of the main greenhouse gases that cause global issues, such as climate warming and increases in sea level and ocean acidity. Modern climate science predicts that the accumulation of greenhouse gases in the atmosphere will contribute to an increase in surface air temperature of 5.2 °C between the years 1861 and 2100. Carbon capture and sequestration (CCS), a process of CO2separation and concentration can contribute to solve. For this aim, the use of porous materials tailored for selective CO2absorption is energetically efficient and technically feasible. Among the numerous and diversified examples of novel porous materials, such as metal-organic frameworks1,2, zeolites3,4, and purely organic materials5,6are a class of porous organic materials that allow an elaborate design of molecular skeletons and a fine control of nanopores.

    Conjugated microporous polymers (CMPs) are a unique class of porous organic materials that combine π-conjugated skeletons with permanent nanopores7–10, which is rarely observed in other porous polymers. CMPs have emerged as a powerful platform for synthesizing functional materials that exhibit excellent functional applications, such as heterogeneous catalysts11,12, guest encapsulation13–15, super-capacitive energy storage devices16,17, light-emitting materials18,19, and fluorescent sensors20,21and so on. Recently, CMPs have emerged as a designable material for the adsorption of gases, such as hydrogen, carbon dioxide, and methane22–24. Although great achievements in synthesizing CMPs have been realized, extremely high Brunauer-Emmet-Teller specific surface areas as high as 6461 m2·g?125, the other pore parameters, such as pore volume, pore size, and pore size distribution, are important in determining the gas sorption performance26,27. Moreover, previous work has shown the surface modification of porous polymers with polar group can significantly enhance their CO2binding energy, resulting in enhancement in CO2uptake and/or CO2selectivity28–30. Carboxylic-rich framework interaction is expected due to hydrogen bonding and/or dipole-quadrupole interactions between CO2and the functional groups of porous polymers31,32. Cooper.33,34reported increasing the heat of adsorption through the introduction of tailored binding functionalities could have more potential to increase the amount of gas adsorbed. Their results demonstrated that carboxylic groups functionalised polymer showed the higher isosteric heat of sorption for CO2. Torrisi35predicted that the incorporation of carboxylic groups would lead to the higher isosteric heat, challenging the current research emphasis in the literature regarding amine groups for CO2capture.

    Herein, we report the synthesis and characterization two high carboxylic groups of porous polymers and investigate their performances in CO2storage application under high pressure and cryogenic conditions (Scheme 1, CMP-COOH@1 and CMP-COOH@2). The CMPs are highly efficient in the uptake of CO2by virtue of a synergistic structural effect, and that the carboxylic units improve the uptake, the high porosity provides a large interface, and the swellable skeleton boosts the capacity.

    2 Experimental and computational section

    2.1 Materials and Measurements

    1,3,5-Triethynylbenzene (98%) was purchased from TCI, 2,5-dibromobenzoic-3-carboxylic acid (97%) and 2,5-dibromoterephthalicacid(97%) were purchased from Alfa. Tetrakis(4-ethynylphenyl)methane was synthesized according to the literature36. Tetrakis(triphenylphosphine)palladium(0), copper(I) iodide (CuI) and tetra(4-bromophenyl)methane (97%) were purchased from Aladdin.,-Dimethylformamide (DMF) (99.9%), triethylamine (99%), methanol (95%) and acetone (95%) were purchased from Aladdin.

    Scheme 1 Schematic representation of synthesis of carboxylic polymers.

    1H NMR spectra were recorded on Bruker Avance III models HD400 NMR spectrometers, where chemical shifts () were determined with a residual proton of the solventas standard.Fourier transform Infrared (FT-IR) spectra were recorded on a Perkin-Elmer spectrum one model FT-IR-frontier infrared spectrometer.The UV-visible analyzer was used for shimadzu UV-3600. Field-emission scanning electron microscopy (FE-SEM) images were performed on a JEOL model JSM-6700 operating at an accelerating voltage of 5.0 kV. The samples were prepared by drop-casting a tetrahydrofunan (THF) suspension onto mica substrate and then coated with gold.High-resolution transmission electron microscopy (HR-TEM) images were obtained on a JEOL model JEM-3200 microscopy.Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from 2= 1.5° up to 2= 60° with 0.02° increment. The elemental analysis was carried out on a EuroEA-3000. TGA analysis was carried out using a Q5000IR analyzer with an automated vertical overhead thermobalance. Before measurement, the samples were heated at a rate of 5 °C min?1under a nitrogen atmosphere. Nitrogen sorption isotherms were measured at 77 K with ASIQ (iQ-2) volumetric adsorption analyzer.Before measurement, the samples were degassed in vacuum at 150 °C for 12 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas and pore volume. BET surface areas were calculated over the relative pressure (/0) range of 0.015–0.1. Nitrogen NLDFT pore size distributions were calculated from the nitrogen adsorption branch using a cylindrical pore size model. Carbon dioxide, methane and nitrogen sorption isothermswere measured at 298 or 273 K with a Bel Japan Inc. model BELSORP-max analyzer, respectively. In addition, carbon dioxide sorption isotherms were measured at 318 K and 5 × 106Pa with a iSorb HP2 analyzer. Before measurement, the samples were also degassed in vacuum at 120 °C for more than 10 h.

    2.2 Synthetic procedures

    2.2.1 Synthesis of CMP containing carboxylic groups

    All of the polymer networks containing multi-carboxylic groups were synthesized by palladium(0)-catalyzed cross-coupling polycondensation. All the reactions were carried out at a fixed reaction temperature and reaction time (120 °C/48 h).

