• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast radial scanning probe system on KTX

    2020-05-06 05:59:32TijianDENG鄧體建TaoLAN蘭濤MingshengTAN譚名昇JunfengZHU朱軍鋒JieWU吳捷HangqiXU許航齊ChenCHEN陳晨YolbarsopADIL阿迪里SenZHANG張森JiarenWU鄔佳仁YimingZU祖一鳴WenzheMAO毛文哲HongLI李弘JinlinXIE謝錦林AhdiLIU劉阿娣ZixiLIU劉子奚ZhengweiWU吳征威HaiWANG汪海Xi
    Plasma Science and Technology 2020年4期
    關鍵詞:陳晨

    Tijian DENG (鄧體建),Tao LAN (蘭濤),Mingsheng TAN (譚名昇),Junfeng ZHU(朱軍鋒),Jie WU(吳捷),Hangqi XU(許航齊),Chen CHEN(陳晨),Yolbarsop ADIL (阿迪里),Sen ZHANG (張森),Jiaren WU (鄔佳仁),Yiming ZU (祖一鳴),Wenzhe MAO (毛文哲),Hong LI (李弘),Jinlin XIE (謝錦林),Ahdi LIU (劉阿娣),Zixi LIU (劉子奚),Zhengwei WU (吳征威),Hai WANG (汪海),Xiaohui WEN (溫曉輝),Haiyang ZHOU (周海洋),Zian WEI (衛(wèi)子安),Chijin XIAO (肖持進),2,Weixing DING (丁衛(wèi)星),Ge ZHUANG (莊革) and Wandong LIU (劉萬東)

    1 KTX Laboratory and Department of Engineering and Applied Physics,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Plasma Physics Laboratory,University of Saskatchewan,Saskatoon,SK S7N 5E2,Canada

    Abstract

    Keywords: radial scanning probe,high-speed movement,noncontact magnetic grating ruler

    1.Introduction

    Fast reciprocating probe systems have been widely used in tokamaks to measure plasma edge profile parameters during discharge,such as potential,electron density,and temperature profiles with high temporal and spatial resolutions [1–9].With these systems,the probes can reduce their exposure to plasma by reciprocating movement and thus minimize possible damage.It is a simple and effective means for fast reciprocating probe to measure plasma edge profile parameters.

    There are two processes for the probe systems to send probe into plasma.Probe is pushed to a stand-by position before the discharge in first process.The initial probe position relative to plasma usually needs to be adjusted with a slow stepping motor because of its high accuracy.In second process,probe is fast sent into plasma by powerful thrust during the discharge.As a simple drive source,the pneumatic cylinder has often been chosen to perform the fast movement to measure plasma edge parameters on numerous plasma devices.However,for most systems,maximum velocities achieved by pneumatic cylinder are below 3 m s-1[1–5].Although the maximum speeds of the systems are large enough to reciprocate probe for the long discharge durations,the structure of pneumatic cylinder limits its largest speed.Therefore,as another driving power in now days,the servomotor with very high torque driven by the strong electromagnetic force is chosen for driving the probe system,as it easily provides powerful and precise control.For example,the fast reciprocating probe system on the EAST [6] controls the probe acceleration and deceleration movement and has a reciprocating range of 50 cm with a maximum velocity of 2 m s-1.A 75 cm linear displacement potentiometer gives an analog signal of the probe head position.The speed of 2 m s-1satisfies the reciprocating requirement of EAST.However,its probe system can develop a larger speed if increasing the torque of servo-motor.

    Figure 1.Fast radial scanning probe system on KTX.

    Early reversed field pinches (RFPs) [10–13] have rarely equipped with reciprocating probe due to short discharge durations.However,a plasma profile diagnostic tool is urgently needed for Keda Torus eXperiment (KTX) [14–29]RFP.According to the experiences on tokamaks,a fast scanning probe system is designed to measure the plasma edge potential,density,and temperature profiles on the KTX RFP.For KTX,the duration of discharge is very shorter than most tokamak devices and thus there is not enough time for probe to reciprocate movement.Only a fast scanning movement is proposed,however,a higher scanning speed is required.We hope the probe in the system can travel about 4 cm within 10 ms during KTX discharge.Then,a powerful servo-motor with a high-torque of 35 N m is chosen to drive the probe shaft.From the examples above,potentiometer and optical grating ruler are common displacement measurement tools.But they are easy to damage,especially in collision operation.A noncontact magnetic grating ruler is first adopted to record the fast movement displacement to avoid shock.The system tests indicate that the fast displacements are repeatable and reliable.The preliminary experimental result of the floating potential profile scanned by the system is in agreement with that of the fixed radial probe array.

    The paper is organized as follows.Section 2 introduces the experimental conditions.Section 3 specifies the mechanical design of the scanning drive system.Section 4 describes the control and data acquisition systems.Section 5 gives the bench test results.Section 6 provides the preliminary experimental results,and section 7 presents the summary.

