廖立紅,袁文彬,陳勇,梁繼超
·生物技術(shù)與方法·
MiR-22重組腺病毒的構(gòu)建及對HepG2細(xì)胞葡萄糖攝取的影響
廖立紅1,袁文彬2,陳勇2,梁繼超2
1 武漢大學(xué)中南醫(yī)院 兒科,湖北 武漢 430071 2 湖北大學(xué) 中藥生物技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室藥物高通量篩選技術(shù)國家地方聯(lián)合工程研究中心,湖北 武漢 430062
文中構(gòu)建了miR-22重組腺病毒Ad-miR-22,分析了其對HepG2細(xì)胞胰島素信號通路及葡萄糖攝取的抑制作用。通過PCR方法,擴(kuò)增了miR-22的前體及側(cè)翼序列,酶切后克隆至腺病毒穿梭載體pAdTrack-CMV中,構(gòu)建穿梭質(zhì)粒pAdT-22,經(jīng)PCR及測序鑒定。穿梭質(zhì)粒經(jīng)Ⅰ線性化后,直接轉(zhuǎn)化含有腺病毒骨架載體的感受態(tài)細(xì)胞BJ5183,產(chǎn)生重組腺病毒質(zhì)粒Ad-miR-22,最后經(jīng)Ⅰ線性化后轉(zhuǎn)染包裝細(xì)胞系293A。重組腺病毒經(jīng)過3輪擴(kuò)增后感染HepG2細(xì)胞,通過熒光定量PCR檢測miR-22表達(dá)水平。通過葡萄糖攝取實(shí)驗(yàn)觀察Ad-miR-22對HepG2細(xì)胞葡萄糖攝取的影響。采用Western blotting檢測Ad-miR-22對HepG2細(xì)胞SIRT1在蛋白質(zhì)水平的表達(dá)及GSK-3β磷酸化水平的影響。采用熒光定量PCR檢測miR-22對PEPCK及G6Pase等基因在mRNA水平表達(dá)的影響。結(jié)果表明,重組腺病毒Ad-miR-22感染顯著增加HepG2細(xì)胞miR-22表達(dá)水平。此外,Ad-miR-22顯著抑制胰島素誘導(dǎo)的HepG2葡萄糖攝取,并通過下調(diào)GSK-3β磷酸化抑制胰島素信號通路的激活。Ad-miR-22反轉(zhuǎn)胰島素對糖異生關(guān)鍵酶表達(dá)的抑制作用,并下調(diào)SIRT1基因在蛋白質(zhì)水平的表達(dá)。綜上所述,構(gòu)建了miR-22的重組腺病毒,發(fā)現(xiàn)其顯著增加糖異生,抑制HepG2細(xì)胞葡萄糖攝取,該作用可能與miR-22調(diào)節(jié)SIRT1在蛋白質(zhì)水平的表達(dá)有關(guān)。
miR-22,重組腺病毒,葡萄糖攝取,糖異生,基因治療,SIRT1
隨著我國生活水平的提高、生活習(xí)慣的改變,糖尿病患者有不斷增加的趨勢。其中,2型糖尿病患者占比超過了90%。2型糖尿病的發(fā)病機(jī)制非常復(fù)雜,至今尚未完全研究清楚。過度激活的肝糖異生是2型糖尿病的重要發(fā)病機(jī)制之一[1]。
SIRT1作為一個(gè)重要的去乙?;?,在胰島素抵抗和2型糖尿病發(fā)生發(fā)展過程中扮演了重要角色。研究表明,SIRT1可以直接去乙?;疨GC-1α[2],激活其轉(zhuǎn)錄共激活子的活性,促進(jìn)其下游靶基因的表達(dá),而PGC-1α可以在體外及體內(nèi)強(qiáng)烈激活糖異生關(guān)鍵酶PEPCK及G6Pase等的表達(dá)[3]。SIRT1的激活劑白藜蘆醇可以通過激活SIRT1的去乙?;富钚?,調(diào)節(jié)FOXO1的核轉(zhuǎn)位,從而增加肝糖異生及葡萄糖輸出[4]。然而,有研究表明,白藜蘆醇可以增加肝胰島素敏感性,降低肝糖異生并促進(jìn)葡萄糖動(dòng)態(tài)平衡[5]。此外,研究發(fā)現(xiàn)SIRT1可以去乙酰化CRTC2,促進(jìn)其泛素介導(dǎo)的蛋白質(zhì)降解,從而抑制肝糖異生基因的表達(dá)[6]。可見,SIRT1對肝糖異生及2型糖尿病的調(diào)節(jié)有雙重作用。
