• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of plasma density perturbation from dusty plasma injection by laser irradiation on tungsten target in DiPS

    2020-05-06 05:59:30InJeKANGMinKeunBAEInSunPARKMinJiLEEandKyuSunCHUNG
    Plasma Science and Technology 2020年4期

    In Je KANG,Min-Keun BAE,In Sun PARK,Min Ji LEE and Kyu-Sun CHUNG

    1 Department of Electrical Engineering,Hanyang University,Seoul 133791,Republic of Korea

    2 Plasma Technology Research Center,National Fusion Research Institute,Gunsan 54004,Republic of Korea

    Abstract

    Keywords: plasma density perturbation,dusty plasma,tungsten dust,DiPS

    1.Introduction

    In the fields of laboratory,astrophysical,and fusion plasmas,studies on dusty plasmas have been carried out on the mechanisms of charged dust particles,dust acoustic waves,dust particle transport,and their effects on plasma characteristics[1–4].The analysis of dusty plasmas requires understanding of the fundamentals of plasma and atomic physics,innovative experiments and diagnostics,environmental issues,and novel industrial applications because dust particles fully interact with and are coupled to the background plasma,resulting in new and unique plasma phenomena to arise in the plasma [3,4].

    In fusion devices,the studies have focused on dust particle transport,the interaction of dust with plasmas,the observation of dust parameters,and dust effects on edge and core plasmas in terms of various simulation or experimental conditions[2,4–6].Although some mechanisms leading to the formation,transport,and effects of dust on core plasmas have been analyzed,their relative importance is not yet adequately understood [7].Additionally,significant amounts of dust particles,which are a few μm in size,have been found at the divertor or bottom region,and the negative effects of dust on core plasmas have been shown in many recent studies of advanced fusion devices such as JET [8],ASDEX-U [9],DIII-D [10],and KSTAR [11,12].As the development of fusion devices more closely and reliably approaches the technical conditions required for the confinement of a core plasma,it clearly appears that optimization of the plasma performance requires improved understanding and ultimately better control of the interface conditions for dust-interaction with the plasma and material surfaces.This is due to the fact that the major concern so far has been pollution of the plasma by ablated dust particles,which may decrease the performance of the plasma [2,7,13,14].

    Many studies with a laser,an electron beam,and a plasma gun for the interaction of transient heat flux with tungsten materials have been carried out in the research field of plasma wall interactions for fusion devices in recent years.This is because tungsten has been selected as a plasma facing component(PFC) at the divertor baffles and dome in the International Thermonuclear Experimental Reactor (ITER) and proposed as a first wall material in DEMO [15–17].The surface damage of tungsten from transient heat flux such as edge localized modes(ELMs) was investigated when ELM-like conditions were replicated by exposing the tungsten surface to a pulsed laser beam[18,19].Relevant results for the effects of ELMs on tungsten surfaces in fusion devices were presented from the experimental simulation of laser-tungsten interactions,such as melting,cracks,recrystallization and the He bubble structure [16–21].However,the research for the secondary effects on the confined plasmas such as the core or edge region at fusion devices is absent,although dusty plasmas are generated via interactions between the transient heat flux and tungsten,producing dusts from the volume difference according to the vaporization,erosion,melting,and cracks of tungsten surfaces [19,21].

    The divertor plasma simulator (DiPS) was developed as a linear plasma device to apply the probe technique to understand a magnetized presheath region of a simulated tokamak plasma wall interaction region [22,23].DiPS has been performed for experimental simulations of the investigation of electron and ion profiles with a LaB6DC plasma gun for plasma diagnostics and determining the characteristics of magnetized plasma focused on fusion devices [24,25].Recently,we have upgraded DiPS to improve the similarity of the plasma condition with a scrape-off layer(SOL)region in fusion devices and performed experiments on the analysis of diffusion phenomena in presheaths as studies on the fusion plasma edge transport [26].

