• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta

    2020-05-22 08:02:14LinChenJingFeng
    Engineering 2020年2期

    Lin Chen, Jing Feng*

    Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

    Keywords:

    A B S T R A C T Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics (where RE stands for rare earth) are being investigated as promising thermal barrier coatings (TBCs), and the mechanical properties of RETaO4 have been found to be better than those of RENbO4.In this work,B-site substitution of tantalum(Ta)is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction (SSR).The crystal structure is clarified by means of X-ray diffraction (XRD) and Raman spectroscopy; and the surface microstructure is surveyed via scanning electronic microscope (SEM). The Young’s modulus and the thermal expansion coefficient (TEC) of EuNbO4 are effectively increased; with respective maximum values of 169 GPa and 11.2 × 10-6 K-1 (at 1200 °C). The thermal conductivity is reduced to 1.52 W·K-1·m-1 (at 700 °C), and the thermal radiation resistance is improved. The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects.The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta,and that this proposed material can be applied as a high-temperature structural ceramic in future.

    1. Introduction

    Ferroelastic rare earth tantalates and niobates (RETaO4and RENbO4, where RE stands for rare earth) are being researched for diverse applications, according to their individual properties[1-5]. The investigative fields of RENbO4include protonconducting solid oxide fuel cells, microwave dielectric materials,and shape memory materials [5-8]. The prominent properties of rare earth niobates come from their distinctive crystal structure and the various ligands of niobium (Nb). The crystal structure of RENbO4is dominated by Nb, and RENbO4undergoes a reversible ferroelastic crystal structure transformation with variation of temperature[2,4,5].At high temperatures,RENbO4is in a tetragonal(t)phase, which transforms to a monoclinic (m) phase at room temperature [2,5]. The t-m transformation temperature of RENbO4is between 500 and 800 °C, depending on the rare earth elements[2,5]. Usually, an evident change in unit cell volume is detected during crystal structure transformation; however, such change is not found in RENbO4and RETaO4[2,4,5,8]. Current documents prove that the ferroelastic t-m transformation of RENbO4and RETaO4is a natural second-order transition; no atomic rearrangement is detected. Therefore, volume variation in RENbO4and RETaO4, that is caused by t-m transformation is neglected.

    RETaO4exhibits a crystal structure that is analogous to that of RENbO4. Different crystal structures are found in RETaO4, which is ascribed to decrease in RE3+ionic radius. RETaO4(where RE=Y,Nd-Er)has the m phase,while the rest have the metastable monoclinic (m′) phase [1,8]. Furthermore, RETaO4exhibits a much higher t-m transition temperature than RENbO4. For example, the transition temperature of YTaO4is about 1430 °C, while it is less than 800 °C for RENbO4[2,8]. Ferroelastic toughness is a critical property that allows 6 wt%-8 wt%yttria-stabilized zirconia(6-8YSZ) to be applied as a thermal barrier coating (TBC) [9-12].However, the working temperature limit of yttria-stabilized zirconia (YSZ) is below 1200 °C because of phase transition, which results in a huge volume change. Much effort has been devoted to optimizing the properties of YSZ, and many materials are being investigated as TBCs [13-19]. Herein, ferroelastic RETaO4and RENbO4are studied as TBCs with a higher application temperature to replace 6-8YSZ. RETaO4possesses better thermal and mechanical properties than RENbO4, due to the characteristic properties of tantalum (Ta). In addition, the weak bonding strength of RENbO4produces an inferior hardness and Young’s modulus, which makes it less useful for application as high-temperature TBCs. Nevertheless, lower centrifugal force will be produced when RENbO4is applied as TBCs in comparison with RETaO4,due to the lower density.To modify the properties of RENbO4,the B-site substitution of Ta is attempted for EuNbO4by applying the atomic weight misfit between Ta and Nb and the difference in bond strength between the Ta-O and Nb-O bonds.

    In this paper, EuNb1-XTaXO4(composition parameter X = 0/6,1/6,2/6,3/6,4/6)specimens were fabricated via a solid-state reaction (SSR). The crystal structure was clarified by means of X-ray diffraction(XRD)and Raman spectra.The surface grain size,pores,and cracks were surveyed by means of scanning electronic microscope (SEM). The thermal and mechanical properties (i.e., heat capacity, thermal diffusivity and conductivity, thermal radiation resistance, thermal expansion performance, inharmonic lattice vibration strength, and Young’s modulus) were modified by the B-site substitution of Ta. This work stresses that EuNbO4ceramics are promising TBCs via further property optimization.

    2. Experimental process

    The EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6, 4/6) bulk specimens were synthesized by SSR. Crude substances included Eu2O3,Ta2O5, and Nb2O5powders and C2H5OH (Shanghai Aladdin Bio-Chem Technology Co., Ltd., China). The weighted substance was ball-milled (720 min, 240 r·min-1) within C2H5OH. The mixture was kept at 90 °C for 840 min to eliminate C2H5OH. The arid mixtures were pressed into a bulk with a radius of 7.5 mm and a thickness of 2 mm. Before sintering, the bulk samples were held at 280 MPa for 8 min, they were then sintered at 1400-1600 °C for 10 h to obtain dense samples.