microRNA是一類18–25個(gè)核苷酸的微小非蛋白質(zhì)編碼RNA,研究表明,其在多種疾病包括2型糖尿病的發(fā)生發(fā)展過程中發(fā)揮了重要調(diào)節(jié)作用[7-14]。miR-22通過抑制PPARα表達(dá)促進(jìn)心衰及心肌肥大,表明其在心肌能量代謝調(diào)控方面有重要調(diào)節(jié)作用[15]。miR-22直接靶向AKT通路抑制因子PTEN,進(jìn)而影響FOXO1核定位,可能對FOXO1下游靶基因表達(dá)有影響。有趣的是,AKT的失活會(huì)降低miR-22啟動(dòng)子的活性,這樣miR-22與PTEN和AKT之間可能形成一種反饋調(diào)節(jié)機(jī)制[16]。在正常飲食條件下,miR-22基因敲除小鼠表現(xiàn)出正常的葡萄糖耐受與胰島素耐受,但是,在高脂飲食條件下,miR-22基因敲除小鼠體重和血脂水平均低于正常小鼠[17]。以上研究顯示,miR-22可能在葡萄糖代謝方面,特別是肝葡萄糖穩(wěn)態(tài)平衡調(diào)節(jié)方面發(fā)揮了重要作用。本研究構(gòu)建了miR-22過表達(dá)重組腺病毒,發(fā)現(xiàn)miR-22能抑制SIRT1激活,并抑制HepG2細(xì)胞葡萄糖 攝取。
限制性內(nèi)切酶Ⅰ及Ⅰ購于NEB公司。λ DNA/dⅢ及DL2000分子量標(biāo)準(zhǔn)購于TaKaRa公司。Lipofectamine 2000轉(zhuǎn)染試劑及TRizol試劑購于Invitrogen公司。凝膠回收試劑盒購于AXYGEN公司。熒光定量PCR試劑盒購于TOYOBO公司。DMEM細(xì)胞培養(yǎng)基、胎牛血清購于GIBCO公司。RIPA裂解液、BCA試劑盒、ECL化學(xué)發(fā)光試劑盒購于碧云天公司。蛋白酶及磷酸酶抑制劑購于Roche公司。抗人SIRT1單克隆抗體購于Cell Signaling Technology公司??谷甩?actin、p-GSK3β及T-GSK3β多克隆抗體購于萬類生物公司。miRNA提取試劑盒購于Ambion。質(zhì)粒大量提取試劑盒購于天根生化科技(北京)有限公司。
引物設(shè)計(jì):擴(kuò)增miR-22前體及側(cè)翼序列、 熒光定量PCR的引物見表1 (小寫字母為酶切 位點(diǎn))。
表1 本研究所用引物
穿梭載體pAdTrack-CMV來源于Invitrogen公司,由本實(shí)驗(yàn)室保存。大腸桿菌感受態(tài)細(xì)胞DH5α由本實(shí)驗(yàn)室制備并保存,BJ5183感受態(tài)由本實(shí)驗(yàn)室制備并保存。293A及HepG2細(xì)胞來源于武漢大學(xué)細(xì)胞中心,由本實(shí)驗(yàn)室保存。
經(jīng)PCR擴(kuò)增的miR-22片段首先連接至pGEM-T easy載體,測序正確后,再用Ⅰ和Ⅰ雙酶切后亞克隆至pAdTrack-CMV載體上,構(gòu)建重組穿梭質(zhì)粒pAdT-22。重組質(zhì)粒pAdT-22用Ⅰ酶切線性化,回收純化后電轉(zhuǎn)化含有pAdEasy-1質(zhì)粒的BJ5183感受態(tài)細(xì)胞,卡那霉素篩選平板培養(yǎng)18 h左右,挑取6–8個(gè)較小的單克隆,小量提取質(zhì)粒DNA,用Ⅰ酶切篩選陽性克隆,得到重組腺病毒質(zhì)粒pAd-miR-22。
大量提取質(zhì)粒pAd-miR-22,并純化,取約4 μg質(zhì)粒用Ⅰ進(jìn)行酶切線性化,經(jīng)乙醇沉淀回收后,用Lipofectamine 2000轉(zhuǎn)染293A細(xì)胞,繼續(xù)培養(yǎng),直至出現(xiàn)擴(kuò)增斑。繼續(xù)培養(yǎng)細(xì)胞至約50%的細(xì)胞變圓并飄起,離心收集細(xì)胞,經(jīng)4次反復(fù)凍融裂解細(xì)胞,離心收集上清即得第1代重組腺病毒。按照Invitrogen公司說明書,對重組腺病毒進(jìn)行擴(kuò)增,第3代擴(kuò)增的腺病毒可用于細(xì)胞實(shí)驗(yàn),病毒滴度為5×109PFU/mL。
按照試劑盒說明書提取miRNA,經(jīng)反轉(zhuǎn)錄后采用Taqman探針法分析miR-22表達(dá)水平。細(xì)胞總RNA經(jīng)TRIzol提取后反轉(zhuǎn)錄合成cDNA,采用SYBR法定量分析基因表達(dá)水平,結(jié)果采用2-ΔΔCt表示。實(shí)驗(yàn)重復(fù)3次,取平均值。