    2.Experimental facilities

    KTX is a medium-sized RFP device located at the University of Science and Technology of China in Hefei,China.It has a major radius of 1.4 m and a minor radius of 0.4 m,with poloidal and toroidal molybdenum limiters of 2.0 cm height.There are two phases in the development of KTX[18]:Phase 1—toroidal fieldBt= 0.35 T,plasma currentIp= 0.5 MA,electron temperatureTe= 300 eV,with a discharge pulse of 30 ms;Phase 2—Bt=0.7 T,Ip= 1 MA,Te= 800 eV,with a discharge pulse of 100 ms.Currently,KTX is under conditioning of Phase 1.The parameters achieved are:Bt= 0.25 T,Ip= 0.2 MA,Te= 100 eV,and a maximum discharge duration of 22 ms[26].The line-averaged density is=(1–2) × 1019m-3.

    Several fundamental diagnostics,including electromagnetic probes [27],a 2D double-foil soft x-ray diagnostic system,a chord 650 GHz solid-state source interferometer[19,22],spectroscopy measurement of seven-channel Hαline diagnostic and bolometer diagnostic,a high-speed visible imaging system,and an array of eddy current probes [23],have been developed to measure plasma current,temperature,line-averaged density,and radiation,provide plasma shape characteristics,and study plasma instabilities.In this work,we introduce a fast radial scanning probe system,built to obtain the profiles of plasma edge density,temperature,and floating potentials within a single discharge.

    3.Mechanical design

    A fast radial scanning probe system is designed and installed on KTX,as shown in figure 1.The system is mounted on the midplane port with a diameter of 150 mm.The mechanical design of the scanning probe system is shown in figure 2.The system consists of two motion drive mechanisms:(1)a standby movement and (2) a fast scanning movement.

    Figure 2.Mechanical design of the scanning probe system.

    The stand-by movement is controlled by a stepping motor to set the initial probe position,providing a maximum stroke of 80.0 cm.In this process,the movable part goes forward along two linear guide rails and compresses long welded bellows.A probe-preparation chamber with a transparent glass port is installed behind the vacuum gate valve to observe and replace the probe.A stable and powerful hightorque servo-motor of 5.5 kW is used to drive the drive board for a fast scanning movement.Balanced counterweights are considered to balance the weight of the servo-motor and ensure that the center of gravity coincides with the center line.To obtain larger forward speeds,the servo-motor works in the torque mode,producing a maximum force of 1100 N on the module slider and drive board by transmission from a highspeed linear actuator.In figure 2,when the fast scanning movement is active,the move board and four compression strings between the drive board and the move board protect the drive board from direct collision with the braking cylinders.Strings moreover guarantee that after the move board collides with the braking cylinders and stops immediately,the drive board slows down gradually without causing damage to the servo-motor and linear actuator.Here,strings with string constant of 1600 N m-1and a natural length of 25.0 cm are chosen.The compression range spans 0–19.0 cm,and the four strings provide a maximum braking force of 1216 N,which is slightly higher than the maximum force deliverable by the servo-motor.The strings can be easily substituted if their string constants are not suitable.The drive board made of light aviation aluminum loses less energy,and,consequently,the move board acquires more power.The four axial hollow cylinders at the strings mounted on the move board ensure that the strings can be compressed vertically.There are four holes in the drive board coaxial with the four hollow cylinders and larger in diameter than the cylinders.Therefore,relative displacement between the drive board and the hollow cylinders is allowed when the speed of the drive board is larger than that of the move board.Four end covers behind the drive board,which are larger than the holes in the board connected to the four hollow cylinders by screws,are pushed backward by the drive board and thus drag the move board back to its original position after the forward fast movement is completed.A 2.05 m long stainless steel probe shaft with a diameter of 2.0 cm is connected to the probe head and the movable part.The total mass of the fast moving part is about 12.0 kg,including the probe head,probe shaft,thin-wall hollow cylinders,move board,and partial fast welded bellows.The system allows the entire radial measurement range covering half of the KTX vacuum chamber in the KTX midplane.Details regarding the motion of each part are presented in section 5.

    4.Control and data acquisition systems

    As mentioned above,it takes two modes of movement to move the probe into the chamber:(1)the stand-by movement and (2) the fast scanning movement.In the stand-by movement,the probe system above the support platform is driven by a stepping motor to a stand-by position before the discharge.Subsequently,the high-torque servo-motor pushes the probe into the edge region after receiving the ‘trigger’ signal from the controlling system.The two operations are carried out by two independent micro control units (MCUs),which conveniently and effectively move the probe by remote control.

    Figure 3.Square signals of fast scanning movement controlled by the MCU.

    In the stand-by movement,the MCU controls the probe shaft and servo-motor assembly to move forward and backward by directional signals and uniform continuous squares with a resolution of 1 mm.