    The crystal structure was confirmed by means of XRD (Mini-Flex600, Rigaku Corporation, Japan). Raman spectroscopy was employed to research the change in crystal structure, along with XRD. A confocal spectrometer (Horiba-Jobin Yvon, Horiba, Ltd.,USA)was utilized to collect Raman spectra using a He-Ne ion laser(532 nm).SEM(EVO 180,Zeiss,Germany)was employed to survey the superficial morphology, because the grain size, pores, and cracks affected the thermal and mechanical properties.

    The longitudinal (VL) and transverse (VT) acoustic velocities of EuNb1-XTaXO4were calculated by determining the transmission interval through an ultrasonic pulser/receiver instrument (UMS-100, TECLAB, France). Various properties were identified [20]:

    The thermal expansion coefficients (TECs) were determined by means of a thermal expansion rate curve. Thermo-mechanical analysis (TMA 402 F3, NETZSCH, Germany) was employed to test the temperature-dependent thermal expansion rate(100-1200°C).The test was conducted in argon(Ar)gaseous fluid,the specimens were cut to a size of 8 mm×2 mm×1 mm to adapt to the sample holder. The heating speed was 5 K·min-1. The test time lasted for about 5 h, with only one sample being tested each time.

    The bulk specimens were machined into discs with a radius of 3 mm and a thickness of 1 mm to fit the sample holder in order to test the thermal diffusivity (λ). Silver (Ag) and carbon (C) coatings were applied to reduce the thermal radiative conductivity,and ensure to absorption and maximum emissivity. The test was executed under Ar gas protection within a laser flash instrument(LFA 457, NETZSCH, Germany). Three samples were tested each time, and the test lasted for about 12 h. The thermal diffusivity was corrected by means of the ‘‘radiation + pulse” method; three tests were performed at each temperature point and the average value was used. The thermal conductivity (k′) was determined from the λ, CP, and ρ as follows [21]:

    where the specific heat, Cp, was computed using the Neumann-Kopp principle[22], and ρ is the density. The influence of porosity,φ, on thermal conductivity was removed as follows [21]:

    Debye’s principle was employed to investigate the thermal conduction mechanism. The thermal conduction mechanism was related to the propagation of phonons, as heat is transmitted via the phonons in insulators [23]:

    where k is the thermal conductivity of fully dense sample,CVrefers to the specific heat per unit volume, and l refers to the phonon mean free path. The influence of the specific heat on thermal conduction was restricted,as it reached 3kB(where kBis the Boltzmann constant) per atom at high temperatures. Herein, l was obtained:

    The phonon mean free path, l, was typically depressed by diverse scattering procedures,indicating that l and k decrease with an increase in the phonon scattering strength.

    3. Results and discussion

    Fig.1(a)shows that the experimental EuNb1-XTaXO4XRD peaks are consistent with those of standard PDF#22-1099, and that no peak for the precipitated phase is present. EuNb1-XTaXO4crystallizes in the m phase; no crystal structure transition was detected with an increase in the Ta content. Fig. 1(b) shows that the main XRD peaks slightly deviate from those on the standard PDF card,which relates to the sintering temperature. The final sintering temperature of EuNbO4is 1400 °C; it increases with an increase in Ta content, and is 1600 °C for EuNb2/6Ta4/6O4. Similar roomtemperature Raman peaks were found for EuNb1-XTaXO4, as displayed in Fig.1(c).The shift and intensity of each Raman vibration mode are connected to the molecular vibration and bond length.No evident peak deviation was observed in the two strongest Raman vibration modes (V1and V2) of EuNb1-XTaXO4. The results of the Raman spectra align with the situation indicated by XRD;that is no phase transition is detected,indicating that each sample crystallizes in the same m phase.

    Fig.1. Phase characterization of EuNb1-XTaXO4(X=0/6,1/6,2/6,3/6,4/6)ceramics.(a)XRD,25°≤2θ ≤65°;(b)XRD,27°≤2θ ≤31°;(c)room-temperature Raman spectra(25 °C, 532 nm, 100-900 cm-1).

    Fig. 2. Typical surface morphology of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) EuNbO4; (b) EuNb5/6Ta1/6O4; (c) EuNb4/6Ta2/6O4; (d) EuNb3/6Ta3/6O4;(e) EuNb2/6Ta4/6O4.

    Fig. 2 shows that the grain size of EuNb1-XTaXO4is less than 20 μm; the EuNb2/6Ta4/6O4displays a minimal grain size, which is ascribed to the highest sintering temperature.The final sintering temperature is related to the melting point. The final sintering temperature of EuNbO4is 1400 °C, and the substance melts at 1600 °C. The final sintering temperature of EuNb2/6Ta4/6O4is 1600 °C; the melting point of EuNbO4has been increased via the B-site substitution of Ta. A higher melting point implies a higher limit application temperature. The grain boundaries are evident,and the grains bond well with each other. The fine grain size and outstanding combination of grains contribute to produce extraordinary thermal and mechanical properties.