HepG2細(xì)胞接種于6孔板,感染腺病毒24 h后更換無血清DMEM培養(yǎng)基饑餓3 h,用50 μmol/L 2-NBDG (美國Invitrogen公司) 及100 nmol/L胰島素處理細(xì)胞30 min,收集細(xì)胞,于485 nm/535 nm激發(fā)/發(fā)射波長測定熒光值。為了校正細(xì)胞接種量的差異對結(jié)果的影響,葡萄糖攝取結(jié)果用總蛋白質(zhì)進(jìn)行歸一化處理,即數(shù)據(jù)用熒光強(qiáng)度除以蛋白質(zhì)濃度來表示。實(shí)驗(yàn)重復(fù)3次,取平均值。
HepG2細(xì)胞接種于6孔板,感染相應(yīng)腺病毒24 h,血清饑餓12 h后100 nmol/L胰島素處理24 h,取105個(gè)細(xì)胞按照糖原含量檢測試劑盒(北京Solarbio公司)說明書進(jìn)行糖原含量測定。即離心收集細(xì)胞,用試劑盒提供的提取液重懸后超聲(200 W,每次3 s) 30次,之后煮沸20 min,按說明書加入相關(guān)試劑和濃硫酸,沸水浴10 min,冷卻后620 nm波長測定吸光值。實(shí)驗(yàn)重復(fù)3次,取平均值。
接種HepG2細(xì)胞于6孔板,24 h后感染Ad-GFP或Ad-miR-22。24 h后收集細(xì)胞RIPA裂解,或者無血清DMEM處理3 h后用100 nmol/L胰島素處理細(xì)胞15 min,之后RIPA裂解細(xì)胞。用于裂解細(xì)胞的RIPA含有蛋白酶及磷酸酶抑制劑。經(jīng)BCA法測定蛋白質(zhì)濃度。加入上樣緩沖液并煮沸10 min后上樣50 μg總蛋白質(zhì)進(jìn)行電泳。電泳結(jié)束后將蛋白轉(zhuǎn)印到PVDF膜上,3% BSA封閉后用相應(yīng)一抗4 ℃孵育過夜。TBST漂洗 4次,HRP標(biāo)記二抗室溫孵育1 h,TBST漂洗 6次,加入ECL化學(xué)發(fā)光液之后成像分析。實(shí)驗(yàn)重復(fù)3次。
設(shè)計(jì)引物,PCR擴(kuò)增miR-21片段,經(jīng)瓊脂糖凝膠電泳檢測擴(kuò)增結(jié)果,如圖1所示,擴(kuò)增產(chǎn)物長度與預(yù)計(jì)相同。擴(kuò)增產(chǎn)物經(jīng)切膠回收后連接到pGEM-T easy載體上,再用Ⅰ和Ⅰ進(jìn)行酶切,同時(shí)pAd-Track-CMV載體用相同的酶進(jìn)行雙酶切,5 h后凝膠電泳并切膠回收DNA片段。將載體與miR-22片段按照1∶7混合,用T4 DNA連接酶進(jìn)行連接過夜,轉(zhuǎn)化DH5α感受態(tài)細(xì)胞并涂卡那霉素抗性平板過夜,挑取2–3個(gè)單克隆,小量制備質(zhì)粒,經(jīng)Ⅰ和Ⅰ雙酶切后凝膠電泳鑒定。如圖2所示,雙酶切2 h后電泳,泳道1和2均出現(xiàn)一條約480 bp的DNA片段,說明可能是重組質(zhì)粒,泳道3可能是載體自連的產(chǎn)物。將泳道1和2相應(yīng)陽性克隆進(jìn)行測序,結(jié)果表明PCR擴(kuò)增產(chǎn)物插入pAd-Track-CMV載體,插入序列無突變,插入方向正確。以上結(jié)果證明重組穿梭質(zhì)粒pAdT-22構(gòu)建成功,可以用于下一步實(shí)驗(yàn)。
圖1 miR-22基因片段的PCR擴(kuò)增
圖2 重組穿梭質(zhì)粒pAdT-22的雙酶切鑒定
大量制備重組穿梭質(zhì)粒pAdT-22并進(jìn)行純化,取3 μg重組質(zhì)粒用Ⅰ酶切,凝膠電泳分離后進(jìn)行DNA片段回收。線性化的重組穿梭質(zhì)粒與含有pAdEasy-1骨架質(zhì)粒的BJ5183感受態(tài)細(xì)胞混合,在2 500 V、200 Ohms、25 μF的條件下進(jìn)行電穿孔轉(zhuǎn)化。涂卡那霉素抗性平板培養(yǎng)過夜,挑取6–10個(gè)較小的單克隆,小量制備質(zhì)粒后用Ⅰ進(jìn)行酶切并凝膠電泳鑒定。如圖3所示,酶切產(chǎn)生3.5 kb或4 kb左右的條帶即為陽性克隆,證明重組腺病毒過表達(dá)載體構(gòu)建成功,命名為pAd-miR-22。將pAd-miR-22轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,大量提取質(zhì)粒并純化。