    In the fast scanning movement,the MCU controls the servo-motor by several adjustable square signals shown in figure 3.After the ‘trigger’ signal at t0,the servo-motor is force-free and subsequently becomes active by ‘braking release’ and ‘enabled’ signals.At W1microseconds later,the servo-motor shifts from the position mode to the torque mode by ‘torque–position conversion’,which lasts for W2microseconds.In this mode,the servo-motor pushes the probe shaft to quickly move forward,while the ‘torque input’ signal controls the acceleration and deceleration of the motor,applying the negative and positive voltages,respectively.Square widths of W3,W4,W5,W6,W7,and W8and voltages of V1,V2and V3in the ‘torque input’ signal are related to the ongoing displacement signal of the probe,which will be described in section 5.After the forward movement finishes,the probe shaft returns to the original position at t1with a continuous squares signal,controlled by the servo-motor in the position input.To ensure safety,the servo-motor is in a braking and disabled state after t1that is fed back from a limit switch.

    To achieve good shock resistance ability,a noncontact magnetic grating ruler,made up of a magnetic reading head and a magnetic ruler,is used for the fast displacement measurement of the scanning probe for a high spatial resolution of 5 μm and a maximum velocity of 25 m s-1.In our initial tests,the optical grating ruler,widely used as a high-speed machine tool and in other reciprocating probe systems,has been damaged when the speed of the probe exceeds 2 m s-1.In contrast,the magnetic grating ruler can bear very high speeds and shocks without contact.The probe system is in the‘nearly zero’ magnetic field region less than 20 Gauss in the middle plane,and the discharge magnetic field influence on the magnetic grating ruler can be ignored[29].The output signals of the magnetic grating ruler are two quadrature TTL pulse time serials,which implement a minimum measurement resolution of 5 μm and determine the direction of movement.

    All the probe signals are acquired by National Instrument’s 16-bit PXIe-6368 digitizer with synchronous sampling frequencies of 2 MHz suitable for the high-frequency fluctuations of plasma turbulence.The output TTL pulses of the magnetic grating ruler are digitally sampled with the same card at 10 MHz,which satisfies the minimum temporal resolution requirement of 1.25 μs at a maximum speed of 4 m s-1.The displacement of the drive board is decoded from the output TTL pulses from the servo-motor encoder.The digitizer is installed on a PXIe crate and placed very close to the probe system.Coaxial cables are used to transmit all the signals.The trigger signal and the network use the optical fiber to isolate the connections between the probe system and the center control system.

    5.System test

    A system test on the KTX device was conducted to obtain the movement parameters of the probe system without plasma discharge.The typical testing parameters of MCUs are W1= 200 ms,W2= 600 ms,W3= 200 ms,W4= 120 ms,W5= 5 ms,W6= 35 ms,W7= 40 ms,W8= 95 ms,V1=-10 V,V2=10 V,and V3=-5 V.The displacements and velocities of the probe shaft and drive board are decoded from the output quadrature digital signals and shown in figure 4.

    There are five states presented in figure 4.State A,initial position: the initial length of the string is 25.0 cm,and the distance between the move board and the braking cylinders is 20 cm;State B,acceleration:the drive board is accelerated by the servo-motor in the torque mode at voltage V1,and then the string is compressed to provide a force to drive the probe shaft; State C,collision: the move board hits the braking cylinders and stops immediately; State D,preparation for the rebound of strings: the drive board reduces its speed to 0 m s-1by an acting force from the strings and the servomotor at voltage V2,and the length of the strings achieves a minimum value;State E,rebound end of the strings:under the acting force of the servo-motor at voltage V3,the strings rebound slowly,and the drive board slightly touches the four end covers of the axial hollow cylinders at about t=495 ms.The final state,not shown in figure 4,follows the forward movement back to the original position: the probe shaft is pulled back slowly by the servo-motor in the position mode,and the length of the strings returns to 25.0 cm,whereas the distance between the move board and the braking cylinders returns to 20 cm.

    Figure 4.(a) Forward displacement signals of the probe shaft,drive board,and string length signal(the initial position of the drive board is set as the zero point of displacement).(b)Forward velocity signals of the probe shaft and drive board.

    Figure 4(b) shows that the maximum velocity of the probe shaft reaches 4.0 m s-1,which means that the probe can be sent into the plasma at a distance of 4.0 cm in 10 ms during a discharge.These results are repeatable throughout numerous experiments,with a delay time and an amplitude difference of less than 0.4 ms and 0.5 mm,respectively.

    These results meet users’ requirements of fast scanning edge plasma parameter profiles in KTX.In addition,the displacement and velocity are adjustable in different plasma discharge conditions by changing the width and amplitude parameters of the torque input signal from W1to W8and from V1to V3,respectively.