    2.2.2 Synthesis of CMP-COOH@1 and CMP-COOH@2

    2,5-Dibromoterephthalic acid (107 mg, 0.33 mmol) and 1,3,5-triethynylbenzene (50 mg, 0.33 mmol) (CMP-COOH@1)/tetrakis(4-ethynylphenyl)methane (104 mg, 0.25 mmol) (CMP-COOH@2) were put into a 50 mL round-bottom flask, the flask exchanged three cycles under vacuum/N2. Then added to 2 mL,-dimethylformamide (DMF) and 2 mL triethylamine (Et3N), the flask was degassed by threefreeze-pump-thaw cycles, purged with N2. When the solution had reached reaction temperature, a slurry of tetrakis(triphenylphosphine)palladium(0) (23.11 mg, 0.02 mmol) in the 1 mL DMF and copper(I) iodide (4.8 mg, 0.025 mmol) in the 1 mL Et3N (CMP-COOH@1)/(CMP-COOH@2) was added respectively, and the reaction was stirred at 120 °C under nitrogen for 48 h. The solid product was collected by filtration and washed well with hot reaction solvent for 4 times with THF, methanol, acetone, and water, respectively. Further purification of the polymer was carried out by Soxhlet extraction with methanol, and THF for 24 h, respectively, to give CMP-COOH@1(claybank solid, 98 mg, 94% yield), CMP-COOH@2(olivine solid, 142 mg, 90% yield). Elemental Analysis (%) Calcd. (Actual value for an infinite 2D polymer), (CMP-COOH@1) C 67.61, H 2.35. Found: C 64.84, H 2.05. (CMP-COOH@2) C 73.03, H 3.02. Found: C 70.02, H 2.19.

    3 Results and discussion

    Carboxylic-CMP was synthesized by the Sonogashira- Higihara reaction of 1,3,5-triethynylbenzene, tetrakis(4- ethynylphenyl)methane and 2,5-dibromoterephthalic acid in the presence of Pd(0) as catalyst. These two samples were unambiguously characterized by elemental analysis confirmed that the weight percentages of C and H contents are close to the calculated values expected for an infinite 2D polymer. The CMPs were further characterized by infrared spectroscopy (Fig.1). Band soft he primary bromo and borate groups of 2,5-dibromoterephthalic acid at about 598 and 1368 cm?1are absent, respectively. From 2900 to 3200 cm?1aromatic C―H stretching bands appear. A C=C stretching mode at 1600 cm?1is also observed. All networks show the typical C≡C and COOH stretching mode at about 2200and 1700 cm?1, respectively, indicating the successful incorporation of the carboxylic and alkynyl groups into the polymer materials.

    Fig.1 FT-IR spectra of 2,5-dibromoterephthalic acid (blue), CMP-COOH@1 (green) and SCMP-COOH@2 (red).

    Fig.2 FE-SEM images of (a) CMP-COO H@1 and (b) CMP-COOH@2.

    Field-emission scanning electron microscopy (FE-SEM) displayed that the CMPs adopt a spherical shape with sizes of 100–500 nm (Fig.2). High-resolution transmission electron microscopy (HR-TEM) revealed the homogeneous distribution of nanometer-scale pores in the textures (Fig.S1 (Supporting Information)). Powder X-ray diffraction (PXRD) revealed no diffraction, implying that all the polymers are amorphous (Fig.S2 (Supporting Information)). The TGA results show that the polymers have a good thermal stability, and the thermal degradation temperature is up to ca. 300 °C (Fig.S3 (Supporting Information)). The weight loss below 100 °C is generally attributed to the evaporation of adsorbed water and gas molecules trapped in the micropores.

    The conjugated polymer networks were dispersed in THF to obtain UV/Vis spectra (Fig.S4 (Supporting Information)). The polymer CMP-COOH@1 shows mainly one wide absorption peak at about 396 nm. Compared to monomer 1,3,5-triethynylbenzene, with narrow absorption maxima at 305 nm, the polymer networks exhibit a large bathochromic shift of around 111 nm. CMP-COOH@2 show similar phenomenon, compared to tetrakis(4-ethynylphenyl)methane monomer, with absorption maxima at 325 and 345 nm, the polymer frameworks display a large bathochromic shift of around 68 and 48 nm, respectively. This indicates the effective enlargement of the-conjugated system through the polycondensation reaction.

    The porosity of the polymer networks was probed by nitrogen sorption at 77 K. According to the IUPAC classi?cation37, adsorption/desorption isotherms of two polymers showed mainly a type I isotherms. As seen in Fig.3(a), remarkably, the two polymer samples exhibit a steep uptake at a relative pressure of/0< 0.1, suggesting that these samples have micropores. There is a sharp rise in the isotherm for the CMP-COOH@1 at higher relative pressures (/0> 0.8), which indicates the presence of meso/macropores in the samples. These textural meso/macropores can be also found in the corresponding FE-SEM images (Fig.2(a)). However, the shape of the isotherm for the CMP-COOH@2 is significantly different from that of CMP-COOH@1, which displays a significant H2 type hysteresis loop in the desorption branch, characteristic of nanostructured materials with a mesoporous structure (Fig.3(a)). These meso/macropores can be ascribed mostly to interparticulate porosity that exists between the highly aggregated nanoparticles38.

    The pore size distribution calculated from nonlinear density functional theory (NLDFT) shows that the two polymer networks have relatively broad pore size distribution (Fig.3(b)). CMP-COOH@1 and CMP-COOH@2 showed apparent peaks in the size range 0–2 nm, whereas small fluctuations can be observed at 2–12 nm regions. The pore size distribution curves agree with the shape of the N2isotherms (Fig.3(a)) and imply the presence of both micropores and mesopores in the two polymers. The contribution of microporosity to the networks can be calculated as the ratio of the micropore volume (micro), over the total pore volume (total). The microporosities of CMP-COOH@1 and CMP-COOH@2 are around 50.8% and 52.3%, respectively. This result indicates that the two carboxylic networks are predominantly microporous. In addition, the BET surface area of CMP-COOH@1 and CMP-COOH@2 were calculated to be 835 and 765 m2·g?1in the relative pressure range 0.015–0.1, respectively. The decreased surface area of CMP-COOH@2 compared to CMP-COOH@1 could be due to the CMPs constructed with longer connecting struts have lower BET surface areas39,40.