取4 μg純化的pAd-miR-22質(zhì)粒,用Ⅰ進(jìn)行酶切線性化,乙醇沉淀回收DNA后用Lipofectamine 2000轉(zhuǎn)染對數(shù)生長期的293A細(xì)胞,48–72 h左右可以觀察到綠色熒光蛋白(GFP)的表達(dá)。5–7 d后觀察到所有細(xì)胞均有GFP的表達(dá),并逐漸出現(xiàn)擴(kuò)增斑。如圖4所示,大約2周左右,50%的細(xì)胞變圓并漂起,收集細(xì)胞,液氮/ 37 ℃水浴反復(fù)凍融4次,離心收集上清,即重組miR-22過表達(dá)腺病毒。取少量含有重組腺病毒的細(xì)胞培養(yǎng)基上清,感染對數(shù)生長期的新鮮293A細(xì)胞,對腺病毒進(jìn)行擴(kuò)增。
圖3 重組腺病毒載體的PacⅠ酶切鑒定
圖4 重組腺病毒在293A細(xì)胞中的包裝及綠色熒光蛋白的表達(dá)
培養(yǎng)HepG2細(xì)胞,分別感染Ad-GFP和Ad-miR-22腺病毒,24 h和48 h后分析miR-22表達(dá)水平。如圖5所示,與對照組相比,感染Ad-miR-22后,細(xì)胞內(nèi)miR-22表達(dá)水平顯著升高(<0.05)。
進(jìn)一步分析了過表達(dá)miR-22對肝細(xì)胞糖異生及葡萄糖攝取的影響,HepG2細(xì)胞分別感染Ad-GFP和Ad-miR-22后熒光定量PCR分析糖異生關(guān)鍵基因表達(dá),或血清饑餓3 h對細(xì)胞同步化,胰島素及2-NBDG處理細(xì)胞30 min,熒光酶標(biāo)儀檢測葡萄糖攝取。如圖6A所示,Ad-miR-22處理顯著誘導(dǎo)糖異生關(guān)鍵酶PEPCK和G6Pase基因mRNA表達(dá)。而過表達(dá)miR-22顯著抑制基礎(chǔ)及胰島素刺激的HepG2細(xì)胞葡萄糖攝取(圖6B)。此外,我們研究了過表達(dá)miR-22對正常肝細(xì)胞L02葡萄糖攝取的影響,得到了類似的結(jié)果,過表達(dá)miR-22顯著抑制了L02細(xì)胞葡萄糖的攝取(圖6C)。以上研究結(jié)果表明miR-22可能抑制肝細(xì)胞葡萄糖代謝。
圖5 熒光定量PCR分析miR-22表達(dá)水平
肝細(xì)胞在調(diào)節(jié)機(jī)體葡萄糖代謝過程中發(fā)揮了重要作用,進(jìn)食后胰島素會(huì)增加肝細(xì)胞糖原合成,從而維持正常血糖水平。本研究最后分析了過表達(dá)miR-22對肝細(xì)胞糖原合成的影響。如圖7A所示,過表達(dá)miR-22對基礎(chǔ)糖原合成沒有顯著影響,但對胰島素刺激的糖原合成有顯著抑制作用。同樣,我們在正常肝細(xì)胞L02中得到類似的結(jié)果,miR-22過表達(dá)顯著抑制胰島素誘導(dǎo)的糖原合成(圖7B)。
如圖8所示,與對照組相比較,腺病毒介導(dǎo)的過表達(dá)miR-22顯著抑制胰島素刺激的GSK3β磷酸化,并降低SIRT1蛋白表達(dá)水平。
圖6 過表達(dá)miR-22抑制糖異生及葡萄糖吸收
圖7 過表達(dá)miR-22抑制胰島素誘導(dǎo)的糖原合成
圖8 過表達(dá)miR-22抑制GSK3β磷酸化及SIRT1蛋白表達(dá)
在生理?xiàng)l件下,機(jī)體糖代謝的調(diào)節(jié)主要依靠肝臟、脂肪和肌肉三大代謝組織來完成[18]。進(jìn)食后,胰島素分泌增加,促進(jìn)肌肉和肝臟攝取葡萄糖,并轉(zhuǎn)化為肌糖原和肝糖原進(jìn)行儲存[19]。同時(shí),脂肪細(xì)胞在胰島素的刺激下葡萄糖攝取增加,并最終轉(zhuǎn)變?yōu)橹具M(jìn)行存儲[20]。機(jī)體對葡萄糖的轉(zhuǎn)運(yùn)主要通過細(xì)胞膜上的葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT1–4) 來完成[21],其中肝臟主要由GLUT2負(fù)責(zé)葡萄糖的轉(zhuǎn)運(yùn)。對葡萄糖轉(zhuǎn)運(yùn)蛋白結(jié)構(gòu)的解析以及對其表達(dá)調(diào)控的研究一直是糖代謝研究的熱點(diǎn)領(lǐng)域[22-26],然而由于人GLUT2屬于膜蛋白,結(jié)構(gòu)特殊,解析其三維結(jié)構(gòu)極具挑戰(zhàn)性,導(dǎo)致人類對其三維結(jié)構(gòu)知之甚少。由于2型糖尿病發(fā)病機(jī)制非常復(fù)雜,目前尚未完全研究清楚。已經(jīng)上市的治療藥物較多,但基本難以完全治愈。2型糖尿病在我國的發(fā)病率正呈逐年增長趨勢,嚴(yán)重影響我國居民健康,進(jìn)一步揭示其發(fā)病機(jī)制,尋找新的治療靶點(diǎn)將為抗2型糖尿病新藥研發(fā)提供新的思路。