    6.Preliminary experimental results

    The plasma parameter profile,that is,the floating potential,has been measured by the scanning probe system at ultralow q discharge in KTX [26],here q is safety factor.A sturdy and durable single-tip probe is adopted in this study,as shown in figure 5.The material of the probe tip is made of stainless steel,which is suitable for low-temperature plasma.The single probe tip has a diameter of 3.0 mm and a length of 2.0 mm.The single tip is surrounded by the Al2O3ceramic tube and is exposed to plasma.A polytetrafluoroethylene(PTFE)ring is placed behind the ceramic tube to avoid strong shocks.The elastic PTFE tube 1 and PTFE tube 2 with steps squeeze probe tip to ensure that the stainless steel tip does not damage the two tubes as it shakes in the direction of its movement.At the same time,the measurements of floating potential profile with rake probe array of nine tips are compared with the measurements with reciprocating single-tip probe.The rake probe is composed of graphite tips,a shield,a boron nitride base,and a stainless steel support,as shown in figure 6.Each probe tip has a diameter of 1.5 mm and a length of 2.0 mm.The radial distance between two adjacent tips is 5.0 mm,and the total radial coverage is 4.0 cm.

    Figure 5.Cross-sectional drawing of a single-tip probe for the scanning floating potential profile and schematic of its circuit.

    Figure 7 shows the floating potential profile scanned by the single-tip probe in shot 11301.According to the probe position signal,the probe travels more than 5.0 cm during a discharge.In figure 7(c),the evolution of the plasma floating potential at radial position r = 35.0 cm measured by one of the radial rake probe tips in another shot 11 540 is depicted by the red line.The floating potential Vfis flat at the temporal scale of the single-tip traveling,which suggests that the plasma floating potential profile is invariable,even though the plasma current falls.An obvious gradient is visible in Vfafter 6 ms in figure 7(c)(blue line),which clearly corresponds to a radial position of 38.0–37.0 cm in figure 8 (blue line).The floating potential becomes flatter as the probe is inserted deeper.Sudden changes occur after 12 ms in Vf,possibly due to the instability of the plasma geometry center.In figure 8,red squares with error bars depict the mean floating potential signals with 11 shots,measured by the fixed radial probe array.The data in each shot at a certain position are averaged over a time window of 0.4 ms.From these results,we can conclude that the profiles from the two measurement methods are in agreement.

    The data analyzing techniques will be mentioned here.In our device,the relationship of electron mean free pathλmfp,Debye lengthλDand probe characteristic size h isλmfp≥h≥λD,h is the height of probe tip,and meets the conditions of traditional thin sheath theory.For the single probe’s I–V trace,the stray capacitance Cstrayin the coaxial cable limits the highest sweep frequency on KTX.The toroidal magnetic field Btis large enough to reduce collecting ion and electron saturation current.The ion and electron almost travel parallel to the magnetic field lines and we consider collecting ion current area Aisand electron current area Aesas Ais=2φh and Aes=RAp,here φ is the diameter of probe tip,Apis the superficial area of probe tip and R is correction coefficient,R?1.The Btis strong and thus electron temperature Tecalculated using transition part near the electron saturation region of I–V curve will result in large error.Even so,the region near floating potential in transition part and ion saturation current Iisare basically not influenced.Then,electron density neis measured by ion saturation current Iisand electron temperature Tecan be measured by the transition area near the floating potential of I–V curve.

    Figure 6.Radial rake probe array measuring the floating potential profile at a number of fixed positions and schematic of their circuit.

    Figure 7.Evolution of(a)plasma current Ip,(b)probe position r,and(c) floating potential Vf.

    Figure 8.Comparison of floating potential measurements from a single-tip probe and a radial rake probe array.

    We use the single probe,shown in figure 5 and fixed at the radial positon r = 36 cm,to obtain the I–V trace.In the discharge flattop,the single probe’s I–V trace is measured by applying the ramp voltage sweep Usweepat a frequency of 5 kHz with the circuit in figure 9 and the result is shown in figure 10.The d2I/dU2,shown in figure 11(a),is also calculated by the transition part of I–V curve fitted with a polynomial.From the d2I/dU2curve,we consider that the Electron Energy Distribution Function (EEDF) satisfies the single-Maxwellian distribution.Furthermore,a linear relation exists between ln(I + Iis) and Usweep,shown in figure 11(b).Therefore,we neglect hot electrons influence and there is no bi-Maxwellian effect in our plasma.

    Figure 9.The sweep circuit of the single probe’s I–V trace.

    Figure 10.The result of the I–V trace using the single probe.

