• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Nanostructuring of Isotropic Gas-Atomized MnAl Powder by Rapid Milling (30 s)

    2020-05-22 08:02:10RialPalmeroBollero
    Engineering 2020年2期

    J. Rial, E.M. Palmero, A. Bollero*

    Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain

    Keywords:

    A B S T R A C T An unprecedentedly short milling time of 30 s was applied to gas-atomized MnAl powder in order to develop permanent magnet properties and,in particular,coercivity.It is shown that such a short processing time followed by annealing results in efficient nanostructuring and controlled phase transformation.The defects resulting from the microstrain induced during milling, together with the creation of the βphase during post-annealing,act as pinning centers resulting in an enhanced coercivity.This study shows the importance of finding a balance between the formation of the ferromagnetic τ-MnAl phase and the βphase in order to establish a compromise between magnetization and coercivity. A coercivity as high as 4.2 kOe(1 Oe=79.6 A·m-1) was obtained after milling(30 s)and annealing,which is comparable to values previously reported in the literature for milling times exceeding 20 h. This reduction of the postannealing temperature by 75°C for the as-milled powder and a 2.5-fold increase in coercivity, while maintaining practically unchanged the remanence of the annealed gas-atomized material, opens a new path for the synthesis of isotropic MnAl-based powder.

    1. Introduction

    Numerous present and emerging technologies require the use of permanent magnets (PMs), resulting in an increasing yearly need for rare-earth (RE) elements as constituents of the strongest(NdFeB- and SmCo-based) technological PMs [1,2]. Economic and environmental considerations have attracted the interest of research groups and industry in the search for RE-free PM alternatives [3], which should result in diversification of the PM sector according to the requirements of the final application. Ferrites are low-cost PMs with widely abundant constituent elements;however,the reduced maximum energy product,(BH)max,of about 5 megagauss-oersteds(MGOe,1 MGOe=7.958 kJ·m-3)is a limiting factor for applications requiring a high magnetic performance.

    MnAl is a promising RE-free PM candidate with a high uniaxial magnetocrystalline anisotropy (K ≈1.5×106J·m-3) and a theoretical (BH)maxof 12 MGOe [4,5]. These values, in combination with a low density (5.2 g·cm-3) in comparison with that of Nd2Fe14B(7.4 g·cm-3), would result in a high-energy product per unit weight—that is,in high-performance light magnets.MnAl has only one ferromagnetic phase, the τ-MnAl phase. This is a metastable phase that can be obtained by annealing from the most stable εphase. The annealing process develops the ferromagnetic τ-phase and, therefore, the magnetization of the sample. However, the coercivity (Hc) of the annealed powder is typically below 2 kOe(1 Oe=79.6 A·m-1) [6-8]. The ball-milling process is a suitable technique to increase the Hcof the material through controlled nanostructuring [7,9-11]. The literature reports that a typical milling time of several hours is necessary to develop Hc[7-12];however, it has recently been demonstrated that milling times as short as a few minutes can lead to comparable Hc[13,14]. In this work, an extremely short milling time of 30 s, which is sufficient for nanostructuring without inducing amorphization, was applied to study the evolution of the magnetic properties of gasatomized MnAl powder.

    2. Experimental details

    Fig. 1. (a) X-ray diffraction (XRD) patterns of the gas-atomized and the as-milled (30 s) powders. Scanning electron microscope (SEM) images of the (b) gas-atomized and(c) as-milled powders.