microRNAs是一類小分子量非蛋白質(zhì)編碼RNA,研究表明其在糖代謝過程中扮演了重要角色。最近有研究顯示,miR-22在db/db糖尿病模型小鼠肝臟表達(dá)水平顯著升高,提示miR-22可能參與了肝細(xì)胞葡萄糖代謝,并可能與肝細(xì)胞胰島素抵抗密切相關(guān)[27]。目前用于基因投遞的方式主要分為脂質(zhì)體、陽離子聚合物等介導(dǎo)的轉(zhuǎn)染和病毒介導(dǎo)的轉(zhuǎn)染,前者轉(zhuǎn)染效率低且不穩(wěn)定,對細(xì)胞損傷較大,血清對轉(zhuǎn)染效率影響較大。而病毒載體如腺病毒介導(dǎo)的轉(zhuǎn)染不僅效率高,而且對細(xì)胞無損傷,血清對轉(zhuǎn)染效率影響較小,此外還可以在動(dòng)物水平進(jìn)行高效轉(zhuǎn)染。因此,我們設(shè)計(jì)構(gòu)建了新的miR-22腺病毒表達(dá)載體,希望通過腺病毒載體在肝細(xì)胞過表達(dá)miR-22,分析其對肝細(xì)胞糖異生、葡萄糖攝取及糖原合成的影響,揭示miR-22調(diào)節(jié)肝糖代謝的分子機(jī)制。同時(shí),為動(dòng)物水平研究miR-22的功能提供了可靠的載體系統(tǒng)。在載體構(gòu)建過程中,如圖2所示,泳道1和2對應(yīng)的小分子量目標(biāo)條帶較弱,主要是因?yàn)檩d體的分子量大約為9 000 bp,而插入的小分子量目標(biāo)條帶只有480 bp,導(dǎo)致上下兩條帶的亮度差異較大。
本研究結(jié)果表明,過表達(dá)miR-22顯著抑制基礎(chǔ)及胰島素刺激的HepG2細(xì)胞葡萄糖攝取,但miR-22是否影響了葡萄糖轉(zhuǎn)運(yùn)蛋白的表達(dá)或膜定位還需要進(jìn)一步的研究。之前的研究顯示,miR-22能夠增加肝細(xì)胞糖異生,進(jìn)而影響其葡萄糖輸出,而過度激活的肝糖異生與2型糖尿病密切相關(guān),這些研究結(jié)果與我們的數(shù)據(jù)相一致。
最近的研究顯示,miR-22參與了多種腫瘤的發(fā)生發(fā)展過程[28-31],體內(nèi)和體外研究均表明miR-22能調(diào)節(jié)這些腫瘤細(xì)胞的增殖與凋亡,但機(jī)制尚未研究清楚。腫瘤細(xì)胞與正常細(xì)胞的區(qū)別在于,其增殖失控,需要更多的糖來維持高代謝活性,miR-22可以調(diào)節(jié)細(xì)胞葡萄糖攝取,是否與其在腫瘤代謝調(diào)控中的重要角色有關(guān),還需要進(jìn)一步的探索。
綜上所述,我們構(gòu)建了miR-22的過表達(dá)腺病毒,并發(fā)現(xiàn)上調(diào)miR-22的表達(dá)水平促進(jìn)糖異生基因的表達(dá)、抑制HepG2細(xì)胞葡萄糖攝取及糖原合成,該作用可能與其調(diào)節(jié)SIRT1蛋白表達(dá)水平有關(guān)。
[1] He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 2009, 137(4): 635–646.
[2] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005, 434(7029): 113–118.
[3] Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature, 2003, 423(6939): 550–555.