    In view of the fact that the CMPs possess two key properties generally associated with high CO2uptake capacity, e.g., good porosity and abundant COOH sites, the CO2adsorption of the polymers were investigated up to 1.05 × 105Pa at both 298 K and 273 K (Fig.4(a, b)), respectively. Remarkably, CMP-COOH@1 and CMP-COOH@2 showed the CO2adsorption capacities of 1.61 and 1.92 mmol·g?1at 298 K and 1.05 × 105Pa, respectively (Fig.4(a)). When the temperature was elevated to 273 K, the polymers CMP-COOH@1 and CMP-COOH@2 displayed the higher CO2capture of 2.17 and 2.63 mmol·g?1(Fig.4(b)), respectively, which were comparable to that of other microporous hydrocarbon networks41. Despite CMP-COOH@2 with a lower surface area, but which adsorbed more CO2probably due to it has a higher pore volume. In addition, the isosteric heat of adsorption (st) of the polymers was calculated from the CO2uptake data at 273 K and 298 K by using Clausius-Clapeyron equation (Fig.4(c)). The two polymer networks show the isosteric heats of CO2adsorption around 35.5 and 30.9 kJ·mol?1. Because there is less carboxylic acid in the structural unit, the CO2stof CMP-COOH@2 is lower than that of CMP-COOH@1, which is consistent with that of the previous reported polymers33,34. Moreover, the high pressure CO2sorption properties of the two polymers were also investigated at 5 × 106Pa and 318 K. As seen in Fig.4(d), CMP-COOH@1 and CMP-COOH@2 show a nearly linear increase with the increasing pressure no obviously turning point. CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity of 498 and 434 mg·g?1at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results indicated that the CO2uptake in these networks at high pressures is not dependent solely on the surface area, pore volume or polar groups in the skeletons, but also the measuring pressure have a large effect on the uptake of gas.

    Fig.3 (a) Nitrogen sorption curves (filled circles: adsorption, open circles: desorption, STP=standard temperature pressure) and (b) pore size distribution.

    In order to investigate the amount of carboxylic group in the network whether affects CO2adsorption capacity of polymers. We synthesized another two carboxylic conjugated polymer with relatively low amount of carboxylic groups (scheme S1, CMP@1 and CMP@2 (Supporting Information)) based on 2,5-dibromobenzoic acid, 1,3,5-triethynylbenzene and tetrakis(4-ethynylphenyl)methane. They show the BET surface area of 979 and 876 m2·g?1(Fig.S5 (Supporting Information)), respectively, which is higher to that of counterpart CMP-COOH@1 and CMP-COOH@2. CMP@1 and CMP@2 showed the main pore size of 0.8–2.0 nm (Fig.S6 (Supporting Information)). The decreased surface area of CMP-COOH@1 compared to CMP@1 could be due to the volume of 2,5-dibromoterephthalic acid in CMP-COOH@1 is obviously larger than 2,5-dibromobenzoic acid in CMP@1, which made the bulky benzen–carboxylic moieties in CMP-COOH@1 occupy more cavity space. The similar phenomenon can be also observed in CMP-COOH@2 and CMP@2 system. As shown in Fig.4(b), at 273 K and 1.05 × 105Pa, polymers CMP@1 and CMP@2 show the CO2capture capacity of 1.66 and 2.28 mmol·g?1, respectively. The CO2uptake value of CMP-COOH@1 and CMP-COOH@2 is 1.31 and 1.15-times that of the counterpart CMP@1 and CMP@2, respectively, indicating that increasing amount of carboxylic groups in the CMP networks can improve CO2uptake. In addition, we calculated the isosteric heats of these polymers, they showed the following order (Fig.4(c)): CMP-COOH@1 > CMP-COOH@2 > CMP@1 > CMP@2. Because there is less carboxylic groups in the structural units of CMP@1 and CMP@2, the CO2stof CMP@1 and CMP@2 is lower than that of CMP-COOH@1 and CMP-COOH@2, respectively33,42. In addition, CMP-COOH@1 and CMP-COOH@2 show the higher CO2capture capacity than that of CMP@1 (447 mg·g?1) and CMP@2 (402 mg·g?1) at 318 K and 5 × 106Pa, respectively (Fig.4(d)). These results imply the amount of carboxylic groups effects BET surface area, pore volume and isosteric heats lead to different the uptake of gas.