    Gas-atomized powder with a composition of Mn54Al46(±0.4 at%)was used as the starting material. Details about preparation and composition have been published elsewhere [8]. The gasatomized powder showed approximately spherical particles with a diameter less than 10 μm (Fig. 1). The gas-atomized powder was surfactant-assisted (oleic acid) ball milled for 30 s, in order to reduce possible oxidation and avoid welding.The ball-milling process was performed with tungsten carbide vials and balls, with a typical rotation speed of 900 r·min-1. The powder-to-oleic acid ratio was 5:1, and the ball-to-powder mass was 40:1. The loading and sealing of the vials were performed in an argon(Ar)-controlled atmosphere glove box to prevent oxidation.The particles morphology was determined using a Zeiss-EVO scanning electron microscope(SEM). A differential scanning calorimeter (DSC)—namely, TA Instruments model SDT Q600—was used to determine the crystallographic transition temperatures. MnAl powders were annealed under a nitrogen (N2) flow of 100 mL·min-1up to 700°C, using a temperature ramp of 10 K·min-1.X-ray diffraction(XRD)measurements were carried out using a Panalytical X’Pert PRO theta/2theta diffractometer with Cu-Kα radiation (λ=0.1541 nm). The crystallite size and microstrain were determined by the Scherrer method.Details on the quantitative phase analysis of milled and postannealed powders are provided elsewhere [13]. As-atomized and milled powders were annealed under N2flow with a ramp rate of 10°C·min-1at temperatures (Tanneal) of 340-450°C for 10 min.Room-temperature hysteresis loops were measured using a Lakeshore 7400 series vibrating sample magnetometer (VSM) with a maximum applied field of 20 kOe. These measurements allowed for the determination of the magnetization measured at a maximum applied field of 20 kOe (M20kOe), the remanence (Mr), and the Hc.

    3. Results and discussion

    Fig. 1(a) shows the XRD patterns measured for the gasatomized powder in the as-prepared state and after milling for 30 s. The gas-atomized powder consisted of the ε-phase with a minor content of the γ2-phase. The crystallite size determined from the XRD pattern for the ε-phase was 110 nm. Milling for 30 s was sufficient to produce breakage of the particles, but there was no significant change in the average particle size in comparison with that of the starting powder (Fig. 1). The mean crystallite size was clearly reduced, as may be directly inferred from the broader diffraction peaks measured after milling (Fig. 1(a)). In addition, and not reported to date by other milling methods, formation of the τ-MnAl phase was already observed in the asmilled state—that is, prior to annealing the powder—due to the reported high impact energy exerted during the process when milling with a high-density milling media (tungsten carbide)[14].It is precisely the combination of a high impact energy(inducing microstrain) and the application of an extremely short milling time (avoiding the high temperature achieved during long milling times—i.e., undesired relaxation effects) that probably eases the beginning of the ε-to-τ phase transformation through a displacive shear mechanism already occurring in the as-milled state. Fig. 2 shows the DSC heating curve measured for the starting gasatomized powder and for the powder milled for 30 s.The measured exothermic peak corresponds to the ε-to-τ phase transformation[13], with a maximum at 440 and 390°C for the gas-atomized powder and as-milled powder, respectively. Thus, milling for such a short time resulted in a decreased transformation temperature,which is of interest in view of possible powder manufacturing.This decreased temperature was a direct consequence of the microstructural refinement produced during the milling process in combination with the defects introduced in the particles,which decreased the energy barrier to produce the τ-MnAl phase [14].

    Both samples (i.e., the gas-atomized and as-milled powders)were annealed in the temperature range of 340-450°C to check the evolution of the magnetic properties with Tanneal(Fig. 3). No morphological transformation was observed in the samples after annealing, so the same particle size was maintained.

    Fig. 2. DSC curves of the gas-atomized and as-milled (30 s) powders.

    Fig. 3. Evolution of the magnetic properties for gas-atomized and as-milled (30 s)powders: (a) Mr and M20kOe; (b) Hc.

    The magnetization values Mrand M20kOeshowed the same tendency with increasing Tanneal, as shown in Fig. 3(a). However, a remarkable difference in the Tannealneeded to achieve maximum magnetization values was observed, with 75°C less needed for the as-milled powder (Tanneal=375°C) to achieve the maximum value, in comparison with the gas-atomized powder (Tanneal=450°C).This finding is of technological significance when considering the potential industrial implementation of the process. This fact is clearly illustrated in Fig. 4, where selected hysteresis loops are displayed for the gas-atomized and as-milled powders after annealing at 365 and 450°C (Figs. 4(a) and (b), respectively). As may be observed, Tanneal=365°C was insufficient to develop adequate PM properties in the gas-atomized powder, whereas Tanneal=450°C guaranteed full development of the magnetic properties. Although this temperature of 450°C was not the optimum one to be applied to the as-milled powder, it is worth remarking that the Mrremained approximately the same while the Hcwas 2.5 times higher for the milled and annealed powder,thereby proving the efficiency of this method in nanostructuring and improving the magnetic properties.