    The plasma floating potential Vf,the electron temperature Te,ion saturation current Iis,and electron density nehave been measured by a typical four-tip probe fixed at a radial position r = 36 cm,mounted on this probe system.Two floating potentials in the four-tip probe are put along poloidal direction with a distance ofΔθ= 7 mm.The probe structure and the circuit are presented in figure 12.The graphite probe tip has a diameter of φ = 2.0 mm and a radial height of h = 2.0 mm.The basic plasma parameters measured by the probe are shown in figure 13.The temperature and density are calculated aswhereα= 0.61,e is electron charge,andCsis ion sound speed.The plasma instability is measured by both the saturation current and the floating potential.As low temperature plasma on KTX so far,electron temperature fluctuationis small and conventional treatment is to neglect the fluctuation [30],i.e.hereare the fluctuations of electron density,ion saturation current,plasma potential,and plasma floating potential.The plasma profiles measured by the four-tip probe with fast scanning will be carried out in further experiments.

    Figure 11.The curves of (a) d2I/dU2 and (b) ln(I + Iis)–Usweep relation in transition part of I–V trace.

    7.Summary

    The fast radial scanning probe system built for KTX can quickly position the probe from the edge to the core of the chamber.The stepping motor slowly moves the system to an initial stand-by position,and then the high-torque servomotor applies the large drive force for fast probe scanning of the plasma boundary parameters.A special string design prevents the drive board from strongly punching on braking,to protect the servo-motor.Its temporal control system using the MCUs is very convenient and effective in triggering the probe remotely.The maximum speed of the fast scanning system reaches 4.0 m s-1,which basically satisfies the profile measurement requirement for the KTX discharge.To avoid vibrations,a noncontact magnetic grating ruler of high spatial resolution (5 μm) and a maximum speed of 25 m s-1is used for the position and velocity measurements.The synchronous sampling rates of the data acquisition system are at 2 MHz for analog and at 10 MHz for digital measurements,which are appropriate for the high-frequency fluctuations of plasma turbulence and fast scanning displacement measurement.The test results indicate that the fast displacements are repeatable and reliable.Furthermore,a comparison of the plasma floating potential profiles obtained by the fixed radial rake probe and the scanning single probe suggests that the high-speed scanning probe system is suitable to measure the edge plasma parameter profiles with a single shot.Moreover,the highspeed feature of the scanning probe system is particularly suitable for devices similar to KTX with very short discharge durations.

    Figure 12.The sketch and the circuit of the four-tip probe.

    Figure 13.Basic plasma parameters of (a) plasma current Ip,(b) the plasma floating potential Vf,(c) the electron temperature Te,(d) ion saturation current Iis,and (e) electron density ne.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Science Program of China (No.2017YFE0301700)and National Natural Science Foundation of China (No.11635008).