    The data presented in Table 1 implies that the B-site substitution of Ta makes a notable difference to the mechanical properties of EuNbO4.The Young’s modulus of EuNbO4is about 76 GPa,so the B-site substitution of Ta has led to an increase in the Young’s modulus. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4. A similar situation is observed in the bulk modulus, shear modulus, and mean acoustic velocity. The composition dependence of the elastic modulus and acoustic velocity of EuNb1-XTaXO4is depicted in Fig. 3. When X ≤3/6, the increase in the elastic modulus and acoustic velocity of EuNb1-XTaXO4is minute. The Young’s modulus mirrors the bond strength of the chemical bonds. It is clear that the B-site substitution of Ta leads to an increase in the bonding strength. A high Young’s modulus means that EuNb1-XTaXO4can be directly applied as high-temperature structural ceramics.

    The bond strength increases with a decrease in bond length[24].Fig.1 implies that the lattice parameters and unit cell volume of EuNb1-XTaXO4increase with an increase in Ta content, whichleads to an increase in bond length. Therefore, it is believed that the Ta-O bond strength is much greater than that of the Nb-O bond,which results in an increase of the Young’s modulus.Greater bond strength leads to a faster phonon propagation speed, which results in an increase of the thermal conductivity, to a certain extent.However,the factors affecting thermal conduction are complex, and will be discussed in detail.

    Table 1 The mean acoustic velocity, elastic modulus (E, B, and G), Grüneisen parameter (γ), and Poisson’s ratio (ν) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    Fig. 3. Composition-dependent acoustic velocity and elastic modulus of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Acoustic velocity; (b) elastic modulus.

    Fig. 4(a) shows that the thermal expansion rate of EuNb1-XTaXO4rapidly increases with an increase in temperature.At 1200 °C, EuNbO4exhibits the lowest thermal expansion rate,while EuNb3/6Ta3/6O4displays the maximal value. Fig. 4(b) shows that EuNbO4exhibits the lowest TEC (10.2 × 10-6K-1, 1200 °C),and the TEC of EuNbO4can be increased by the B-site substitution of Ta.The maximal TEC(11.2×10-6K-1,1200°C)was obtained for EuNb3/6Ta3/6O4, this value is much higher than that of 7YSZ(10.0 × 10-6K-1) and RE2Zr2O7(9.0 × 10-6K-1) [25-27]. A High TEC will contribute to reducing the thermal stress between topcoat ceramics and substrate alloys during operation, and will prolong the lifetime of the TBC. The crystal structure is relaxed via substitution, leading to an increase in TEC. Nevertheless, the TEC(11.0 × 10-6K-1) of EuNb2/6Ta4/6O4is slightly lower than that of EuNb3/6Ta3/6O4, which can be explained by the dramatic increase in the Young’s modulus. The difference in Young’s modulus between EuNbO4and EuNb3/6Ta3/6O4(26 GPa) is much less than that between EuNb3/6Ta3/6O4and EuNb2/6Ta4/6O4(67 GPa). When X ≤3/6, the increase in the TECs of EuNb1-XTaXO4is dominated by crystal structure relaxation, as the Young’s modulus variation is minute.The TEC of EuNb2/6Ta4/6O4is higher than that of EuNbO4,and lower than that of EuNb3/6Ta3/6O4. The increasing bonding strength will lead to a decrease in the TEC, to some extent, when X ≥4/6. Thermal expansion of inorganic ceramics stems from inharmonic atomic vibration around the equilibrium position,which is characterized by the Grüneisen parameter. As shown in Table 1, the Grüneisen parameter of EuNbO4has been increased by the B-site substitution of Ta, which agrees well with the composition-dependent TEC. Thus, it is believed that the TECs of EuNb1-XTaXO4are governed by different factors with the variation of Ta content.

    Fig. 4. Thermal expansion performance of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal expansion rate; (b) TECs.

    As shown in Table 2,the specific heat of EuNb1-XTaXO4increases with an increase in temperature (0.35-0.58 J·K-1·g-1, 25-900 °C).Furthermore, the specific heat of EuNb1-XTaXO4decreases with an increase in Ta concentration. The specific heat decreases with increasing molecular weight, according to the Neumann-Kopp principle. Fig. 5(a) shows that the thermal diffusivity(0.42-1.13 mm2·s-1,25-900°C)of EuNb1-XTaXO4quickly decreases with increase in temperature, the lowest thermal diffusivity(0.42-0.90 mm2·s-1, 25-900 °C) is detected in EuNb3/6Ta3/6O4.Meanwhile,when the temperature is greater than 700°C,an evident increase in the thermal diffusivity of EuNb1-XTaXO4(X = 0/6, 1/6)is observed, which is caused by thermal radiation. No obvious increase of thermal diffusivity is detected in EuNb1-XTaXO4(X = 2/6, 3/6, 4/6), indicating that the B-site substitution of Ta is effective in improving the thermal radiation resistance of EuNbO4.Fig.5(b)shows that the thermal conductivity(1.52-3.28 W·K-1·m-1,25-900°C)of EuNb1-XTaXO4decreases with an increase in temperature, and that EuNb3/6Ta3/6O4exhibits the minimum value(1.52 W·K-1·m-1, 700 °C). The thermal radiation effect causes the thermal conductivity of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) to increase at high temperatures (≥500 °C). No increase in thermal diffusivity or conductivity is detected for EuNb2/6Ta4/6O4, which is attributed to it having the best thermal radiation resistance.