    Fig. 4. Room-temperature hysteresis loops measured for the gas-atomized and asmilled powders after annealing at (a) 365°C and (b) 450°C.

    Fig. 5. XRD patterns of the (a) gas-atomized and (b) as-milled powders, in the asprepared state and after annealing at 365, 400, and 450°C.

    Table 1 Evolution of the β/τ ratio, mean crystallite size, mean strain induced during milling, and Hc with the annealing temperature for the as-atomized and milled (30 s) powder.

    The evolution of the magnetization with annealing temperature can be understood by looking at the phase evolution of the gasatomized and as-milled powders with Tanneal(Fig. 5). The gasatomized powder required Tanneal>365°C to initiate the formation of the τ-phase. At 400°C, the ε-to-τ transformation was incomplete; thus, both phases were co-existing. The ε-to-τ transformation was only concluded at 450°C, when the τ-phase was observed together with a minor content of the β-phase.In comparison, milling for 30 s was sufficient to generate the τ-phase in the as-milled state—that is, with no need for a post-annealing treatment.Further annealing was required to enhance the τ-phase content and, consequently, the magnetization (Fig. 3(a)). It is worth noting that while annealing at 365°C did not result in appreciable nucleation of the τ-phase in the XRD pattern of the starting powder,the same temperature applied to the powder milled for 30 s promoted almost the full transformation of the ε-phase into the τ-MnAl phase; at 400°C, there was nothing reminiscent of the diffraction peaks of theε-phase.The significantly decreased temperature needed for the ε-to-τ phase transformation in the case of the as-milled powder is in good agreement with the DSC results(Fig. 2). Consequently, the evolution of the magnetization values(Mrand M20kOe)with Tannealis fully consistent with the evolution of the ferromagnetic τ-phase content.The lower magnetization values measured for the milled and annealed powder are a direct consequence of the higher β/τ fraction content (Table 1). It is worth remarking that enhanced magnetization values might be obtained in both the gas-atomized and the milled and annealed powder by starting from an ε single-phase gas-atomized powder(i.e.,by avoiding the presence of secondary phases in the starting material).

    Additional factors should be taken into account in order to understand the behavior of the Hcwith increasing Tanneal(Fig. 3(b)).Previous studies [7,14] have shown that the β/τ fraction content and the strain induced during milling are the main factors determining Hcin MnAl powder. Table 1 summarizes these values for the samples under study after annealing at different temperatures.Annealing of the gas-atomized and the as-milled powders resulted in an increased mean crystallite size with increasing Tanneal, which remained below 65 nm. For the same Tanneal, the crystallite size was smaller in all cases for the milled and annealed powder.

    Milling of the gas-atomized powder resulted in a decreased mean crystallite size in combination with the microstrain induced during the milling process. The novelty of the approach followed in this study, in comparison with previous results reported by the same authors on milling times ranging from 90 to 270 s[14],is that those times weresufficient to begin amorphization of the MnAl.It was proventhat post-annealingof theas-milledpowderfavors recrystallizationinto the β-phase,whichis beneficialto some extent(providedan adequate β/τ ratio)to increase Hcbut detrimental to the magnetization by reducing the overall τ-phase content.In the present study,milling for 30 s resulted in microstructural refinement without initiating amorphization of the powder.

    The maximum Hcof 1.8 and 4.2 kOe obtained for the annealed gas-atomized powder and as-milled powder, respectively, was a consequence of the combined effect of the reduced mean crystallite size, induced strain, and enhanced β/τ ratio. The formation of defects during milling and the creation of the β-phase played an important role as pinning centers in the magnetization reversal mechanism by increasing Hc. Annealing the powder resulted in grain growth and relaxation effects (Table 1), thus reducing the Hcwith increasing Tanneal(Fig. 3(b)). This combination of gas atomization and flash milling(30 s)offers a new route for the fabrication of isotropic nanocrystalline MnAl powder, with potential applications in emerging technologies such as 3D printing [15].