    ORCID iDs

    猜你喜歡
    陳晨
    節(jié)日和主角
    我都學過啦
    課桌國王
    段玉裁《說文解字注》校訂《古今韻會舉要》探略
    天中學刊(2022年4期)2022-09-29 07:21:22
    《銳角三角函數》拓展精練
    《二元一次方程組》鞏固練習
    淺談三角函數在三角形解題中的應用
    地鐵運營非正常行車組織及要點相關闡述
    科學家(2021年24期)2021-04-25 11:54:46
    生吞活剝
    拋卻虛榮心 激發(fā)正能量
    三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 欧美成人a在线观看| 麻豆av噜噜一区二区三区| 高潮久久久久久久久久久不卡| 波野结衣二区三区在线| 少妇丰满av| 中文字幕熟女人妻在线| 国产麻豆成人av免费视频| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 亚洲国产欧美人成| 熟女人妻精品中文字幕| 人妻丰满熟妇av一区二区三区| 看十八女毛片水多多多| 黄色女人牲交| 性色avwww在线观看| 99热这里只有精品一区| 欧美绝顶高潮抽搐喷水| 欧美在线黄色| 天天躁日日操中文字幕| 亚洲美女搞黄在线观看 | 一边摸一边抽搐一进一小说| 日本撒尿小便嘘嘘汇集6| 窝窝影院91人妻| 久久精品91蜜桃| 丰满的人妻完整版| www.www免费av| 日韩欧美在线二视频| 亚洲va日本ⅴa欧美va伊人久久| 99国产极品粉嫩在线观看| 麻豆国产97在线/欧美| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添小说| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 亚洲国产精品成人综合色| 免费看日本二区| 国产亚洲精品av在线| 国产午夜福利久久久久久| 亚洲av.av天堂| 一夜夜www| 国产成人av教育| 九色国产91popny在线| av专区在线播放| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 精品久久久久久,| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 国产探花极品一区二区| 国产伦精品一区二区三区视频9| 久久6这里有精品| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 国产三级在线视频| 69av精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 国产老妇女一区| www.色视频.com| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 少妇高潮的动态图| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 亚洲无线在线观看| 99久国产av精品| 757午夜福利合集在线观看| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 性欧美人与动物交配| 国产成+人综合+亚洲专区| av在线观看视频网站免费| 欧美性感艳星| 美女高潮的动态| 国产伦在线观看视频一区| 国产精品影院久久| 嫩草影院新地址| 久久草成人影院| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 亚洲精品影视一区二区三区av| 亚洲不卡免费看| 精品福利观看| 他把我摸到了高潮在线观看| 亚洲欧美日韩高清专用| 精品国内亚洲2022精品成人| 日韩免费av在线播放| 亚洲,欧美精品.| 中文字幕熟女人妻在线| 乱人视频在线观看| 亚洲最大成人av| 91久久精品国产一区二区成人| 中亚洲国语对白在线视频| 欧美区成人在线视频| 亚洲,欧美,日韩| 搞女人的毛片| 成年女人看的毛片在线观看| 亚洲中文字幕一区二区三区有码在线看| av在线观看视频网站免费| 搡女人真爽免费视频火全软件 | 一本综合久久免费| 色在线成人网| 在线观看午夜福利视频| 又黄又爽又刺激的免费视频.| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 少妇的逼水好多| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 久久草成人影院| 亚洲经典国产精华液单 | 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区 | 成人欧美大片| 亚洲美女黄片视频| 天天躁日日操中文字幕| 国产精品野战在线观看| 最新中文字幕久久久久| 男人的好看免费观看在线视频| 看免费av毛片| 美女免费视频网站| 久久性视频一级片| 一本综合久久免费| 国产精品,欧美在线| 久久久色成人| 两性午夜刺激爽爽歪歪视频在线观看| 搡女人真爽免费视频火全软件 | 欧美精品国产亚洲| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 亚洲av免费高清在线观看| 成人精品一区二区免费| 少妇丰满av| 免费观看的影片在线观看| 99久久精品一区二区三区| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 久久久久久久亚洲中文字幕 | 婷婷丁香在线五月| 亚洲精品在线美女| 欧美日韩乱码在线| 淫妇啪啪啪对白视频| 嫩草影视91久久| а√天堂www在线а√下载| 直男gayav资源| 日本黄大片高清| 淫秽高清视频在线观看| 国产久久久一区二区三区| 国产午夜福利久久久久久| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 怎么达到女性高潮| 成人三级黄色视频| 国产精品嫩草影院av在线观看 | 国产精品1区2区在线观看.| 亚洲18禁久久av| 无人区码免费观看不卡| h日本视频在线播放| 长腿黑丝高跟| 欧美极品一区二区三区四区| 日韩欧美 国产精品| 国产伦人伦偷精品视频| 夜夜躁狠狠躁天天躁| 国产av在哪里看| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻| 深夜a级毛片| 中国美女看黄片| 国产av麻豆久久久久久久| 91av网一区二区| 性色avwww在线观看| 精品久久久久久久人妻蜜臀av| 午夜福利欧美成人| 一本一本综合久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲,欧美精品.