    Thermal transfer is conducted via phonons—that is, lattice vibration—in insulators [28,29]. During phonon propagation, they are scattered via various processes, including Umklapp phononphonon scattering, different point defects scattering, grain boundaries scattering, and the other scattering processes [29-32]. Thephonon mean free path (l), which is restricted by the above processes, consists of different parts [29-32]:

    Table 2 Temperature-dependent specific heat of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics calculated via the Neumann-Kopp principle.

    Fig. 5. Thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal diffusivity; (b) thermal conductivity; (c) composition dependence of thermal conductivity; (d) phonon mean free path.

    where lp, ld, lband lxare the phonon free paths derived from Umklapp phonon-phonon scattering, point defects scattering, grain boundaries scattering, and other processes, respectively [29-32].Figs. 1 and 2 indicate that no phase transformation is detected,and that the grain size (microscale)is dozens of times greater than the size of phonon free path (nanoscale). Furthermore, the phonon scattering intensity caused by the grain boundary decreases with increase in temperature. Therefore, grain boundaries scattering can not decide the phonon mean free path.According to the chemical formula of EuNb1-XTaXO4, no vacancy is induced in EuNbO4by the B-site substitution of Ta,as both Nb and Ta are pentavalent(+5).The Umklapp scattering degree is reflected via inharmonic lattice vibration. The inharmonic lattice vibration of EuNbO4is enhanced by the B-site substitution of Ta,and the lowest value of the Grüneisen parameter is detected in EuNbO4(Table 1). As the Grüneisen parameter increases with an increase in temperature, the thermal conductivity decreases with an increase in temperature. Furthermore, point defects are introduced, which are attributed to the atomic weight difference between Nb (92.9 g·mol-1) and Ta(180.9 g·mol-1). The effective ionic radius of Ta5+and Nb5+with four ligands is equal (0.064 nm); the phonon scattering caused by the ionic radius difference is therefore omitted. Normally, the misfits of atomic weight and ionic radius reach the maximum value when X is 3/6 in the substitution process [25,30,32-34]. Hence,the lowest thermal conductivity of EuNb1-XTaXO4is detected in EuNb3/6Ta3/6O4. The phonon scattering process sketch map of EuNb3/6Ta3/6O4is displayed in Fig. 6, in which Ta atoms are the strongest phonon scattering sources. First, the B-site substitution of Ta causes an atomic weight difference, as Ta atoms are much heavier than Nb atoms. Second, the introduction of Ta increases the total unit cell weight and crystal structure complexity.The work by Clarke[35] proves that the thermal conductivity decreases with an increase in unit cell weight and crystal structure complexity.Third, the Ta and Nb atoms are centered by four O atoms to form TaO4and NbO4tetrahedrons. Phonons are scattered via a cage-like structure to reduce the thermal conductivity, which has been reported in various ceramics [32,36,37]. The complex crystal structure and cage-like structure are important reasons why EuNb1-XTaXO4exhibits a low thermal conductivity.

    The composition dependence of the thermal conductivity can be clearly observed in Fig. 5(c). At the same temperature, the thermal conductivity of EuNb1-XTaXO4decreases with an increasein Ta content, and increases slightly when X is 4/6. The phonon mean free path (0.41-1.56 nm, 25-900 °C) of EuNb1-XTaXO4decreases with an increase in temperature(Fig.5(d)).The temperature dependence of l and k is analogous. The lowest l (0.41 nm,900 °C) was detected in EuNb2/6Ta4/6O4. Eq. (10) indicates that l connects to VMand λ. VMis temperature dependent; therefore,the temperature dependence of l is determined by the thermal diffusivity. In addition, VMof EuNb2/6Ta4/6O4(3022 m·s-1) is much faster than those of the rest of the samples (2246-2393 m·s-1),which results in the lowest l being detected in EuNb2/6Ta4/6O4.

    The thermal radiative conductivity occurs at elevated temperature, and results in an increase of the thermal conductivity. The thermal diffusivity and conductivity, as well as the phonon mean free path, of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) slightly increase at high temperatures. To obtain the intrinsic phonon thermal conductivity of EuNb1-XTaXO4, the thermal radiative conductivity should be removed. In the work of Klemens [30] and Ambegaokar[31], the phonon scattering intensity caused by the point defects and grain boundaries is constant, and the mean phonon free path of the insulator predominantly consists of lp, ld, and lb[33-37].Therefore, the temperature dependence of the thermal diffusivity is decided by the Umklapp phonon-phonon scattering process.The correlation between the temperature T and lpof crystalline ceramics is as follows [36,37]:

    where TDis the Debye temperature, h is the Plank’s constant, kBis the Boltzmann constant, m is the total weight per unit cell, V is the unit cell volume, l0is a parameter before the exponential, T-Dis the revised Debye temperature,and b is a constant set as 2.When the temperature is greater than T-D, l is as follows [36,37]:

    where C and D are parameters.Fig.5(d)shows that the relationship between l and T clearly deviates from l ∝T-1at elevated temperatures due to the thermal radiation effect.To obtain the intrinsic lattice thermal conductivity of EuNb1-XTaXO4, the intrinsic phonon thermal diffusivity should be determined.Based on the relationship between λ and l, λ is determined as follows [36,37]:

    Eq. (16) indicates that the reciprocal thermal diffusivity increases with an increase in temperature, when no thermal radiation effect occurs.Fig.7(a)shows that λ-1follows the relationship expressed in Eq.(16)at low temperature.However,when the temperature is greater than 600°C,λ-1deviates from the λ-1∝T (dotted lines) relationship. The intrinsic phonon thermal diffusivity of EuNb1-XTaXO4is corrected.

    Fig. 7(a) shows that the intrinsic phonon thermal diffusivity monotonously decreases with increasing temperature. A similar temperature dependence of the intrinsic phonon thermal conductivity and the phonon mean free path is observed in Figs. 7(c)and (d). The minimum intrinsic phonon thermal conductivity of EuNb1-XTaXO4is 1.27 W·K-1·m-1(EuNb3/6Ta3/6O4). The variation trend of the thermal conductivity implies that it will decrease further with an increase in temperature,and will approach the theoretical limit value (kmin), which has been derived by Cahill et al.[34-36]:

    Fig. 7. Intrinsic thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Reciprocal thermal diffusivity; (b) intrinsic phonon thermal diffusivity;(c) intrinsic phonon thermal conductivity; (d) intrinsic phonon mean free path.

    where n is the atomic number per unit cell. The theoretical minimum thermal conductivity decreases with a decrease in acoustic velocity. As shown in Table 3, kminof EuNbO4is about 0.78 W·K-1·m-1, implying that the experimental k of EuNbO4can be decreased. The ZrO2alloying effects have been applied to reduce the thermal conductivity of rare earth tantalates, and these methods may be effective for EuNbO4[38]. Furthermore, the A-site substitution of other rare earth elements (e.g., Gd, Dy, Ho, Yb, Er,and Lu) with a heavier atomic weight can be attempted. As for the thermal radiation effect, dual layer coatings are effective in blocking the thermal radiative conductivity of LaPO4/La2Zr2O7ceramics[39].EuPO4/EuNbO4dual coatings can be used to attempt to reduce the thermal radiative conductivity of EuNbO4, due to theexcellent thermal radiation resistance of rare earth phosphate(REPO4) [40].

    Table 3 Fitted reciprocal thermal diffusivity (λ-1) and theoretical minimum thermal conductivity (kmin) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    4. Conclusion

    The thermal and mechanical properties of EuNbO4synthesized via a SSR have been successfully optimized by the B-site substitution of Ta. The highest TEC reaches 11.2 × 10-6K-1at 1200 °C(EuNb3/6Ta3/6O4), attributed to crystal structure relaxation and the enhancement of inharmonic lattice vibration strength. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4,as the Ta-O bond strength is much greater than that of the Nb-O bond. The minimum experimental thermal conductivity(1.52 W·K-1·m-1, 700 °C) is found in EuNb3/6Ta3/6O4, due to the maximum misfit of atomic weight between Ta and Nb.The thermal radiation resistance of EuNb1-XTaXO4is improved via the B-site substitution of Ta. The theoretical minimum thermal conductivity(0.78 W·K-1·m-1) of EuNbO4indicates that the experimental thermal conductivity can be reduced further. It is clear that EuNb1-XTaXO4exhibits lower thermal conductivity, lower Young’s modulus and greater TECs than the 7YSZ and La2Zr2O7ceramics.The excellent material properties of EuNb1-XTaXO4imply that EuNbO4is a promising high-temperature TBC.

    Acknowledgements

    This research is under the support of the Natural Science Foundation of China (51762028 and 91960103) and the Materials Genome Engineering of Rare and Precious Metal of Yunnan Province (2018ZE019).

    Compliance with ethics guidelines

    Lin Chen and Jing Feng declare that they have no conflict of interest or financial conflicts to disclose.