    4. Conclusions

    The milling of gas-atomized MnAl powder for an unprecedentedly short time of 30 s made Hcdevelopment possible,with a maximum value of 4.2 kOe after post-annealing in comparison with 1.8 kOe obtained for the starting material.This result was a consequence of nanostructuring without the initiation of amorphization,and a control on the β/τ ratio during the process. A short milling time of 30 s avoids the high temperature typically achieved when milling for a long time, and thus avoids undesired relaxation and phase-transformation effects. The annealing temperature required to achieve the best combination of magnetic properties in the asmilled powder was 75°C lower than that of the gas-atomized powder.The reduced ε-to-τ phase-transformation temperature and the possibility of developing Hcabout 2.5 times greater than those of the gas-atomized powder while maintaining Mrmake this route a promising one for the fabrication of nanocrystalline MnAl powder.

    Acknowledgements

    Gas-atomized powder was provided by Prof. Ian Baker (Dartmouth College) and Prof. Laura H. Lewis (Northeastern University,Boston) (Energy (ARPA-E), REACT DE-AR0000188). The authors acknowledge financial support from MINECO through NEXMAG(M-era.Net, PCIN-2015-126) and 3D-MAGNETOH (MAT2017-89960-R) projects; and from the Regional Government of Madrid through the NANOMAGCOST (P2018/NMT-4321) project. IMDEA Nanociencia is supported by the ‘‘Severo Ochoa” Programme for Centres of Excellence in R&D, MINECO (SEV-2016-0686).