[4] Park JM, Kim TH, Bae JS, et al. Role of resveratrol in FOXO1-mediated gluconeogenic gene expression in the liver. Biochem Biophys Res Commun, 2010, 403(3/4): 329–334.
[5] Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 2006, 127(6): 1109–1122.
[6] Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 2008, 456(7219): 269–273.
[7] Brennan E, Wang B, McClelland A, et al. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes, 2017, 66(8): 2266–2277.
[8] Herrera BM, Lockstone HE, Taylor JM, et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010, 53(6): 1099–1109.
[9] Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol, 2011, 13(4): 434–446.
[10] Liang JC, Liu CZ, Qiao AJ, et al. MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis. J Hepatol, 2012, 58(3): 535–542.
[11] Chen YH, Heneidi S, Lee JM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 2013, 62(7): 2278–2286.
[12] Guay C, Kruit JK, Rome S, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to Type 1 diabetes development. Cell Metabol, 2019, 29(2): 348–361.e6.
[13] Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nat Med, 2019, 25(4): 583–590.
[14] He Y, Hwang S, Cai Y, et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology, 2019, 70(4): 1150–1167.
[15] Gurha P, Wang TN, Larimore AH, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE, 2013, 8(9): e75882.
[16] Bar N, Dikstein R. miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS ONE, 2010, 5(5): e10859.
[17] Diniz GP, Huang ZP, Liu J, et al. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clin Sci, 2017, 131(24): 2885–2900.
[18] Guay C, Roggli E, Nesca V, et al. Diabetes mellitus, a microRNA-related disease? Trans Res, 2011, 157(4): 253–264.
[19] Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci USA, 2003, 100(7): 4012–4017.
[20] Bergman RN, van Citters GW, Mittelman SD, et al. Central role of the adipocyte in the metabolic syndrome. J Invest Med, 2001, 49(1): 119–126.