    As for carbon dioxide capture, high separation properties towards CH4and N2are also necessary and important in gas separation applications. In order to investigate the gas adsorption selectivity of the microporous polymer networks, CO2, N2, and CH4sorption properties were measured by volumetric methods at 273 K and 1.05 × 105Pa. It was found that the two porous polymer networks show significantly higher CO2uptake ability than N2and CH4in the whole measurement pressure range (Fig.S7 (Supporting Information)). CO2/CH4and CO2/N2selectivity was first evaluated by using the initial slope ratios estimated from Henry′s law constants for single-component adsorption isotherms. The CO2/CH4selectivity of CMP-COOH@1 and CMP-COOH@2 are calculated to be 6.9 and 6.2, respectively (Table S1 and Fig.S8 (Supporting Information)). In addition, two polymers exhibited the CO2/N2adsorption selectivity is 48.2 and 39.5, respectively (Table S1 and Fig.S9 (Supporting Information)). Meanwhile, the gas selective capture was also supported by the results from the ideal adsorbed solution theory (IAST), which has been widely used to predict gas mixture adsorption behavior in the porous materials43,44. Under simulated natural gas conditions (CO2/CH4, 50/50), the experimental CO2and CH4isotherms collected at 273 K for carboxylic CMP were fitted to the dual-site Langmuir model and the single-site Langmuir model, respectively (Fig.S10 (Supporting Information)). The calculated IAST data for carboxylic CMP are shown in Table S1. At 273 K and 1.05 × 105Pa, CMP-COOH@1 and CMP-COOH@2 exhibit an appreciably high selectivity of CO2over CH4 under natural gas conditions (5.5 and 5.2) (Fig.S10 (Supporting Information)), which is comparable to some reported MOPs, such as A6CMP (5.1)45, SCMP (4.4–5.2)30, and P-G1-T (5)46. Furthermore, the CO2/N2adsorption selectivities for CMP-COOH@1 and CMP-COOH@2 are calculated to be 45.4 and 37.8 at 273 K and 1.05 × 105Pa (Table S1 and Fig.S11 (Supporting Information)), respectively, which is comparable to some reported MOPs, such as ALP-1(35)38, PCN-TA (33)47, and PCN-DC (48)47. These excellent CO2selective capture performance of carboxylic CMPs evaluated by IAST are consistent with the results calculated from the initial slopes method. In addition, in light of the amount of carboxylic group effect for the uptake of gas, we reasoned that it might be effective for CO2/CH4and CO2/N2separations. At 273 K and 1.05 × 105Pa, CMP@1 and CMP@2 exhibit the selectivities of CO2/CH4(4.7 and 4.1) and CO2/N2(32.1 and 30.5) under natural gas conditions via the IAST method (Figs.S10 and S11 (Supporting Information)), respectively, which are lower that of counterpart CMP- COOH@1 and CMP-COOH@2. This result indicates that the amount of carboxylic groups effects selectivity of polymers. These data implys that increasing the amount of carboxylic unit of polymers can improve the adsorption capacity and selectivity of the materials, which suggested the possibility for the surface properties of microporous polymers to be controlled to interact with a specific gas by post-modification.

    Fig.4 CO2 adsorption isotherms of CMP-COOH polymers collected at 298 K (a) and (b) 273 K, (c) Isosteric heats of adsorption of the CMP-COOH polymers, (d) CO2 adsorption isotherms of CMP-COOH polymers collected at 318 K at 5 × 106 Pa.

    4 Conclusions

    In summary, two carboxylic CMPs with relatively high surface area have been synthesized. The clean energy applications of the polymers have also been investigated and it was found that CMP-COOH@1 and CMP-COOH@2 can adsorb 2.17 and 2.63 mg·g?1of carbon dioxide at 1.05 × 105Pa and 273 K, respectively, which can be competitive with the reported results for porous organic polymers under the same conditions. The free carboxylicacid functionalized polymers show that increasing the amount of carboxylic group of polymers can improve the adsorption capacity and selectivity of the materials under the same conditions, which is a promising candidate for the separation and purification of CO2from various CO2/CH4mixtures such as natural gas and land-fill gas by adsorptive processes.

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Baeand, T. H.; Long, J. R.2012,, 724. doi: 10.1021/cr2003272

    (2) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.2012,, 782. doi: 10.1021/cr200274s

    (3) Coudert, F. X.; Kohen, D.2017,, 2724. doi: 10.1021/acs.chemmater.6b03837

    (4) Jensen, N. K.; Rufford, T. E.; Watson, G.; Zhang, D. K.; Chan, K. I.; May, E. F.2012,, 106. doi: 10.1021/je200817w

    (5) Tan, L.; Tan, B.2017, doi: 10.1039/C6CS00851H

    (6) Ghanem, B.S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M.; Budd, P. M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B.2010,, 5287. doi: 10.1021/ma100640m

    (7) Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D.2013,, 8012. doi:10.1039/C3CS60160A

    (8) Cooper, A. I.2009,, 1291. doi: 10.1002/adma.200801971

    (9) Thomas, A.; Kuhn, P.; Weber, J.; Titirici, M. M.; Antonietti, M.2009,, 221. doi: 10.1002/marc.200800642

    (10) Dawson, R.; Cooper, A. I.; Adams, D. J.. 2012,, 530. doi:10.1016/j.progpolymsci.2011.09.002

    (11) Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F.2013,, 1432. doi: 10.1002/anie.201207163

    (12) Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W.2011,, 2056. doi:10.1021/ja109166b

    (13) Li, A.; Sun, H. X.; Tan, D. Z.; Fan, W. J.; Wen, S. H.; Qing, X. J.; Li, G. X.; Li, S. Y.; Deng, W. Q.2011,, 2062. doi: 10.1039/C1EE01092A

    (14) Wang, X. S.; Liu, J.; Bonefont, J. M.; Yuan, D. Q.; Thallapally, P. K.; Ma, S. Q.2013,, 1533. doi: 10.1039/C2CC38067F

    (15) Bhunia, A.; Vasylyeva, V.; Janiak, C.2013,, 3961. doi: 10.1039/C3CC41382A

    (16) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D.2011,, 8753. doi: 10.1002/anie.201103493

    (17) Zhuang, X.; Zhang, F.; Wu, D.; Forler, N.; Liang, H.; Wagner, M.; Gehrig, D.; Hansen, M. R.; Laquai, F.; Feng, X.2013,, 9668. doi: 10.1002/anie.201304496

    (18) Xu, Y.; Nagai, A.; Jiang, D.2013,, 1591. doi: 10.1039/C2CC38211C

    (19) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D.2011,, 17622. doi: 10.1021/ja208284t

    (20) Liu, X.; Xu, Y.; Jiang, D.2012,, 8738. doi: 10.1021/ja303448r

    (21) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D.2014,, 4850. doi: 10.1002/anie.201402141

