韓建群
摘 要:永磁電機(jī)工作在分?jǐn)?shù)階狀態(tài)是一種更加普遍的電機(jī)工作情況,分?jǐn)?shù)階永磁電機(jī)在特定環(huán)境下會(huì)出現(xiàn)混沌運(yùn)行狀態(tài),其混沌運(yùn)行時(shí)存在運(yùn)用整數(shù)階微分模塊進(jìn)行分?jǐn)?shù)階仿真困難的問題。本文針對(duì)非同量分?jǐn)?shù)階永磁電機(jī)的混沌仿真問題,通過濾波器方法搭建了分?jǐn)?shù)階永磁電機(jī)的仿真模型,并給出了分?jǐn)?shù)階永磁電機(jī)混沌狀態(tài)運(yùn)行相圖。仿真計(jì)算結(jié)果表明,該方法是有效的。
關(guān)鍵詞:非同量;分?jǐn)?shù)階;永磁電機(jī);混沌;仿真
中圖分類號(hào):TM622文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1003-5168(2020)07-0037-04
Abstract: It is a more common case that the permanent magnet synchronous motor works in fractional order state. The fractional order permanent magnet synchronous motor can be chaotic in a specific environment. It is difficult to use integral order differential module for fractional order simulation in chaotic operation. In this paper, the simulation model of fractional permanent magnet synchronous motor was built by the filter method, and the phase diagram of fractional permanent magnet synchronous motor in chaotic state was given. The simulation results show that the method is effective.
Keywords: non-homogeneous;fractional order;permanent magnet synchronous motor;chaos;simulation
1 研究背景
永磁同步電機(jī)(Permanent-magnet Synchronous Motor,PMSM)是一種具有高可靠性、高效率和快速動(dòng)態(tài)響應(yīng)等優(yōu)點(diǎn)的驅(qū)動(dòng)設(shè)備,被廣泛應(yīng)用于機(jī)器人、醫(yī)療設(shè)備、汽車電子等多種工程領(lǐng)域[1-3]。目前,關(guān)于分?jǐn)?shù)階PMSM的研究漸成熱點(diǎn)。因?yàn)镻MSM中廣泛存在的機(jī)械摩擦與沖擊、阻尼、齒隙動(dòng)態(tài)等物理對(duì)象具有分?jǐn)?shù)階特性[4-5],實(shí)際電容和電感也具有分?jǐn)?shù)階特性[4],具有機(jī)械摩擦與沖擊、阻尼、齒隙動(dòng)態(tài)以及電容、電感等儲(chǔ)能元件特性的電機(jī)也應(yīng)該是具有分?jǐn)?shù)階的,因此采用分?jǐn)?shù)階微積分建立電機(jī)的數(shù)學(xué)模型能更加細(xì)膩地刻畫其動(dòng)態(tài)行為,更為準(zhǔn)確地描述其屬性特征[6]。
PMSM在工程中常常工作在額定轉(zhuǎn)速和轉(zhuǎn)矩狀態(tài),從而保證電機(jī)的高效率。但是,在實(shí)際應(yīng)用中,由于機(jī)械工作環(huán)境的變化,在特殊條件下,PMSM也呈現(xiàn)出混沌狀態(tài),即電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩是間歇振蕩的,從而導(dǎo)致電機(jī)的控制性能不穩(wěn)定,并且產(chǎn)生不規(guī)則的電磁噪聲[7]。從當(dāng)前的研究結(jié)果可知,分?jǐn)?shù)階PMSM系統(tǒng)會(huì)表現(xiàn)出混沌狀態(tài)。這促使人們利用分?jǐn)?shù)階微積分理論更深入地研究混沌這一自然界普遍存在的物理現(xiàn)象,并探索分?jǐn)?shù)階系統(tǒng)中的混沌控制與同步方法[8-9]。近年來,有學(xué)者利用分?jǐn)?shù)階微積分建立了分?jǐn)?shù)階PMSM系統(tǒng)模型,并通過穩(wěn)定性理論分析、分?jǐn)?shù)階系統(tǒng)的時(shí)域數(shù)值求解以及Lyapunov指數(shù)計(jì)算對(duì)系統(tǒng)混沌動(dòng)力學(xué)特性進(jìn)行研究,并給出了同量分?jǐn)?shù)階PMSM系統(tǒng)出現(xiàn)混沌運(yùn)動(dòng)現(xiàn)象的最低階次及控制方法的有效性。