[21] Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 2015, 58(2): 221–232.
[22] Thurmond DC, Pessin JE. Molecular machinery involved in the insulin-regulated fusion of GLUT4-containing vesicles with the plasma membrane. Mol Membr Biol, 2001, 18(4): 237–245.
[23] Hruz PW, Mueckler MM. Structural analysis of the GLUT1 facilitative glucose transporter (review). Mol Membr Biol, 2001, 18(3): 183–193.
[24] Sun LF, Zeng X, Yan CY, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature, 2012, 490(7420): 361–366.
[25] Quistgaard EM, L?w C, Moberg P, et al. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol, 2013, 20(6): 766–768.
[26] Yan N. Structural biology of the major facilitator superfamily transporters. Ann Rev Biophys, 2015, 44: 257–283.
[27] Kaur K, Vig S, Srivastava R, et al. Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes, 2015, 64(11): 3659–3669.
[28] Zhang HH, Tang JL, Li C, et al. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett, 2015, 356(2): 781–790.
[29] Koufaris C, Valbuena GN, Pomyen Y, et al. Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene, 2016, 35(21): 2766–2776.
[30] Yang F, Hu Y, Liu HX, et al. MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. J Biol Chem, 2015, 290(10): 6507–6515.
[31] Liu XB, Zhang LF, Tong YN, et al. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα. Life Sci, 2019, 217: 57–69.
Effect of recombinant adenovirus Ad-mir-22 on glucose uptake in HepG2 cells
Lihong Liao1, Wenbin Yuan2, Yong Chen2, and Jichao Liang2
1Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China 2 Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, Hubei, China
The recombinant adenoviruses expressing miR-22 (Ad-miR-22) was constructed and the effect of Ad-miR-22 on insulin signal pathway and glucose uptake in HepG2 cells was analyzed. MiR-22 gene was amplified by PCR from human hepatocytes and cloned into the pAdTrack-CMV vector to generate the shuttle plasmid pAdT-22. The positive colonies were confirmed by PCR and sequencing. The resultant shuttle plasmid was linearized withI, followed by co-transformation into competent BJ5183 cells containing an adenoviral backbone plasmid (pAdEasy-1) to create the recombinant plasmid pAd-miR-22. After digested withI, the linearized pAd-miR-22 was transfected into 293A packaging cell line to generate recombinant adenoviruses Ad-miR-22. HepG2 cells were infected with Ad-miR-22 or control Ad-GFP (adenoviruses expressing green fluorescent protein), and then the miR-22 expression levels were analyzed by qPCR. The result shows that adenovirus-mediated overexpression of miR-22 significantly decreased insulin-induced glucose uptake in HepG2 cells. Moreover, overexpression of miR-22 markedly decreased insulin-induced phosphorylation of GSK-3β. miR-22 also increased the mRNA levels of gluconeogenic genes in HepG2 cells. Furthermore, Western blotting results indicate that the protein expression of SIRT1 decreased in Ad-miR-22 infected HepG2 cells as compared with Ad-GFP infected HepG2 cells. In summary, overexpressing of miR-22 significantly increased gluconeogenesis while decreased glucose uptake in HepG2 cells. The effect of miR-22 on glucose metabolism may be mediated by SIRT1.
miR-22, recombinant adenoviruses, glucose uptake, gluconeogenesis, gene therapy, SIRT1
August 2, 2019;
December 16, 2019
Supported by: National Natural Science Foundation of China (Nos. 81400791, 81300555), the Fundamental Research Funds for the Central Universities (No. 2042018kf0082).
Jichao Liang. Tel/Fax: +86-27-88663882; E-mail: liang529114@163.com
國家自然科學(xué)基金 (Nos. 81400791,81300555),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金 (No. 2042018kf0082) 資助。
10.13345/j.cjb.190346
廖立紅, 袁文彬, 陳勇, 等. MiR-22重組腺病毒的構(gòu)建及對HepG2細(xì)胞葡萄糖攝取的影響. 生物工程學(xué)報(bào), 2020, 36(4): 763–771.
Liao LH, Yuan WB, Chen Y, et al. Effect of recombinant adenovirus Ad-mir-22 on glucose uptake in HepG2 cells. Chin J Biotech, 2020, 36(4): 763–771.
(本文責(zé)編 郝麗芳)