| 国产视频内射| 亚洲成人久久性| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频| 久久婷婷人人爽人人干人人爱| 久久久国产成人免费| 内射极品少妇av片p| 精品乱码久久久久久99久播| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在 | 男女那种视频在线观看| 午夜福利欧美成人| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 嫩草影院新地址| 亚洲欧美日韩高清在线视频| 少妇人妻一区二区三区视频| 别揉我奶头~嗯~啊~动态视频| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 如何舔出高潮| 国产精品综合久久久久久久免费| 欧美激情在线99| av专区在线播放| 国产主播在线观看一区二区| 又爽又黄无遮挡网站| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站 | 国产高清激情床上av| 国产淫片久久久久久久久 | 久久久精品欧美日韩精品| www.熟女人妻精品国产| 色在线成人网| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 热99在线观看视频| 性色avwww在线观看| 亚洲人成伊人成综合网2020| 午夜福利视频1000在线观看| 中出人妻视频一区二区| 久久香蕉精品热| 床上黄色一级片| 久99久视频精品免费| 国内精品一区二区在线观看| 国产精品久久久久久精品电影| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品 | 成人精品一区二区免费| 久久久久久九九精品二区国产| 欧美一区二区国产精品久久精品| 国产69精品久久久久777片| 亚洲国产精品合色在线| 亚洲av.av天堂| 午夜激情欧美在线| 婷婷精品国产亚洲av| 色吧在线观看| 真人一进一出gif抽搐免费| 九色国产91popny在线| 成人毛片a级毛片在线播放| 日本免费a在线| 校园春色视频在线观看| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区| 青草久久国产| 国产亚洲精品av在线| 国产一区二区在线观看日韩| 中亚洲国语对白在线视频| 观看免费一级毛片| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久com| 国产 一区 欧美 日韩| 久久国产精品影院| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 色av中文字幕| 伦理电影大哥的女人| avwww免费| 狠狠狠狠99中文字幕| 男人狂女人下面高潮的视频| 午夜日韩欧美国产| 最好的美女福利视频网| 淫秽高清视频在线观看| 美女 人体艺术 gogo| 日本熟妇午夜| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 国产三级中文精品| 可以在线观看的亚洲视频| 波野结衣二区三区在线| 一个人观看的视频www高清免费观看| 9191精品国产免费久久| 久久人人爽人人爽人人片va | 嫩草影视91久久| 国产亚洲精品久久久com| 精品福利观看| 色播亚洲综合网| 国产精品不卡视频一区二区 | 国产午夜精品论理片| 国产高清视频在线观看网站| 观看免费一级毛片| 我的女老师完整版在线观看| 国产av一区在线观看免费| 国产野战对白在线观看| 在线看三级毛片| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 在线十欧美十亚洲十日本专区| or卡值多少钱| 久久久久久久久中文| 国产精品一区二区三区四区久久| av在线老鸭窝| 在线免费观看的www视频| 中文字幕免费在线视频6| 日本五十路高清| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在 | 午夜视频国产福利| 国产av不卡久久| 国产色爽女视频免费观看| 久久这里只有精品中国| 亚洲人成网站在线播| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 成年人黄色毛片网站| 婷婷精品国产亚洲av| 91在线精品国自产拍蜜月| 久久久久免费精品人妻一区二区| 国产成人福利小说| 国产探花在线观看一区二区| 欧美精品国产亚洲| 欧美最黄视频在线播放免费| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 国产精品,欧美在线| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| 麻豆av噜噜一区二区三区| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 成人欧美大片| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 午夜福利在线在线| 亚洲成人久久爱视频| 悠悠久久av| 精品欧美国产一区二区三| 国产精品亚洲一级av第二区| 欧美xxxx黑人xx丫x性爽| 看十八女毛片水多多多| 国产精品久久视频播放| 欧美日韩综合久久久久久 | 一级作爱视频免费观看| 人妻夜夜爽99麻豆av| 亚洲最大成人手机在线| 永久网站在线| 真人一进一出gif抽搐免费| 亚洲电影在线观看av| 俺也久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿在线中文| 国语自产精品视频在线第100页| 丝袜美腿在线中文| 欧美最新免费一区二区三区 | 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 激情在线观看视频在线高清| 欧美zozozo另类| 黄色配什么色好看| 天天躁日日操中文字幕| 熟女电影av网| 久久九九热精品免费| 亚洲第一区二区三区不卡| 国产亚洲精品久久久com| 一区二区三区激情视频| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 欧美一区二区精品小视频在线| 简卡轻食公司| 午夜免费成人在线视频| 麻豆av噜噜一区二区三区| 2021天堂中文幕一二区在线观| 两人在一起打扑克的视频| 最好的美女福利视频网| 99久国产av精品| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 热99在线观看视频| 最近最新中文字幕大全电影3| 黄片小视频在线播放| 国产 一区 欧美 日韩| 99热只有精品国产| 中文字幕久久专区| 一个人免费在线观看的高清视频| 搞女人的毛片| 性插视频无遮挡在线免费观看| 免费av不卡在线播放| 成人无遮挡网站| 女同久久另类99精品国产91| 毛片女人毛片| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| av天堂在线播放| 