    (22) Liao, Y.; Weber, J.; aul, C. F. J.2014,, 8002. doi: 10.1039/C4CC03026E

    (23) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H. C.2012,, 7480. doi: 10.1002/anie.201202176

    (24) Xiang, Z.; Cao, D.; Wang, W.; Yang, W.; Han, B.; Lu, J.2012,, 5974. doi: 10.1021/jp300137e

    (25) Yuan, D.; Lu, W.; Zhan, D.; Zhou, H.2011,, 3723. doi: 10.1002/adma.201101759

    (26) Pu, L.; Sun, Y.; Zhang, Z.2010,, 10842. doi: 10.1021/jp103331a

    (27) Babarao, R.; Jiang, J. W.2008,, 6270. doi; 10.1021/la800369s

    (28) Islamoglu, T.; Rabbani, M. G.; El-Kaderi, H. M.2013,, 10259. doi: 10.1039/C3TA12305G

    (29) Hasmukh, A. P.; Ferdi, K.; Ali, C.; Joonho, P.; Erhan, D.; Yousung, J.; Mert, A.; Cafer, T. Y.2012,, 8431. doi: 10.1039/c2jm30761h

    (30) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 4599. doi: 10.1039/C6PY00666C

    (31) Rabbani, M. G.; El-Kaderi, H.2011,, 1650. doi: 10.1021/cm200411p

    (32) Arab, P.; Rabbani, M. G.; Sekizkardes, A. K.; ?sllamo?lu, T.; El-Kaderi, H. M.2014,, 1385. doi: 10.1021/cm403161e

    (33) Dawson, R.; Adams, D. J.; Cooper, A. I.2011,, 1173. doi: 10.1039/C1SC00100K

    (34) Dawson, R.; Cooper, A. I.; Adams, D.2013,, 345. doi:10.1002/pi.4407

    (35) Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G.2010,, 044705. doi: 10.1063/1.3276105

    (36) Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y.2016,, 2142. doi: 10.1021/jacs.5b13335

    (37) Rose, M.; Klein, N.; Bohlmann, W.; Bohringer, B.; Fichtner, S.; Kaskel, S.2010,, 3918. doi: 10.1039/C003130E

    (38) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H.2012,, 6084. doi: 10.1021/ja300438w

    (39) Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.2008,, 7710.doi: 10.1021/ja8010176

    (40) Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I.2011,, 1777. doi: 10.1039/C1SC00329A

    (41) Meng, B.; Li, H.; Mahurin, S. M.; Liu, H.; Dai, S.2016,, 110307. doi: 10.1039/C6RA18307G

    (42) Ma, H.; Ren, H.; Zou, X.; Meng, S.; Sun, F.; Zhu, G.2014,, 144. doi; 10.1039/C3PY00647F

    (43) Obrien, J. A.; Myers, A. L.1988,, 2085. doi: 10.1039/C3PY00647F

    (44) Wang, K.; Qiao, S. Z.; Hu, X. J.2000,, 243. doi: 10.1016/S1383-5866(00)00087-3

    (45) Qin, L.; Xu, G.; Yao, C.; Xu, Y.2016,, 12602. doi: 10.1039/C6CC05097B

    (46) Qiao, S.; Wang, T.; Huang, W.; Jiang, J. X.; Du, Z.; Shieh, F.; Yang, R.2016,, 1281. doi: 10.1039/C5PY01767J

    (47) Shen, C.; Yan, J.; Deng, G.; Zhang, B.; Wang, Z.2017,, 1074. doi: 10.1039/C6PY02050J

    富羧酸基團(tuán)的共軛微孔聚合物:結(jié)構(gòu)單元對(duì)孔隙和氣體吸附性能的影響

    姚 嬋1李國(guó)艷1許彥紅1,2,*

    (1吉林師范大學(xué),環(huán)境友好材料制備和應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130103;2吉林師范大學(xué),功能材料物理與化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,吉林 四平 136000)

    共軛微孔聚合物(CMPs)骨架中的孔和極性基團(tuán)對(duì)聚合物的氣體吸附性能起著重要作用。闡明聚合物中極性基團(tuán)的效果對(duì)該領(lǐng)域的進(jìn)一步發(fā)展是必不可少的。為了解決這個(gè)根本問(wèn)題,我們使用最簡(jiǎn)單的芳香系統(tǒng)-苯作為建筑單體,構(gòu)筑了兩個(gè)新穎的富羧酸基團(tuán)的CMPs (CMP-COOH@1,CMP-COOH@2),并探討了CMPs中游離羧酸基團(tuán)的量對(duì)其孔隙、吸附焓、氣體吸附和選擇性的深遠(yuǎn)影響。CMP-COOH@1和CMP-COOH@2顯示的BET比表面積分別為835和765 m2?g?1。這兩種聚合物在二氧化碳存儲(chǔ)方面顯示了高潛力。在273 K和1.05 × 105Pa條件下,CMP-COOH@1和CMP-COOH@2的CO2吸附值分別為2.17和2.63 mmol?g?1。我們的研究結(jié)果表明,在相同的條件下增加聚合物中羧基基團(tuán)的含量可以提高材料對(duì)氣體的吸附容量和選擇性。

    共軛微孔聚合物;羧酸;孔;氣體吸附;選擇性

    O647

    10.3866/PKU.WHXB201705112

    April 6, 2017;

    May 3, 2017;

    May 11, 2017.

    . Email: xuyh@jlnu.edu.cn; Tel: +86-431-81765151.

    The project was supported by the National Natural Science Foundation of China (21501065), Science and Technology Program of Jilin Province, China (20160101319JC), Science and Technology Research Program of the Education Department of Jilin Province (2015229), and Science and Technology Program of Siping City (2015057).