    This paper estimates the effects of dusty plasma injection on the characteristics of magnetized plasmas,especially plasma density,and is an extension of previous work in DiPS for fusion plasma edge transport.Here,we report on experiments of intrinsic dust detached from PFCs to improve realistic environments,such as dust generation through ELMs interacting with PFCs in fusion devices.Dusty plasma via a laserinduced plasma [27,28] was generated by the interactions between a high-power laser beam and a full tungsten target.Using this technique,laser ablation with the melting and evaporation threshold of target materials was induced to produce transient plasmas with dust particles.To investigate the interaction of the background plasma with dusty plasma in terms of plasma discharge currents and magnetic flux intensity in DiPS,radial profiles of the plasma density at the interaction region were measured using a fast scanning probe(FSP)system with triple tips.The topics covered here are the experimental set-up in section 2,results in section 3,and conclusion in section 4.

    2.Experimental setup

    Figure 1.(a) Experimental set-up,(b) cross-section view for data acquisition system in divertor plasma simulator (DiPS) and (c)schematic view of an electric probe (tip area: 1.73 × 10-2 cm2).(1) dusty plasma,(2) tungsten target,(3) triple probe,(4) magnetic nozzle throat,(5) magnetic nozzle exit,(6) laser beam,(7) distance between laser beam and probe tip (d1 = 0.5 cm),(8) core plasma,(9)edge plasma,(10)oscilloscope,(11)computer,(12)linear position transducer,(13) DC power supply,(14) laser controller,(15) Nd:YAG laser,(16) probe signal (Isat, V1, V2),(17) distance signal(r),(18) fast scanning probe system (FSP),(19) distance between tungsten targets and electric probes (d2 = 5 cm) and (20) plasma.

    Table 1.Comparison of plasma parameters at edge region in tokamak with DiPS.

    Figure 2.(a) The region of experimental set-up in divertor plasma simulator (DiPS),(b) simulation results for magnetic intensity and(c) magnetic field profile in DiPS.

    Figure 3.Frequency comparison: (a) edge localized modes (ELM)peaks in Korea Superconducting Tokamak Advanced Research(KSTAR) by electric probe measurements and (b) reflection light from interaction of laser beam with tungsten target measured by a photodiode.

    Figure 4.(a) Results of interaction of laser beam with a tungsten target by using a fast camera and (b) a photograph of scanning electron microscope (SEM).

    DiPS with a plasma gun can produce plasma parameters at edge-relevant plasma,as shown in table 1.It has a magnetic nozzle for the formation of a magnetic hill and geometrical production of a bounded presheath,which experimentally induces a more similar environment with the magnetized plasma at the SOL region in the fusion device[26].Figure 1 shows the experimental set-up used to analyze the effects of dusty plasma injection on the characteristics of the magnetized plasma using a high-power pulsed laser in DiPS.As shown in figure 2,the full tungsten targets located at the 4°–5° magnetic field line due to a tungsten monoblock at the ~3°–4°magnetic field line angle of incidence in the baseline ITER plasma,which are used in the fusion plasma field [15,29,30],have the following specifications:size = 25 × 25 mm2,density = 19.20 g ccm-1,hardness = 453 HV30,and tungsten content = 99.95%.An Nd:YAG pulsed laser is used for the laser ablation of the tungsten targets,with the following specifications: wavelength = 532 nm,pulse width ~10 ns,maximum energy =250 mJ,and beam diameter = 5 mm.

    Since the generated dusty plasma strongly depended on the absorbed laser energy and the melting threshold of the tungsten walls for ITER was shown as a heat flux factor of transient damage threshold>50 MJ·m-2· s-1/2per a transient heat flux such as ELMs[13,15,31,32],the transient energy flux of the Nd:YAG pulsed laser is fixed at ~100 MJ·m-2· s-1/2per laser shot.

    Figure 5.Results of radial plasma density(ne)and electron temperature(Te)by using triple probes(TP).(a)ne,(b)Te at different discharge currents(10–20 A)and the fixed magnetic flux density 1 kG,(c)ne and (d)Te at different magnetic flux densities (0.8–1 kG)and the fixed discharge current 20 A.0 mm at x-axis represents plasma center.(P) and (D) in the legends are for pure plasmas and pure plasmas + injection of dusty plasmas,respectively.