    亚洲国产日韩欧美精品在线观看 | 国产av在哪里看| 午夜久久久久精精品| 嫁个100分男人电影在线观看| 五月玫瑰六月丁香| 国产主播在线观看一区二区| 美女午夜性视频免费| 悠悠久久av| 老熟妇乱子伦视频在线观看| 中文字幕av在线有码专区| 搡老妇女老女人老熟妇| 他把我摸到了高潮在线观看| 午夜福利高清视频| 国产精品1区2区在线观看.| 99国产精品99久久久久| 亚洲天堂国产精品一区在线| 中出人妻视频一区二区| 一级片免费观看大全| 十八禁网站免费在线| av国产免费在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品av在线| 成人18禁高潮啪啪吃奶动态图| 99久久综合精品五月天人人| 三级毛片av免费| 久久精品成人免费网站| 国产三级黄色录像| 男人舔女人下体高潮全视频| 一区二区三区高清视频在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 日韩欧美在线二视频| 夜夜夜夜夜久久久久| 国产熟女午夜一区二区三区| 亚洲精品久久国产高清桃花| 欧美黑人巨大hd| 99国产精品一区二区蜜桃av| 男女之事视频高清在线观看| 久久久久久国产a免费观看| 两个人免费观看高清视频| 国内少妇人妻偷人精品xxx网站 | 欧洲精品卡2卡3卡4卡5卡区| 色综合欧美亚洲国产小说| 狂野欧美激情性xxxx| 好男人在线观看高清免费视频| 亚洲精华国产精华精| 嫩草影院精品99| 日韩三级视频一区二区三区| 免费av毛片视频| 97人妻精品一区二区三区麻豆| www.自偷自拍.com| 夜夜看夜夜爽夜夜摸| 久久香蕉精品热| 国产视频一区二区在线看| 在线观看舔阴道视频| 看黄色毛片网站| 久久热在线av| 国产又黄又爽又无遮挡在线| 亚洲国产精品久久男人天堂| 成人国语在线视频| 老司机午夜十八禁免费视频| 日本 欧美在线| 性色av乱码一区二区三区2| 午夜福利免费观看在线| 国产精品自产拍在线观看55亚洲| 黄色视频不卡| 99精品欧美一区二区三区四区| 一区福利在线观看| 久久婷婷人人爽人人干人人爱| 美女高潮喷水抽搐中文字幕| 搡老岳熟女国产| 国产av在哪里看| 两个人的视频大全免费| 亚洲成人久久性| 91字幕亚洲| 亚洲精品在线观看二区| 精品少妇一区二区三区视频日本电影| 欧美激情久久久久久爽电影| 国产精品国产高清国产av| 国产乱人伦免费视频| 亚洲熟女毛片儿| 国产一区二区三区视频了| 亚洲专区中文字幕在线| 日本免费一区二区三区高清不卡| 午夜福利高清视频| 国内少妇人妻偷人精品xxx网站 | 亚洲人成网站在线播放欧美日韩| 亚洲国产高清在线一区二区三| 色哟哟哟哟哟哟| 老熟妇仑乱视频hdxx| 亚洲专区中文字幕在线| 午夜影院日韩av| 国产精品香港三级国产av潘金莲| 亚洲熟妇中文字幕五十中出| 女生性感内裤真人,穿戴方法视频| 亚洲精品色激情综合| 免费高清视频大片| 国产高清视频在线观看网站| 亚洲精品色激情综合| 亚洲精品美女久久av网站| 一个人免费在线观看的高清视频| 精品国产乱码久久久久久男人| 91九色精品人成在线观看| 99久久精品国产亚洲精品| 久久久精品国产亚洲av高清涩受| 久久久国产成人免费| 久久久国产成人免费| 很黄的视频免费| 老司机午夜福利在线观看视频| 亚洲免费av在线视频| 老司机午夜福利在线观看视频| 国产精品永久免费网站| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| 啦啦啦观看免费观看视频高清| 观看免费一级毛片| 啦啦啦观看免费观看视频高清| 亚洲av中文字字幕乱码综合| 91九色精品人成在线观看| 亚洲欧美日韩东京热| 三级男女做爰猛烈吃奶摸视频| 午夜两性在线视频| 动漫黄色视频在线观看| 两个人的视频大全免费| 国产一区二区三区视频了| 国产高清视频在线播放一区| 91字幕亚洲| 18禁黄网站禁片免费观看直播| 精品国产美女av久久久久小说| 丰满人妻一区二区三区视频av | 18禁美女被吸乳视频| 欧美黑人巨大hd| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩一区二区精品| 美女 人体艺术 gogo| 婷婷丁香在线五月| 国产又黄又爽又无遮挡在线| 中文字幕最新亚洲高清| 国产在线精品亚洲第一网站| 麻豆一二三区av精品| 99国产精品一区二区三区| 夜夜看夜夜爽夜夜摸| 午夜免费成人在线视频| 国产真人三级小视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品久久视频播放| 成年人黄色毛片网站| 在线看三级毛片| 亚洲avbb在线观看| 一级毛片女人18水好多| 人人妻人人看人人澡| 日韩精品中文字幕看吧| 99久久久亚洲精品蜜臀av| 国产男靠女视频免费网站| 亚洲国产精品999在线| 最好的美女福利视频网| 日韩欧美一区二区三区在线观看| 久久久久久大精品| 99国产综合亚洲精品| 51午夜福利影视在线观看| 在线观看免费日韩欧美大片| 亚洲成人久久爱视频| 在线看三级毛片| 欧美国产日韩亚洲一区| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 中文亚洲av片在线观看爽| 婷婷精品国产亚洲av在线| 亚洲国产精品999在线| 黄色视频,在线免费观看| 国产精品久久视频播放| 午夜免费激情av| 久久久精品国产亚洲av高清涩受| 97超级碰碰碰精品色视频在线观看| 国产精品 欧美亚洲| 黑人欧美特级aaaaaa片| 国产免费男女视频| 亚洲精品一卡2卡三卡4卡5卡| 国内少妇人妻偷人精品xxx网站 | 伊人久久大香线蕉亚洲五| 亚洲国产看品久久| 麻豆国产97在线/欧美 | 国产熟女午夜一区二区三区| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 亚洲色图av天堂| 国产精品综合久久久久久久免费| 美女大奶头视频| 1024香蕉在线观看| 久久中文字幕人妻熟女| a级毛片在线看网站| 亚洲人与动物交配视频| 丰满人妻熟妇乱又伦精品不卡| 成人欧美大片| 久久香蕉精品热| av天堂在线播放| 免费高清视频大片| or卡值多少钱| 真人一进一出gif抽搐免费| 国产精品久久电影中文字幕| 国产精品电影一区二区三区| 国产亚洲av高清不卡| 在线观看免费视频日本深夜| 人人妻,人人澡人人爽秒播| 宅男免费午夜| 在线观看美女被高潮喷水网站 | 99国产精品一区二区蜜桃av| 亚洲成人久久爱视频| 制服人妻中文乱码| 又黄又粗又硬又大视频| 一区二区三区高清视频在线| 啦啦啦免费观看视频1| 