    國(guó)家自然科學(xué)基金(21501065),吉林省科技發(fā)展計(jì)劃(20160101319JC),吉林省教育廳科學(xué)技術(shù)研究項(xiàng)目 (2015229),四平市科技發(fā)展計(jì)劃項(xiàng)目(2015057)資助項(xiàng)目

    猜你喜歡
    共軛羧酸基團(tuán)
    一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    攪拌對(duì)聚羧酸減水劑分散性的影響
    巧用共軛妙解題
    一種自適應(yīng)Dai-Liao共軛梯度法
    R基團(tuán)篩選技術(shù)用于HDACIs的分子設(shè)計(jì)
    芳烴ArCOR的構(gòu)象分析和基團(tuán)對(duì)親電取代反應(yīng)的定位作用
    內(nèi)含雙二氯均三嗪基團(tuán)的真絲織物抗皺劑的合成
    復(fù)合羧酸鑭對(duì)PVC熱穩(wěn)定作用研究
    国产一区二区亚洲精品在线观看| 日本三级黄在线观看| 国产片特级美女逼逼视频| 午夜亚洲福利在线播放| 一区二区三区四区激情视频| 26uuu在线亚洲综合色| 美女主播在线视频| 亚洲天堂av无毛| 国产黄频视频在线观看| 日韩一本色道免费dvd| 色吧在线观看| 国产免费一区二区三区四区乱码| 秋霞在线观看毛片| 乱码一卡2卡4卡精品| 看免费成人av毛片| 深夜a级毛片| 久久久久久久久大av| 69人妻影院| 久久久久性生活片| 免费av观看视频| 我的老师免费观看完整版| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 一二三四中文在线观看免费高清| 国产视频内射| 久久久精品免费免费高清| 亚洲电影在线观看av| 在线观看一区二区三区| 天美传媒精品一区二区| 人妻系列 视频| 久热这里只有精品99| 高清午夜精品一区二区三区| 色吧在线观看| 老司机影院成人| 精品人妻一区二区三区麻豆| 亚洲av二区三区四区| av免费观看日本| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 在线观看人妻少妇| 色网站视频免费| 在线观看一区二区三区| 精品久久久久久久末码| 久久精品国产鲁丝片午夜精品| 色5月婷婷丁香| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频 | 欧美xxxx性猛交bbbb| 一级爰片在线观看| 国内少妇人妻偷人精品xxx网站| 国产成人91sexporn| 丝袜美腿在线中文| 又爽又黄a免费视频| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 一二三四中文在线观看免费高清| 中文字幕免费在线视频6| 亚洲最大成人中文| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 国产精品蜜桃在线观看| 人人妻人人看人人澡| 搞女人的毛片| 国产成人a区在线观看| 免费人成在线观看视频色| 午夜免费观看性视频| 国产毛片a区久久久久| 边亲边吃奶的免费视频| 久久精品国产自在天天线| 国产真实伦视频高清在线观看| 久久精品人妻少妇| 国产午夜福利久久久久久| 国产免费一级a男人的天堂| 亚洲精品久久久久久婷婷小说| 男的添女的下面高潮视频| 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 精品人妻偷拍中文字幕| 亚洲自拍偷在线| 日本wwww免费看| 国产精品人妻久久久影院| 亚洲精品乱久久久久久| 成人漫画全彩无遮挡| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 久久久午夜欧美精品| 97在线视频观看| 国产美女午夜福利| 91狼人影院| 亚洲自拍偷在线| 久久久久久久精品精品| 国产久久久一区二区三区| 国产成人精品福利久久| av免费在线看不卡| 能在线免费看毛片的网站| 尤物成人国产欧美一区二区三区| 久久久久久久久久人人人人人人| 久久久久精品久久久久真实原创| 欧美zozozo另类| 熟妇人妻不卡中文字幕| 亚洲电影在线观看av| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 青春草视频在线免费观看| av在线蜜桃| 有码 亚洲区| 国产精品99久久99久久久不卡 | 一本色道久久久久久精品综合| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 99热6这里只有精品| 少妇人妻精品综合一区二区| 国产视频内射| videos熟女内射| 特大巨黑吊av在线直播| 好男人在线观看高清免费视频| 欧美xxxx黑人xx丫x性爽| 色综合色国产| 免费大片18禁| 国产成人91sexporn| 丰满人妻一区二区三区视频av| 免费av毛片视频| 啦啦啦在线观看免费高清www| 亚洲av福利一区| 日韩成人av中文字幕在线观看| 成人无遮挡网站| 欧美成人一区二区免费高清观看| 99re6热这里在线精品视频| 一级毛片aaaaaa免费看小| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久大尺度免费视频| 国产中年淑女户外野战色| 亚洲国产成人一精品久久久| 蜜桃久久精品国产亚洲av| 成人一区二区视频在线观看| 日本熟妇午夜| 国产av码专区亚洲av| 高清毛片免费看| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 国产综合懂色| 最近最新中文字幕大全电影3| 人妻一区二区av| 亚洲av中文av极速乱| 精品久久久久久久久av| 色视频在线一区二区三区| 男人和女人高潮做爰伦理| 九九爱精品视频在线观看| 小蜜桃在线观看免费完整版高清| 在线a可以看的网站| 看非洲黑人一级黄片| 免费观看性生交大片5| 日韩 亚洲 欧美在线| 夜夜爽夜夜爽视频| 最近中文字幕2019免费版| 少妇被粗大猛烈的视频| 亚洲av一区综合| 国产美女午夜福利| 乱码一卡2卡4卡精品| 国产伦在线观看视频一区| 国产精品一区二区性色av| 久久精品国产自在天天线| 亚洲欧美精品专区久久| 色吧在线观看| 丝袜美腿在线中文| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 男女边摸边吃奶| 一区二区av电影网| 我要看日韩黄色一级片| 亚洲高清免费不卡视频| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 欧美人与善性xxx| 欧美精品人与动牲交sv欧美| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 偷拍熟女少妇极品色| eeuss影院久久| 