    These quasi-periodic bursts in fusion devices occur at a frequency of about 10–200 Hz,called‘type-I ELMs’.As shown in figure 3,beam injection frequency is fixed at 20 Hz.The distance (d) between the plasma center and tungsten target is 5 cm,which is in a presheath formed due to geometry of magnetic nozzle at DiPS,as shown in figure 1.From the measurement of the weight difference of the tungsten targets before and after laser irradiation,analysis of scanning electron microscope (SEM) photographs and a fast camera,generated dusts with a generation rate ~3 μg s-1and size of 1–10 μm were observed as shown in figure 4.

    The detailed specification of DiPS and the data collection system by using an FSP system with various probe tips,including the geometry,magnetic flux intensity,plasma parameters at a steady state condition,and plasma gun,are described by Chung and Kang [23,26].In this experiment,the base pressure was 3 × 10-6Torr (4 × 10-4Pa) and operating pressure was ~7 × 10-3Torr (0.9 Pa) for argon gas at 90–130 sccm.The LaB6heating current and bias were 280 A and 16 V,respectively.The magnetic flux density was changed to 0.8–1 kG at the experiment region.Operating ranges of plasma discharge currents were 10–20 A at 40–50 V of DC bias.The incident angle of dusty plasma injection to background plasma was fixed at 90°.The input rates and size of dust particles were assumed from the measured results(3 μg s-1and 1–10 μm).

    To investigate the effects of dusty plasma injection on the characteristics of background plasmas in terms of plasma discharge currents (Idis.) and magnetic flux intensity (B) at DiPS,an FSP system with triple probe tips was used for the measurement of radial plasma profiles,which are able to scan the radial plasma profiles with scan speed 1 m s-1.Radial distance was converted from bias signals measured by using linear position transducer.The structure of a triple probe,which consisted of three molybdenum tips and a ceramic insulator between the tips,is shown in figure 1(c).

    3.Results

    Figure 6.Results for plasma density near core region (0 < r <25 mm).In the legends,Np and Nd are plasma densities of pure plasmas and pure plasmas with an injection of dusty plasma,respectively.

    Figure 7.Results for ratio(εn)of density perturbation by injection of dusty plasma according to radial distance.(a) At different discharge currents (10–20 A) and (b) at different magnetic flux density(0.8–1 kG).0 mm at x-axis represents plasma center.

    Figure 5 shows the results of measurements for the radial plasma profiles.As for the triple probe system,a fixed bias voltage -100 V was applied to the two probe tips (V1),and the other probe was for measuring the floating potential(V2).By using simple formula with potential difference,the electron temperature (Te) and plasma density (ne) were calculated usingTe= [e(V1-V2)]/ ln 2 = [e(V1-V2)]/0.693 and,where e,α,As,and k are electron charge,coefficient for the collective ion saturation current,sheath area,and the Boltzmann constant,respectively.In this study,As≈ probe tip area is assumed and α = 0.49 is used for B > 0 [33].For investigation of the magnetized plasma in DiPS,probe circuits,FSP performance,raw data,and the analysis process of triple probe measurements are reported in previous work [26].We follow the same procedures as previous works for analysis of neand Te.As shown in figure 5,the general tendencies of normal magnetized plasmas are observed.For example,the increase of neand Teis found when increasing Idisand dispersion of plasma profiles is shown with the reduction of B.For focusing effect of plasma density perturbation,nedata near plasma core region was analyzed,where plasma core and edge are defined as 0 < r < 25 mm and r > 25 mm,respectively,due to geometry of magnetic nozzle at DiPS.The average value for five data of plasma density near core region is shown in figure 6,where Npand Ndare plasma densities of pure plasmas and pure plasmas with an injection of dusty plasma,respectively.To obtain the numerical estimation of the density perturbation from dusty plasma injection by laser irradiation on a tungsten target,as shown in figure 7,εn(%) = ∣(N0-NE) /N0∣×100 according to radial density profiles was calculated,where N0and NEare plasma densities of pure plasmas and pure plasmas with the ELM-like condition,respectively,which is an injection of dusty plasma.εn~ 10%is found in core plasmas.Perturbation of neby dusty plasmas is slightly increased from core to edge plasmas,which increases by ~10%–20%.The maximum value ofεnwith >80% is observed in a region of the edge plasma with B = 0.9 kG and Idis= 20 A.In this study,the effects of dusty plasma injection (dusts with a generation rate of ~3 μg s-1and size of 1–10 μm)on plasma density in the magnetized plasma with plasma parameters(ne= (1–5) × 1011cm-3and Te= 10–20 eV scales at the core region in the steady state condition)are insignificant with 10% uncertainty.However,dust particles are intensively bombarded by electrons,ions,and neutral atoms in various charge states and they affect melting and sublimation temperatures,causing the phase change in matter and enhanced evaporation to produce fluctuations of neand Tein plasmas [4].