    Compliance with ethics guidelines

    J. Rial, E.M. Palmero, and A. Bollero declare that they have no conflict of interest or financial conflicts to disclose.

    咕卡用的链子| 曰老女人黄片| 亚洲国产欧美日韩在线播放| 亚洲片人在线观看| av在线天堂中文字幕| 高清毛片免费观看视频网站| 成人亚洲精品av一区二区| 国产亚洲精品av在线| 国产高清视频在线播放一区| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 日日夜夜操网爽| 妹子高潮喷水视频| 他把我摸到了高潮在线观看| 午夜亚洲福利在线播放| 久久久久久亚洲精品国产蜜桃av| 色综合婷婷激情| 午夜视频精品福利| 变态另类丝袜制服| 一区二区三区精品91| 日本在线视频免费播放| 老熟妇乱子伦视频在线观看| 久久国产精品男人的天堂亚洲| 国产精品自产拍在线观看55亚洲| 免费在线观看亚洲国产| 中文字幕高清在线视频| 纯流量卡能插随身wifi吗| 美女高潮喷水抽搐中文字幕| 久久精品成人免费网站| 日本三级黄在线观看| 国内久久婷婷六月综合欲色啪| 精品久久久久久久人妻蜜臀av | 女同久久另类99精品国产91| 久热这里只有精品99| 69av精品久久久久久| 性欧美人与动物交配| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 亚洲人成电影免费在线| 啦啦啦观看免费观看视频高清 | 亚洲欧美激情综合另类| 精品国产国语对白av| 大型黄色视频在线免费观看| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久人妻蜜臀av | 大香蕉久久成人网| 天堂影院成人在线观看| 午夜激情av网站| 国产真人三级小视频在线观看| 欧美日韩乱码在线| 精品日产1卡2卡| 女性被躁到高潮视频| 丁香欧美五月| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 亚洲无线在线观看| aaaaa片日本免费| 亚洲午夜理论影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 老司机福利观看| 日韩精品中文字幕看吧| 一区二区日韩欧美中文字幕| 18美女黄网站色大片免费观看| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 一区在线观看完整版| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 国产私拍福利视频在线观看| 成年人黄色毛片网站| 亚洲在线自拍视频| 日韩免费av在线播放| 女性生殖器流出的白浆| 国产亚洲欧美98| 欧美乱色亚洲激情| 午夜福利欧美成人| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 日本一区二区免费在线视频| 搡老熟女国产l中国老女人| 最好的美女福利视频网| 亚洲欧美一区二区三区黑人| 午夜成年电影在线免费观看| 欧美成人午夜精品| АⅤ资源中文在线天堂| 操美女的视频在线观看| 亚洲av五月六月丁香网| 宅男免费午夜| 久久性视频一级片| 窝窝影院91人妻| 亚洲 国产 在线| 国产精品自产拍在线观看55亚洲| 色av中文字幕| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 一区在线观看完整版| 波多野结衣巨乳人妻| 伊人久久大香线蕉亚洲五| 国产av精品麻豆| 亚洲成国产人片在线观看| 国产精品乱码一区二三区的特点 | 亚洲熟妇中文字幕五十中出| 国产极品粉嫩免费观看在线| 成人精品一区二区免费| 在线视频色国产色| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 91字幕亚洲| 极品教师在线免费播放| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 在线观看日韩欧美| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 免费少妇av软件| av超薄肉色丝袜交足视频| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 天天添夜夜摸| 国产成人啪精品午夜网站| 亚洲电影在线观看av| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区| 美女国产高潮福利片在线看| 99热只有精品国产| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 久久婷婷人人爽人人干人人爱 | 亚洲 国产 在线| 制服丝袜大香蕉在线| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 黄网站色视频无遮挡免费观看| 欧美激情极品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频日本深夜| 美女高潮到喷水免费观看| 亚洲成a人片在线一区二区| 又黄又爽又免费观看的视频| 亚洲成av片中文字幕在线观看| 国产精品美女特级片免费视频播放器 | 亚洲三区欧美一区| 亚洲av电影在线进入| 女人精品久久久久毛片| 国产亚洲精品久久久久久毛片| 99在线人妻在线中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲一区中文字幕在线| 国产一区二区三区综合在线观看| 大码成人一级视频| 免费在线观看影片大全网站| av视频在线观看入口| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 国产一区二区三区在线臀色熟女| √禁漫天堂资源中文www| 中文亚洲av片在线观看爽| 国产三级黄色录像| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 中文字幕另类日韩欧美亚洲嫩草| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 极品教师在线免费播放| 久久热在线av| 成人三级黄色视频| 黄片大片在线免费观看| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 午夜精品久久久久久毛片777| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| aaaaa片日本免费| 一级a爱视频在线免费观看| 久久精品影院6| 