精品一区二区免费观看| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区| 成人综合一区亚洲| 在线天堂最新版资源| 亚洲天堂av无毛| 精品一区在线观看国产| 久久久久网色| 狠狠精品人妻久久久久久综合| 免费在线观看成人毛片| av免费观看日本| 深夜a级毛片| 熟女电影av网| 最新中文字幕久久久久| 亚洲av男天堂| 夫妻午夜视频| 国产片特级美女逼逼视频| 国产一区二区在线观看日韩| 最新中文字幕久久久久| 欧美另类一区| 王馨瑶露胸无遮挡在线观看| 99热全是精品| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花 | 亚洲av不卡在线观看| 成年av动漫网址| 国产成人a区在线观看| 99久久九九国产精品国产免费| 欧美日韩综合久久久久久| 亚洲天堂av无毛| 国产国拍精品亚洲av在线观看| 偷拍熟女少妇极品色| 五月天丁香电影| 亚洲精品第二区| 亚洲欧美一区二区三区国产| 日韩 亚洲 欧美在线| 97热精品久久久久久| 亚洲成人久久爱视频| 涩涩av久久男人的天堂| 色网站视频免费| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 日韩欧美精品免费久久| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 日韩大片免费观看网站| 亚洲精品国产成人久久av| 国产高潮美女av| 中文字幕久久专区| 亚洲色图av天堂| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 真实男女啪啪啪动态图| a级一级毛片免费在线观看| 99视频精品全部免费 在线| 久久久久久伊人网av| 丰满少妇做爰视频| 热re99久久精品国产66热6| 精品久久久噜噜| 99精国产麻豆久久婷婷| 26uuu在线亚洲综合色| 久久久久久久精品精品| 青春草国产在线视频| 国产有黄有色有爽视频| 国精品久久久久久国模美| 青春草视频在线免费观看| av国产免费在线观看| 一本一本综合久久| 在线a可以看的网站| 成人漫画全彩无遮挡| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| av在线播放精品| 大又大粗又爽又黄少妇毛片口| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 搞女人的毛片| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| av播播在线观看一区| 一本一本综合久久| 国产高清不卡午夜福利| av在线播放精品| 亚洲av中文字字幕乱码综合| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 午夜福利高清视频| 大香蕉97超碰在线| 免费看光身美女| 2018国产大陆天天弄谢| 国产 一区 欧美 日韩| 久久国产乱子免费精品| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 大片免费播放器 马上看| 日韩在线高清观看一区二区三区| 99久久精品热视频| 欧美日韩亚洲高清精品| 免费高清在线观看视频在线观看| 久久久久网色| 欧美xxⅹ黑人| 精品久久久精品久久久| 女人久久www免费人成看片| 一级毛片电影观看| 男人添女人高潮全过程视频| 黑人高潮一二区| 蜜桃久久精品国产亚洲av| 2022亚洲国产成人精品| 午夜爱爱视频在线播放| 在线看a的网站| 午夜亚洲福利在线播放| 精品亚洲乱码少妇综合久久| 熟女人妻精品中文字幕| videossex国产| 久久人人爽人人片av| 大又大粗又爽又黄少妇毛片口| 岛国毛片在线播放| 日本wwww免费看| 免费不卡的大黄色大毛片视频在线观看| 大香蕉久久网| 国产午夜精品久久久久久一区二区三区| 美女国产视频在线观看| 亚洲最大成人手机在线| 中文字幕久久专区| 久久久久九九精品影院| 欧美xxxx性猛交bbbb| 久久这里有精品视频免费| 国产爱豆传媒在线观看| 久久99热这里只有精品18| 国产老妇伦熟女老妇高清| 91精品伊人久久大香线蕉| 久久久成人免费电影| 日韩成人av中文字幕在线观看| 亚洲欧美日韩另类电影网站 | 91精品伊人久久大香线蕉| 国产大屁股一区二区在线视频| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 人妻系列 视频| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 另类亚洲欧美激情| 少妇被粗大猛烈的视频| 亚洲四区av| 国产午夜精品一二区理论片| 哪个播放器可以免费观看大片| 日本爱情动作片www.在线观看| 蜜桃久久精品国产亚洲av| 亚洲成人av在线免费| 久久综合国产亚洲精品| 午夜视频国产福利| 国产精品人妻久久久影院| 国产日韩欧美亚洲二区| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 一级av片app| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 全区人妻精品视频| 嫩草影院入口| 99热这里只有是精品50| 亚洲真实伦在线观看| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 你懂的网址亚洲精品在线观看| 三级国产精品欧美在线观看| 免费人成在线观看视频色| .国产精品久久| 又大又黄又爽视频免费| videossex国产| 精品一区二区三卡| 国产午夜精品久久久久久一区二区三区| 青青草视频在线视频观看| 直男gayav资源| 久久久久久九九精品二区国产| 国产综合精华液| 午夜精品国产一区二区电影 | 国产 一区精品| 丝袜脚勾引网站| 99久久九九国产精品国产免费| 国产男人的电影天堂91| 久久久久久久久久久丰满| 只有这里有精品99| 亚洲国产色片| 亚洲欧美一区二区三区国产| 一个人看视频在线观看www免费| 99热网站在线观看| 久久99热6这里只有精品| 国产成人freesex在线| 日韩三级伦理在线观看| 性色av一级| 国产精品久久久久久久电影| 亚洲av一区综合| 日韩电影二区| 哪个播放器可以免费观看大片| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 搡女人真爽免费视频火全软件| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| 国产成人免费观看mmmm| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃 | 免费少妇av软件| av国产免费在线观看| 干丝袜人妻中文字幕| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美 | 嘟嘟电影网在线观看| 一级毛片黄色毛片免费观看视频| 