    Figure 8.Result of ion saturation currents (Isat)measured by a fixed probe at core plasmas (r = 0) with B = 1 kG and Idis = 4.5 A.Black square is raw data and red line is for exponential fitting.λτ is the decay length of ion saturation currents in time scales for fluctuation duration.

    Figure 9.Results of (a) ψ and (b) λτ according to ratio of plasma densities.ψ = Id/Ip is normalized factor of density fluctuations where Ip and Id are Isat values of pure plasmas and pure plasmas + injection of dusty plasmas,respectively.In figure 9(a),red line(L)is linear fitting at ranges Idis = 1–5 A.λτ is decay length of ion saturation currents in time scales for fluctuation duration.n0 is 2 × 1011 cm-3 at Idis = 10 A.

    The effects of dusty plasma injection,generated from evaporation,erosion,and mass loss of a tungsten target after the interaction of high energy flux with the tungsten target,show lower εn,although a maximum εn> 80% was estimated.Why did dusty plasma effects result in an insignificant difference to steady state plasmas? We have the following assumptions: (i) the background plasma density is relatively higher than dusty plasma,and (ii) the duration of dust remaining in the magnetized plasma is too short to affect the plasma parameters during transient phenomena.To check the assumptions of this experiment,transient phenomena were investigated with different configurations of the experimental set-up,such as changing the scanning probe to a fixed probe and changing from high density plasmas (Idis= 10–20 A) to low density plasmas (Idis= 1–5 A).To avoid damage to probes such as melting the tips,we could not measure plasma parameters with the condition of Idis> 5 A since melting of a fixed probe was found in an experimental test of a fixed probe with high-density plasmas and estimation for the duration in which the probe remains in the unmelted state of the probe[34].Figure 8 shows the results of Isatmeasured by a fixed probe at core plasmas (r = 0) with B = 1 kG and Idis= 4.5 A.The transient effect of dusty plasma from laser irradiation on a tungsten target on Isat,which is a mightily important parameter for ne,in the magnetized plasmas with ne~1 × 1011cm-3is observed,as shown in figure 8.The normalized factor for fluctuation of the ion saturation current,ψ=Id/Ip,where Idand Ipare ion saturation currents of pure plasma with/without injection of dusty plasma,respectively,is introduced to estimate transient perturbation of collective ion saturation currents.Results of ψ according to the ratio of plasma densities by changing Idisare given in figure 9(a).The red line is linear fitting at ranges Idis= 1–5 A for low density plasmas.In this setup nxis plasma density at Idis= 1–5 A(n0:2 × 1011cm-3at Idis= 10 A).Perturbations of Isat,which has a higher dependence on plasma density,are found at low density plasmas.From this result with an extrapolation method,ψ = 1–2 is reached at 0.5 < nx/n0< 0.6 for εn~ 10%.From figure 8,the duration of density perturbation by the dusty plasma is maintained for a short time of ~0.4 ms at B = 1 kG and Idis= 4.5 A.The exponential decay of density due to collisions with the mean free path could be expressed asn(t) ≈n0exp[-t/λτ]whereλτis the decay length of ion saturation currents in time scales.To estimate a duration time of perturbation,λτaccording to the ratio of plasma density was analyzed.The range from a high(peak)to low levels of Isatfor exponential fitting was used,as shown in figure 8.The tendency ofλτ,which decreases with increasing neand seems to saturate nx/n0> 0.35,is found as shown in figure 9(b).It is shown that the duration time of perturbation is highly dependent on plasma density [35] and has a shorter time at a higher plasma density (>1011cm-3)than ~0.1 ms.These results presented undesirable effects from vaporization,erosion,melting,and cracks of tungsten surfaces on the plasma density stability of the edge region (ne=1012–1013cm-3) will be insignificant if the interaction of the transient high heat flux,such as the ELM-like condition with~100 MJ · m-2· s-1/2and 20 Hz,with PFCs occurs at one region in fusion devices.