女生性感内裤真人,穿戴方法视频| 欧美成人一区二区免费高清观看 | 国产成人一区二区三区免费视频网站| 亚洲天堂国产精品一区在线| 亚洲一区二区三区不卡视频| 熟女电影av网| 日韩精品免费视频一区二区三区| 亚洲精品美女久久av网站| 日韩高清综合在线| 亚洲在线自拍视频| 亚洲九九香蕉| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 丁香欧美五月| 国产又色又爽无遮挡免费看| 久久中文字幕人妻熟女| 久久香蕉激情| 亚洲国产欧美网| 日韩欧美精品v在线| 久久香蕉国产精品| 99国产精品一区二区蜜桃av| 亚洲精品久久国产高清桃花| 欧洲精品卡2卡3卡4卡5卡区| 亚洲色图av天堂| 日韩免费av在线播放| 国产一区二区在线观看日韩 | 成人精品一区二区免费| 亚洲中文字幕日韩| 久久这里只有精品中国| 一个人免费在线观看的高清视频| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 色老头精品视频在线观看| 美女免费视频网站| 国内毛片毛片毛片毛片毛片| 免费在线观看亚洲国产| 国产亚洲精品一区二区www| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 日韩欧美在线二视频| 少妇粗大呻吟视频| 欧美黑人巨大hd| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 欧美中文日本在线观看视频| 大型黄色视频在线免费观看| 国产av又大| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 国产男靠女视频免费网站| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 他把我摸到了高潮在线观看| 亚洲欧美精品综合久久99| 91字幕亚洲| 日本 欧美在线| 9191精品国产免费久久| 亚洲熟妇熟女久久| www.精华液| 神马国产精品三级电影在线观看 | 嫩草影视91久久| 一本久久中文字幕| 欧美精品亚洲一区二区| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 九色成人免费人妻av| 国产成人啪精品午夜网站| 2021天堂中文幕一二区在线观| 这个男人来自地球电影免费观看| 国产乱人伦免费视频| 欧美性猛交黑人性爽| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 一二三四在线观看免费中文在| 国产精品精品国产色婷婷| xxx96com| 精品乱码久久久久久99久播| 老司机福利观看| 男人舔奶头视频| 桃红色精品国产亚洲av| 国产精品亚洲一级av第二区| 亚洲国产精品成人综合色| 丁香六月欧美| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 亚洲成人精品中文字幕电影| 女警被强在线播放| 免费在线观看影片大全网站| 国产精华一区二区三区| 精品不卡国产一区二区三区| 亚洲黑人精品在线| www日本在线高清视频| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 久久久久九九精品影院| 一级黄色大片毛片| 在线观看午夜福利视频| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美最黄视频在线播放免费| 岛国视频午夜一区免费看| 亚洲国产中文字幕在线视频| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 一二三四在线观看免费中文在| 99国产精品一区二区蜜桃av| 亚洲午夜精品一区,二区,三区| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 国产视频内射| 女人高潮潮喷娇喘18禁视频| 免费在线观看亚洲国产| 国产三级在线视频| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 欧美日韩国产亚洲二区| 制服丝袜大香蕉在线| 丁香六月欧美| 久久久久久大精品| 色综合婷婷激情| 99在线人妻在线中文字幕| 九色国产91popny在线| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站 | 免费观看精品视频网站| 亚洲av美国av| 99热这里只有是精品50| 88av欧美| 99热这里只有是精品50| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 淫妇啪啪啪对白视频| 亚洲激情在线av| 日本三级黄在线观看| 日韩 欧美 亚洲 中文字幕| 欧美3d第一页| 天天躁狠狠躁夜夜躁狠狠躁| 免费看日本二区| 国产野战对白在线观看| 中出人妻视频一区二区| 美女午夜性视频免费| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 亚洲片人在线观看| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| av欧美777| 成人亚洲精品av一区二区| 美女免费视频网站| 国产av又大| 熟女电影av网| 亚洲成av人片免费观看| 黄色 视频免费看| 欧美乱妇无乱码| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| av免费在线观看网站| 亚洲黑人精品在线| 亚洲人成网站在线播放欧美日韩| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频日本深夜| 国产精品一及| 成人高潮视频无遮挡免费网站| 亚洲精品国产精品久久久不卡| 亚洲男人的天堂狠狠| 久久人人精品亚洲av| 一夜夜www| 在线国产一区二区在线| 国产免费av片在线观看野外av| 国产成人aa在线观看| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩 | 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕一区二区三区有码在线看 | 国产免费男女视频| 久久久久久久久久黄片| 色av中文字幕| 97碰自拍视频| 1024视频免费在线观看| 一级毛片精品| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站| 法律面前人人平等表现在哪些方面| 亚洲 国产 在线| 免费看十八禁软件| 国产熟女xx| 国产91精品成人一区二区三区| 欧美色欧美亚洲另类二区| 一边摸一边做爽爽视频免费| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 亚洲乱码一区二区免费版| 一本一本综合久久| 亚洲av五月六月丁香网| 日本精品一区二区三区蜜桃| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 国内久久婷婷六月综合欲色啪| 香蕉丝袜av| 91大片在线观看| 日韩成人在线观看一区二区三区| 这个男人来自地球电影免费观看| 一本综合久久免费| 日韩欧美三级三区| www.