最新在线观看一区二区三区| av国产免费在线观看| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 乱码一卡2卡4卡精品| 88av欧美| 看黄色毛片网站| 国产精品自产拍在线观看55亚洲| 国产精品乱码一区二三区的特点| 色精品久久人妻99蜜桃| 欧美日韩黄片免| 国产欧美日韩一区二区精品| 亚洲成人久久性| 成年人黄色毛片网站| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 亚洲真实伦在线观看| 性欧美人与动物交配| 3wmmmm亚洲av在线观看| 午夜久久久久精精品| 五月玫瑰六月丁香| 少妇的逼水好多| 免费看美女性在线毛片视频| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 午夜精品在线福利| 91午夜精品亚洲一区二区三区 | 欧美乱色亚洲激情| 天天躁日日操中文字幕| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 日本五十路高清| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产大屁股一区二区在线视频| 欧美黄色片欧美黄色片| 啦啦啦韩国在线观看视频| 亚洲内射少妇av| 亚洲午夜理论影院| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一小说| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| 午夜影院日韩av| 欧美另类亚洲清纯唯美| 美女黄网站色视频| 欧美最黄视频在线播放免费| 超碰av人人做人人爽久久| 欧美激情久久久久久爽电影| 亚洲精品久久国产高清桃花| 久久热精品热| 男人狂女人下面高潮的视频| 国产蜜桃级精品一区二区三区| 国产高清三级在线| АⅤ资源中文在线天堂| 欧美日本视频| 免费搜索国产男女视频| 亚洲中文字幕日韩| 国产人妻一区二区三区在| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 免费看a级黄色片| 久久草成人影院| 一个人免费在线观看的高清视频| 窝窝影院91人妻| 极品教师在线免费播放| 看十八女毛片水多多多| 久久久国产成人免费| 99国产极品粉嫩在线观看| 91麻豆av在线| 黄片小视频在线播放| 日日摸夜夜添夜夜添小说| 美女xxoo啪啪120秒动态图 | 久久久国产成人免费| 99国产极品粉嫩在线观看| 99久国产av精品| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 日韩有码中文字幕| 97人妻精品一区二区三区麻豆| 色尼玛亚洲综合影院| 亚洲精品粉嫩美女一区| 757午夜福利合集在线观看| 男插女下体视频免费在线播放| 久久精品人妻少妇| 成人亚洲精品av一区二区| 欧美黑人欧美精品刺激| 午夜免费男女啪啪视频观看 | 极品教师在线免费播放| 国产精品98久久久久久宅男小说| 麻豆成人午夜福利视频| 成人三级黄色视频| 九色国产91popny在线| 国产精品爽爽va在线观看网站| 成人国产综合亚洲| 国产真实乱freesex| 美女免费视频网站| 欧美一级a爱片免费观看看| 极品教师在线免费播放| 国产视频一区二区在线看| 少妇人妻精品综合一区二区 | 99久国产av精品| 美女高潮喷水抽搐中文字幕| 国产伦一二天堂av在线观看| 国模一区二区三区四区视频| 日韩欧美国产一区二区入口| 欧美高清性xxxxhd video| 久久人人爽人人爽人人片va | 综合色av麻豆| 黄色日韩在线| 能在线免费观看的黄片| av欧美777| 欧美最黄视频在线播放免费| 亚洲av熟女| 麻豆久久精品国产亚洲av| 成年女人毛片免费观看观看9| 国产精品免费一区二区三区在线| 亚洲无线观看免费| 男插女下体视频免费在线播放| 国产av在哪里看| 精品人妻一区二区三区麻豆 | 亚洲精品在线观看二区| www.熟女人妻精品国产| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 99热6这里只有精品| 欧美在线黄色| 成人欧美大片| 国产精品女同一区二区软件 | 高清日韩中文字幕在线| a级一级毛片免费在线观看| av视频在线观看入口| 人妻夜夜爽99麻豆av| 亚洲欧美精品综合久久99| 亚洲熟妇中文字幕五十中出| 日本熟妇午夜| 成人性生交大片免费视频hd| www日本黄色视频网| 啦啦啦韩国在线观看视频| 久久久久久久精品吃奶| 日韩人妻高清精品专区| 欧美极品一区二区三区四区| 成年女人永久免费观看视频| 白带黄色成豆腐渣| 在线免费观看不下载黄p国产 | 18禁裸乳无遮挡免费网站照片| 日韩精品青青久久久久久| 国产久久久一区二区三区| 淫秽高清视频在线观看| 国产视频一区二区在线看| 日本黄色片子视频| 国产伦精品一区二区三区视频9| av专区在线播放| 男女视频在线观看网站免费| 日韩人妻高清精品专区| 在线播放国产精品三级| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 成人鲁丝片一二三区免费| 波多野结衣高清作品| 日韩精品中文字幕看吧| 三级毛片av免费| 国产蜜桃级精品一区二区三区| 91在线观看av| 男人的好看免费观看在线视频| 亚洲国产精品sss在线观看| 中文字幕久久专区| 毛片一级片免费看久久久久 | 国产不卡一卡二| 国产在线男女| 高清毛片免费观看视频网站| 精品人妻视频免费看| 99热精品在线国产| 亚洲国产精品成人综合色| 久久欧美精品欧美久久欧美| 九色国产91popny在线| 最近中文字幕高清免费大全6 | 亚洲精品一区av在线观看| 天堂影院成人在线观看| 搡老妇女老女人老熟妇| 日韩免费av在线播放| 久久伊人香网站| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 成熟少妇高潮喷水视频| 综合色av麻豆| 午夜福利在线观看免费完整高清在 | 老熟妇仑乱视频hdxx| www.熟女人妻精品国产| 免费观看人在逋| 一区二区三区高清视频在线| 高清在线国产一区| 观看美女的网站| 日本免费一区二区三区高清不卡| 直男gayav资源| 欧美日韩乱码在线| 亚洲专区中文字幕在线| 国产又黄又爽又无遮挡在线| 两个人视频免费观看高清| 91午夜精品亚洲一区二区三区 | 身体一侧抽搐| 国产v大片淫在线免费观看| 久久精品综合一区二区三区| 夜夜看夜夜爽夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 丰满乱子伦码专区| 动漫黄色视频在线观看| 蜜桃久久精品国产亚洲av| 欧美一区二区亚洲| 我的老师免费观看完整版| 国产av一区在线观看免费| 51午夜福利影视在线观看| 久久热精品热| 又黄又爽又刺激的免费视频.| 免费人成视频x8x8入口观看|