    4.Conclusion

    The effects of dusty plasma injection on the characteristics of plasma density in magnetized plasmas were experimentally estimated at steady state and transient conditions when a similar environment for interaction of ELMs on first walls was experimentally simulated by using the interaction of a high energy pulsed laser with tungsten targets at magnetized plasmas in DiPS.For the estimation of the effects of dusty plasma injection to edge plasmas,when the interaction of ELMs ~ 100 MJ · m-2· s-1/2with 20 Hz on first walls or a divertor in tokamaks is assumed,one wave of plasma parameters for ~0.1 ms can be produced,and it consistently results in perturbation with εn~ 10% at the core region of steady state plasmas.As neincreases,the scale of the effects of dusty plasma injection on edge-relevant plasma was decreased and the duration of transient fluctuation by dusty plasma was reduced.In other words,the effects of dusty plasma injection on the plasma density of edge-relevant plasma were highly dependent on neof the edge-relevant plasmas when the ELM-like condition was replicated by exposing a pulsed laser beam to a tungsten surface.However,additional simulation and experiment studies are essential to verify the results in complex plasma with higher dust generation rate.This is because ELM phenomena with various frequencies and energies occur simultaneously and in many regions due to significantly changing plasma conditions,thus leading to increased undesirable effects on the plasma density stability from higher dust or impurity production.

    Acknowledgments

    This research was supported by National R&D Program through the Nation Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03033076).Additionally,this research was supported by National R&D Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT & Future Planning (2019M1A7A1A03088471).