精华液| 无遮挡黄片免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品福利观看| 免费观看人在逋| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| www国产在线视频色| 99久久久亚洲精品蜜臀av| 亚洲黑人精品在线| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 久久久久精品国产欧美久久久| 日本免费一区二区三区高清不卡| 一边摸一边抽搐一进一小说| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 国产成人av激情在线播放| 久久99热这里只有精品18| 国产69精品久久久久777片 | 色哟哟哟哟哟哟| 日本 欧美在线| 欧美日韩瑟瑟在线播放| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 国产午夜福利久久久久久| 1024视频免费在线观看| 日韩国内少妇激情av| 淫秽高清视频在线观看| 国产成人av激情在线播放| 午夜免费观看网址| 高清在线国产一区| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| av有码第一页| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 国产精品久久久久久亚洲av鲁大| 久久香蕉激情| 麻豆久久精品国产亚洲av| 成人手机av| 精品国产亚洲在线| 久久午夜亚洲精品久久| 熟女电影av网| 一本久久中文字幕| 国产精品免费视频内射| 69av精品久久久久久| 韩国av一区二区三区四区| 淫秽高清视频在线观看| 久久 成人 亚洲| 亚洲中文av在线| 淫妇啪啪啪对白视频| 黄色视频不卡| 亚洲精品av麻豆狂野| 亚洲无线在线观看| 免费观看精品视频网站| 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 婷婷精品国产亚洲av在线| 女警被强在线播放| 日韩免费av在线播放| 国产麻豆成人av免费视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 亚洲人成网站在线播放欧美日韩| 禁无遮挡网站| 久久久久久免费高清国产稀缺| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 午夜精品在线福利| 欧美精品亚洲一区二区| 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 桃红色精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 丰满人妻一区二区三区视频av | 精品电影一区二区在线| 俺也久久电影网| 午夜两性在线视频| 男插女下体视频免费在线播放| 成人特级黄色片久久久久久久| 日本一二三区视频观看| 黑人巨大精品欧美一区二区mp4| 1024视频免费在线观看| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 欧美zozozo另类| 亚洲专区字幕在线| 听说在线观看完整版免费高清| 国产成人精品久久二区二区免费| 91成年电影在线观看| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 中文资源天堂在线| 免费观看人在逋| 曰老女人黄片| 在线观看午夜福利视频| 国产午夜福利久久久久久| 麻豆国产av国片精品| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 国产成人系列免费观看| 国产日本99.免费观看| 波多野结衣高清无吗| 亚洲人与动物交配视频| 日韩精品青青久久久久久| 97超级碰碰碰精品色视频在线观看| 久久久国产欧美日韩av| 性欧美人与动物交配| 美女免费视频网站| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 午夜成年电影在线免费观看| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| 18禁国产床啪视频网站| 脱女人内裤的视频| 午夜福利免费观看在线| 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 曰老女人黄片| 又大又爽又粗| 变态另类成人亚洲欧美熟女| 十八禁人妻一区二区| 国产亚洲av高清不卡| 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 久久精品国产亚洲av高清一级| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久精品大字幕| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 久久久久久久久中文| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻 | 女警被强在线播放| 国产男靠女视频免费网站| 精品久久蜜臀av无| 在线视频色国产色| 婷婷丁香在线五月| avwww免费| 最近最新中文字幕大全电影3| 亚洲精品美女久久久久99蜜臀| 真人做人爱边吃奶动态| 99国产综合亚洲精品| 超碰成人久久| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| 香蕉国产在线看| 999精品在线视频| 女警被强在线播放| av国产免费在线观看| 色av中文字幕| 欧美黄色片欧美黄色片| 一级毛片高清免费大全| 国产伦人伦偷精品视频| 一边摸一边做爽爽视频免费| 亚洲成人久久爱视频| 91国产中文字幕| 激情在线观看视频在线高清|