當(dāng)采用MATLAB軟件對(duì)PMSM運(yùn)行狀態(tài)進(jìn)行仿真時(shí),需要對(duì)整數(shù)階仿真模塊進(jìn)行改進(jìn)才能完成分?jǐn)?shù)階PMSM系統(tǒng)狀態(tài)仿真。本文研究了不同量分?jǐn)?shù)階PMSM混沌仿真方法,仿真結(jié)果驗(yàn)證了該方法的有效性。
2 不同量分?jǐn)?shù)階PMSM系統(tǒng)數(shù)學(xué)模型
4 結(jié)論
分?jǐn)?shù)階PMSM是電機(jī)研究領(lǐng)域熱點(diǎn)之一。本文對(duì)非同量分?jǐn)?shù)階PMSM系統(tǒng)進(jìn)行介紹,研究了運(yùn)用濾波器進(jìn)行分?jǐn)?shù)階仿真的方法,并運(yùn)用分?jǐn)?shù)階算子的State-space模塊建立了分?jǐn)?shù)階PMSM仿真系統(tǒng),并給出了分?jǐn)?shù)階PMSM系統(tǒng)混沌運(yùn)行的仿真結(jié)果。
參考文獻(xiàn):
[1]Zheng P, Bai J , Song Z, et al. Development of the compound-structure electrical machine and its key technologies for hybrid electric vehicles[J]. Journal of Harbin Institute of Technology,2016(3):1-10.
[2]趙佳奇.永磁同步發(fā)電機(jī)無速度傳感器控制[J].控制工程,2016(11):52-56.
[3] Miao L , Zhang Y , Tong C , et al. Efficiency Optimization of Permanent Magnet Synchronous Generators Based on Model Predictive Direct Torque Control[J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society,2018(15):3535-3546.
[4]Faqiang W,Xikui M. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation[J]. Acta Physica Sinica,2011(7):89-96.
[5] Barbosa R S , Machado J A T . Describing Function Analysis of Systems with Impacts and Backlash[J]. Nonlinear Dynamics,2002(1-4):235-250.
[6]趙遠(yuǎn)征.分?jǐn)?shù)階控制算法在永磁交流伺服系統(tǒng)中的研究與應(yīng)用[D].南京:南京理工大學(xué),2014.
[7] Chen J H , Chau K T , Chan C C . Chaos in voltage-mode controlled DC drive systems[J]. International Journal of Electronics,1999(7):857-874.
[8] Matouk A E . Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit[J]. Communications in Nonlinear Science and Numerical Simulation,2011(2):975-986.
[9] Tavazoei M S , Haeri M . Synchronization of chaotic fractional-order systems via active sliding mode controller[J]. Physica A: Statistical Mechanics and its Applications,2008(1):57-70.
[10]陳文,孫洪廣,李希成,等.力學(xué)與工程問題分?jǐn)?shù)階導(dǎo)數(shù)建模[M].北京:科學(xué)出版社,2010.
[11]Huang G Q , Wu X .Analysis of Permanent-magnet Synchronous Motor Chaos System[C]//Lecture Notes in Computer Science, Artificial Intelligence and Computational Intelligence. Berilin:Springer.
[12]高遠(yuǎn),范健文,羅文廣,等.分?jǐn)?shù)階永磁同步電機(jī)的混沌運(yùn)動(dòng)及其控制研究[J].武漢理工大學(xué)學(xué)報(bào),2012(7):134-140.