    国产亚洲欧美精品永久| 天堂8中文在线网| 一级毛片我不卡| 最近2019中文字幕mv第一页| 精品亚洲成a人片在线观看| 精品人妻在线不人妻| 久久国产精品大桥未久av| 午夜日本视频在线| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区久久| 欧美成人精品欧美一级黄| 欧美变态另类bdsm刘玥| 成人毛片a级毛片在线播放| av免费在线看不卡| 99九九在线精品视频| 国产一级毛片在线| 久久av网站| 欧美精品一区二区大全| 亚洲国产欧美在线一区| 午夜日韩欧美国产| 久久久久久久国产电影| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 亚洲综合色网址| videossex国产| 亚洲三区欧美一区| 99热全是精品| 哪个播放器可以免费观看大片| freevideosex欧美| 国产男女超爽视频在线观看| av.在线天堂| 亚洲激情五月婷婷啪啪| 最黄视频免费看| 久久久久视频综合| 久久这里只有精品19| 亚洲国产av影院在线观看| 亚洲精品乱久久久久久| 免费av中文字幕在线| 国产精品女同一区二区软件| 国产1区2区3区精品| 99久国产av精品国产电影| 国产一级毛片在线| 黄色一级大片看看| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| h视频一区二区三区| 制服丝袜香蕉在线| 少妇的丰满在线观看| 99九九在线精品视频| 韩国精品一区二区三区| 五月开心婷婷网| 美女主播在线视频| 久久精品久久精品一区二区三区| 免费看av在线观看网站| 99国产精品免费福利视频| 中文欧美无线码| 在线观看国产h片| 欧美日韩精品网址| h视频一区二区三区| 中文天堂在线官网| 国产精品 欧美亚洲| 欧美精品亚洲一区二区| 久热久热在线精品观看| 丁香六月天网| 日韩一区二区视频免费看| 久久这里有精品视频免费| 18+在线观看网站| 伦精品一区二区三区| 五月开心婷婷网| 免费观看av网站的网址| 男女啪啪激烈高潮av片| 免费在线观看黄色视频的| 亚洲国产av影院在线观看| 国产一区亚洲一区在线观看| 搡老乐熟女国产| 久久99热这里只频精品6学生| 91精品伊人久久大香线蕉| 美国免费a级毛片| 啦啦啦在线免费观看视频4| 亚洲国产av新网站| 国产1区2区3区精品| 男人爽女人下面视频在线观看| 精品少妇久久久久久888优播| 97在线视频观看| 久久97久久精品| 免费日韩欧美在线观看| 国产片特级美女逼逼视频| 精品亚洲成国产av| 老女人水多毛片| 久久精品国产鲁丝片午夜精品| 久久久久精品人妻al黑| 国产精品av久久久久免费| 亚洲精品美女久久久久99蜜臀 | 欧美精品国产亚洲| 美女福利国产在线| 麻豆乱淫一区二区| 乱人伦中国视频| 亚洲中文av在线| 国产精品偷伦视频观看了| 91久久精品国产一区二区三区| www.熟女人妻精品国产| 欧美精品av麻豆av| 卡戴珊不雅视频在线播放| 午夜免费鲁丝| 久久国内精品自在自线图片| 久久久久国产精品人妻一区二区| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 91成人精品电影| 亚洲,欧美精品.| 91精品三级在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品自拍成人| av免费观看日本| 久久综合国产亚洲精品| 欧美日韩精品网址| 五月天丁香电影| 中文字幕制服av| 麻豆乱淫一区二区| 国产精品嫩草影院av在线观看| 亚洲精品av麻豆狂野| 久久久久久久久免费视频了| 欧美另类一区| 日韩制服骚丝袜av| 观看av在线不卡| 在线天堂最新版资源| 亚洲成色77777| 伦理电影大哥的女人| a级片在线免费高清观看视频| 国产亚洲精品第一综合不卡| 久久人人97超碰香蕉20202| 蜜桃国产av成人99| 国产精品一二三区在线看| 日本爱情动作片www.在线观看| av免费在线看不卡| 男女边摸边吃奶| 亚洲av电影在线进入| 久热这里只有精品99| 秋霞伦理黄片| 在线观看一区二区三区激情| 亚洲欧美日韩另类电影网站| 亚洲精品在线美女| 青春草视频在线免费观看| tube8黄色片| 十八禁高潮呻吟视频| 精品少妇黑人巨大在线播放| 国产女主播在线喷水免费视频网站| 极品人妻少妇av视频| 在线观看三级黄色| 国产精品免费大片| 最近中文字幕高清免费大全6| 亚洲一区中文字幕在线| 日本91视频免费播放| 欧美黄色片欧美黄色片| 岛国毛片在线播放| 汤姆久久久久久久影院中文字幕| 日韩精品有码人妻一区| 久久久久视频综合| 久久精品久久精品一区二区三区| 国产精品国产三级国产专区5o| 国产一级毛片在线| 国产精品国产av在线观看| 精品福利永久在线观看| 免费观看a级毛片全部| 9色porny在线观看| 久久 成人 亚洲| 亚洲av综合色区一区| 一级爰片在线观看| 日韩中文字幕欧美一区二区 | 91精品三级在线观看| 人成视频在线观看免费观看| 少妇人妻久久综合中文| 亚洲国产精品一区三区| 曰老女人黄片| tube8黄色片| 久久久久久久久久久免费av| av在线观看视频网站免费| 欧美国产精品一级二级三级| 2021少妇久久久久久久久久久| 成年av动漫网址| 亚洲久久久国产精品| 边亲边吃奶的免费视频| 国产视频首页在线观看| 97在线人人人人妻| 99国产综合亚洲精品| 美女国产视频在线观看| 少妇熟女欧美另类| 人体艺术视频欧美日本| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 亚洲精品视频女| 一区二区三区四区激情视频| 日韩电影二区| 搡女人真爽免费视频火全软件| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 欧美人与性动交α欧美软件| 免费黄频网站在线观看国产| 亚洲久久久国产精品| 欧美日韩成人在线一区二区| 黄片无遮挡物在线观看| 国产黄频视频在线观看| freevideosex欧美| 国产精品 国内视频| 一级,二级,三级黄色视频| 欧美精品人与动牲交sv欧美| 母亲3免费完整高清在线观看 | 最新的欧美精品一区二区| 