国产黄频视频在线观看| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 亚洲精品456在线播放app| 在线看a的网站| 久久久成人免费电影| 一本久久精品| 国产欧美日韩精品一区二区| 欧美亚洲 丝袜 人妻 在线| 99久久精品国产国产毛片| 内射极品少妇av片p| 一级片'在线观看视频| 久久精品国产亚洲av天美| 欧美亚洲 丝袜 人妻 在线| 毛片女人毛片| 内射极品少妇av片p| 麻豆国产97在线/欧美| 直男gayav资源| 欧美日韩在线观看h| 亚洲欧美中文字幕日韩二区| 色综合色国产| 一级毛片电影观看| 久久久a久久爽久久v久久| 日本午夜av视频| 99热6这里只有精品| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 天堂中文最新版在线下载 | 高清毛片免费看| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 亚洲精品成人久久久久久| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看 | 精品国产三级普通话版| 亚洲伊人久久精品综合| 大片电影免费在线观看免费| 久久人人爽人人片av| 黄色配什么色好看| 97超视频在线观看视频| 欧美日韩亚洲高清精品| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| www.av在线官网国产| 青春草亚洲视频在线观看| 欧美一级a爱片免费观看看| 国产精品秋霞免费鲁丝片| 日本黄色片子视频| 日韩欧美 国产精品| 丰满少妇做爰视频| 亚洲国产日韩一区二区| 舔av片在线| av专区在线播放| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 3wmmmm亚洲av在线观看| 性色av一级| 亚洲av中文av极速乱| 成年人午夜在线观看视频| 久久久久久久久久人人人人人人| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 亚洲国产精品成人综合色| 国产黄片美女视频| 久久久久网色| 国产精品无大码| 久久精品国产亚洲av天美| 亚洲精品色激情综合| 国产在线男女| 久久ye,这里只有精品| 国产av码专区亚洲av| 久久97久久精品| 亚洲国产日韩一区二区| 日本一二三区视频观看| 国产永久视频网站| 蜜桃亚洲精品一区二区三区| 国产成人免费观看mmmm| 亚洲av中文字字幕乱码综合| 69人妻影院| 国产一区二区三区综合在线观看 | 国产av不卡久久| 国产亚洲一区二区精品| 国产精品一区二区三区四区免费观看| 少妇的逼水好多| 精华霜和精华液先用哪个| 国产成人aa在线观看| 波野结衣二区三区在线| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频 | 简卡轻食公司| 22中文网久久字幕| 97精品久久久久久久久久精品| 国产女主播在线喷水免费视频网站| 午夜福利视频精品| 国产欧美亚洲国产| 少妇裸体淫交视频免费看高清| 青春草视频在线免费观看| 各种免费的搞黄视频| av在线app专区| 精品一区二区免费观看| 成年av动漫网址| 成人国产麻豆网| 亚洲久久久久久中文字幕| 3wmmmm亚洲av在线观看| 亚洲在线观看片| 一边亲一边摸免费视频| 天天一区二区日本电影三级| 春色校园在线视频观看| 亚洲精品久久久久久婷婷小说| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 亚洲欧美日韩无卡精品| 男女那种视频在线观看| 国产亚洲最大av| 国产成人精品福利久久| 成年人午夜在线观看视频| 国产精品成人在线| 国产综合懂色| 美女xxoo啪啪120秒动态图| 夫妻性生交免费视频一级片| 亚洲欧美一区二区三区国产| 免费播放大片免费观看视频在线观看| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 天天一区二区日本电影三级| 日本欧美国产在线视频| 精品人妻视频免费看| 最近最新中文字幕大全电影3| 国国产精品蜜臀av免费| 网址你懂的国产日韩在线| 在现免费观看毛片| 成人黄色视频免费在线看| 国产综合懂色| 美女xxoo啪啪120秒动态图| 欧美区成人在线视频| 久久久久性生活片| 亚洲av男天堂| 亚洲国产精品999| 最近手机中文字幕大全| 日本与韩国留学比较| 日日啪夜夜爽| 亚洲av电影在线观看一区二区三区 | 美女主播在线视频| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久久久按摩| 麻豆久久精品国产亚洲av| 欧美日韩视频高清一区二区三区二| 男人添女人高潮全过程视频| 免费av毛片视频| 欧美高清性xxxxhd video| 99热国产这里只有精品6| 欧美丝袜亚洲另类| av福利片在线观看| 欧美zozozo另类| 国产精品.久久久| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花 | 联通29元200g的流量卡| 日韩av免费高清视频| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 午夜免费男女啪啪视频观看| 超碰av人人做人人爽久久| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃 | 99视频精品全部免费 在线| 大香蕉97超碰在线| 日韩人妻高清精品专区| 一级黄片播放器| 国产精品无大码| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产有黄有色有爽视频| 国产人妻一区二区三区在| 中文欧美无线码| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区视频9| 国产69精品久久久久777片| 久久精品国产自在天天线| 亚洲av在线观看美女高潮| 中国三级夫妇交换| 久久精品熟女亚洲av麻豆精品| 高清毛片免费看| 亚洲欧美精品专区久久| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 晚上一个人看的免费电影| 国产精品秋霞免费鲁丝片| 极品少妇高潮喷水抽搐| 国国产精品蜜臀av免费| 不卡视频在线观看欧美| 18禁裸乳无遮挡免费网站照片| 日本-黄色视频高清免费观看| 五月天丁香电影| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 精品久久久久久电影网| 成人综合一区亚洲| 舔av片在线| 精品酒店卫生间| 99久久精品国产国产毛片| 男女边摸边吃奶| 美女视频免费永久观看网站| 少妇人妻久久综合中文| 日韩欧美一区视频在线观看 | 国产又色又爽无遮挡免| 免费观看无遮挡的男女| 免费观看av网站的网址|