十分钟在线观看高清视频www| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 国产激情久久老熟女| 亚洲成人久久性| 国产亚洲精品久久久久5区| 级片在线观看| 男女午夜视频在线观看| 香蕉国产在线看| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 黄色女人牲交| 欧美黄色淫秽网站| 身体一侧抽搐| 久久亚洲真实| 国产亚洲精品综合一区在线观看 | 亚洲自拍偷在线| 丝袜人妻中文字幕| 国产伦一二天堂av在线观看| 国产欧美日韩精品亚洲av| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av高清一级| 9色porny在线观看| 国产精品香港三级国产av潘金莲| 国内精品久久久久久久电影| 亚洲国产高清在线一区二区三 | 日韩高清综合在线| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 正在播放国产对白刺激| 无遮挡黄片免费观看| 午夜精品在线福利| av免费在线观看网站| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 男人操女人黄网站| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 两个人看的免费小视频| 亚洲国产看品久久| 女人精品久久久久毛片| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片 | 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 好看av亚洲va欧美ⅴa在| 亚洲av美国av| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 麻豆av在线久日| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 精品久久久久久成人av| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 久久久久亚洲av毛片大全| 久久性视频一级片| 在线观看66精品国产| 免费看美女性在线毛片视频| 一级毛片女人18水好多| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 国产成人av教育| 一级黄色大片毛片| cao死你这个sao货| 午夜日韩欧美国产| 天堂√8在线中文| 国产成人啪精品午夜网站| 最好的美女福利视频网| 国产成人一区二区三区免费视频网站| 国产成人欧美| a在线观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| av有码第一页| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 亚洲午夜理论影院| 视频区欧美日本亚洲| 9色porny在线观看| 91麻豆精品激情在线观看国产| 精品久久蜜臀av无| 亚洲自拍偷在线| 国产成人av教育| 亚洲一区二区三区色噜噜| av网站免费在线观看视频| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 午夜日韩欧美国产| 亚洲无线在线观看| 麻豆一二三区av精品| 国产私拍福利视频在线观看| 国产片内射在线| 免费少妇av软件| 日本vs欧美在线观看视频| 黄色 视频免费看| 18禁裸乳无遮挡免费网站照片 | 麻豆久久精品国产亚洲av| 久久亚洲真实| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 韩国av一区二区三区四区| 啦啦啦 在线观看视频| 九色国产91popny在线| 欧美黑人精品巨大| 色av中文字幕| 国产不卡一卡二| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区三区在线| 在线观看日韩欧美| 纯流量卡能插随身wifi吗| 给我免费播放毛片高清在线观看| 亚洲欧美激情在线| 99riav亚洲国产免费| 成年版毛片免费区| 免费人成视频x8x8入口观看| 曰老女人黄片| 亚洲国产欧美一区二区综合| 成年版毛片免费区| 老鸭窝网址在线观看| 色婷婷久久久亚洲欧美| а√天堂www在线а√下载| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 国产伦一二天堂av在线观看| 欧美激情高清一区二区三区| 欧美 亚洲 国产 日韩一| av在线天堂中文字幕| 一级毛片精品| 亚洲无线在线观看| 国产亚洲精品av在线| 色综合站精品国产| 看黄色毛片网站| 日韩三级视频一区二区三区| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| avwww免费| 欧美成人免费av一区二区三区| 国产精品久久久久久亚洲av鲁大| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 中出人妻视频一区二区| 久久国产精品男人的天堂亚洲| 十分钟在线观看高清视频www| 人人妻人人澡欧美一区二区 | 男女做爰动态图高潮gif福利片 | 巨乳人妻的诱惑在线观看| 国产区一区二久久| 亚洲欧美日韩无卡精品| 色av中文字幕| av视频免费观看在线观看| 日本三级黄在线观看| 国产主播在线观看一区二区| 日韩欧美在线二视频| 国产主播在线观看一区二区| 级片在线观看| 亚洲久久久国产精品| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av | 91老司机精品| 黄色视频不卡| 精品高清国产在线一区| 国产精品精品国产色婷婷| 韩国av一区二区三区四区| 99国产综合亚洲精品| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 精品久久久精品久久久| 最近最新中文字幕大全免费视频| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 啪啪无遮挡十八禁网站| 久热爱精品视频在线9| 老鸭窝网址在线观看| 国产精品免费视频内射| www.www免费av| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 黄色 视频免费看| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 国产区一区二久久| 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 免费在线观看完整版高清| 亚洲在线自拍视频| 成人免费观看视频高清| 欧美大码av| 日韩欧美一区视频在线观看| 性少妇av在线| 操出白浆在线播放| 中文字幕久久专区| 一区二区日韩欧美中文字幕| 一区二区三区精品91| 搞女人的毛片| 久久精品人人爽人人爽视色| 久久伊人香网站| 国产精品久久久av美女十八| 一本久久中文字幕| 国产精品亚洲美女久久久| 国产午夜精品久久久久久| 亚洲欧美激情综合另类| 亚洲欧美日韩另类电影网站| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 免费在线观看日本一区| 日本欧美视频一区| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 日日干狠狠操夜夜爽| 咕卡用的链子| 99在线人妻在线中文字幕| 午夜成年电影在线免费观看| 精品人妻1区二区| 一级作爱视频免费观看| 午夜两性在线视频| 久久精品91无色码中文字幕| 搞女人的毛片| 成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 国产精华一区二区三区| 国产精品电影一区二区三区| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 身体一侧抽搐| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| av有码第一页| 日本在线视频免费播放| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 男男h啪啪无遮挡| 免费高清视频大片| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| x7x7x7水蜜桃| 黄色 视频免费看| 亚洲成av人片免费观看| 亚洲专区国产一区二区| 亚洲aⅴ乱码一区二区在线播放 | 日韩视频一区二区在线观看| 免费在线观看日本一区| 黄片小视频在线播放| svipshipincom国产片| 国产一区在线观看成人免费| 十分钟在线观看高清视频www| 日韩精品青青久久久久久| 欧美日韩一级在线毛片| 色哟哟哟哟哟哟| 青草久久国产| 欧美成人午夜精品| 在线观看午夜福利视频| 美女国产高潮福利片在线看| 一夜夜www| 国产亚洲精品综合一区在线观看 | 亚洲久久久国产精品| 在线观看日韩欧美| 一本大道久久a久久精品| 日本精品一区二区三区蜜桃| 操美女的视频在线观看| 又紧又爽又黄一区二区| АⅤ资源中文在线天堂| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 女人精品久久久久毛片| 国产成人av教育| 老司机靠b影院| 国产精华一区二区三区| 亚洲av五月六月丁香网| 天天添夜夜摸| 一级毛片女人18水好多| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 国产精品美女特级片免费视频播放器 | 久久精品影院6| 亚洲avbb在线观看| 亚洲美女黄片视频| 热99re8久久精品国产| 亚洲成人久久性| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看 | 大型黄色视频在线免费观看| 欧美色视频一区免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一电影网av| 美女大奶头视频| 国产精品亚洲av一区麻豆| 不卡一级毛片| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 久久人妻熟女aⅴ| 亚洲专区字幕在线| 久久中文字幕一级| 咕卡用的链子| 国产精品精品国产色婷婷| 91在线观看av| 久久久精品欧美日韩精品| 亚洲中文日韩欧美视频| 国产一卡二卡三卡精品| 亚洲一区高清亚洲精品| 亚洲成人久久性| 国产精品久久视频播放| 欧美 亚洲 国产 日韩一| 精品久久久久久久毛片微露脸| 久久国产亚洲av麻豆专区| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 久久天堂一区二区三区四区| www.熟女人妻精品国产| 1024香蕉在线观看| 9色porny在线观看| 88av欧美| 窝窝影院91人妻| 91成年电影在线观看| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩高清在线视频| 99在线人妻在线中文字幕| 成人欧美大片| 长腿黑丝高跟| 精品一区二区三区四区五区乱码| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 国产高清有码在线观看视频 | 黄片小视频在线播放| 免费在线观看日本一区| av在线天堂中文字幕| 亚洲一区中文字幕在线| 18美女黄网站色大片免费观看| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| 午夜免费成人在线视频| 中文字幕色久视频| 亚洲片人在线观看| √禁漫天堂资源中文www| 免费av毛片视频| 欧美一级a爱片免费观看看 | 亚洲国产高清在线一区二区三 | 国产黄a三级三级三级人| 国产精品野战在线观看| 变态另类丝袜制服| 精品高清国产在线一区| 亚洲人成77777在线视频| 91精品国产国语对白视频| 天堂√8在线中文| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 母亲3免费完整高清在线观看| 国产99白浆流出| 热99re8久久精品国产| 一级a爱片免费观看的视频| 日本在线视频免费播放| 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 国产成人精品在线电影| 一本大道久久a久久精品| 亚洲七黄色美女视频| 欧美日韩精品网址| 久久久久国内视频| 欧美亚洲日本最大视频资源| 无人区码免费观看不卡| 村上凉子中文字幕在线| 69av精品久久久久久| 久久国产精品影院| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 欧美午夜高清在线| 看免费av毛片| 天天添夜夜摸| 免费无遮挡裸体视频| 亚洲成av人片免费观看| 大型黄色视频在线免费观看| www国产在线视频色| 国产xxxxx性猛交| 亚洲av美国av| 久9热在线精品视频| 日韩欧美国产一区二区入口| 可以免费在线观看a视频的电影网站| 日韩 欧美 亚洲 中文字幕| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 熟妇人妻久久中文字幕3abv| 中国美女看黄片| 999久久久国产精品视频| 精品久久蜜臀av无| 国产精品,欧美在线| 亚洲色图综合在线观看| 极品教师在线免费播放| 777久久人妻少妇嫩草av网站| 久9热在线精品视频| 欧美av亚洲av综合av国产av|