欧美日韩成人在线一区二区| 街头女战士在线观看网站| 国产精品无大码| 亚洲美女视频黄频| 久久精品国产自在天天线| 99热网站在线观看| 亚洲av福利一区| 一本久久精品| 国产色婷婷99| 欧美精品一区二区大全| 国产亚洲最大av| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| av国产精品久久久久影院| 国产又爽黄色视频| 如日韩欧美国产精品一区二区三区| 性色avwww在线观看| 80岁老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 午夜福利在线观看免费完整高清在| 国产综合精华液| videos熟女内射| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 精品酒店卫生间| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 丰满乱子伦码专区| 午夜影院在线不卡| 亚洲伊人久久精品综合| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 欧美日韩国产mv在线观看视频| 熟女av电影| 久久久久国产一级毛片高清牌| 婷婷色av中文字幕| 18在线观看网站| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 叶爱在线成人免费视频播放| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 国产成人一区二区在线| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区久久| 亚洲人成网站在线观看播放| 精品一区二区三区四区五区乱码 | 国产av码专区亚洲av| 欧美精品av麻豆av| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 欧美日韩国产mv在线观看视频| 亚洲视频免费观看视频| 七月丁香在线播放| 天堂俺去俺来也www色官网| 国产av精品麻豆| 丰满迷人的少妇在线观看| 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 如日韩欧美国产精品一区二区三区| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 不卡视频在线观看欧美| 欧美日韩精品成人综合77777| 久久青草综合色| 国产精品一二三区在线看| 五月开心婷婷网| 又大又黄又爽视频免费| 2021少妇久久久久久久久久久| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 在线观看美女被高潮喷水网站| 女人被躁到高潮嗷嗷叫费观| 亚洲成色77777| 精品午夜福利在线看| 秋霞在线观看毛片| 国产免费福利视频在线观看| 日韩免费高清中文字幕av| 亚洲国产日韩一区二区| 黄片播放在线免费| 精品人妻在线不人妻| 可以免费在线观看a视频的电影网站 | 下体分泌物呈黄色| 国产成人精品无人区| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 在线观看美女被高潮喷水网站| 考比视频在线观看| 日韩av免费高清视频| 女人高潮潮喷娇喘18禁视频| 少妇人妻久久综合中文| 高清在线视频一区二区三区| 久久这里只有精品19| 香蕉精品网在线| 国产黄频视频在线观看| 在线观看www视频免费| 麻豆av在线久日| 老司机亚洲免费影院| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 宅男免费午夜| 搡老乐熟女国产| 成人午夜精彩视频在线观看| √禁漫天堂资源中文www| 欧美在线黄色| 国产一级毛片在线| 国产极品天堂在线| 午夜激情av网站| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 久久久久久久精品精品| 国产一区二区三区综合在线观看| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| av视频免费观看在线观看| 亚洲精品国产一区二区精华液| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 免费少妇av软件| 中国三级夫妇交换| 国产成人精品一,二区| 日韩大片免费观看网站| 一级爰片在线观看| 高清av免费在线| 亚洲国产看品久久| 精品午夜福利在线看| tube8黄色片| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| av片东京热男人的天堂| 欧美av亚洲av综合av国产av | 国产精品久久久久成人av| 久久国产精品大桥未久av| 毛片一级片免费看久久久久| 国产av精品麻豆| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| 免费女性裸体啪啪无遮挡网站| 一本久久精品| 高清黄色对白视频在线免费看| 99久久精品国产国产毛片| 狠狠婷婷综合久久久久久88av| 亚洲精品国产av成人精品| 国产有黄有色有爽视频| 在现免费观看毛片| 交换朋友夫妻互换小说| 久久久久网色| 男女啪啪激烈高潮av片| 国产亚洲一区二区精品| av免费观看日本| 18禁动态无遮挡网站| 欧美bdsm另类| 亚洲少妇的诱惑av| xxx大片免费视频| 国产成人精品一,二区| 久久久久国产一级毛片高清牌| 国产成人精品一,二区| 啦啦啦在线观看免费高清www| 青春草视频在线免费观看| 国产男女内射视频| 赤兔流量卡办理| 91久久精品国产一区二区三区| 18+在线观看网站| 成人漫画全彩无遮挡| 黄片小视频在线播放| 两个人看的免费小视频| 欧美激情极品国产一区二区三区| 久久精品国产综合久久久| 国产有黄有色有爽视频| 曰老女人黄片| 只有这里有精品99| 午夜精品国产一区二区电影| 日韩制服骚丝袜av| 日本欧美视频一区| 一级毛片电影观看| 亚洲男人天堂网一区| 久久久久久久精品精品| 亚洲成色77777| 一区二区三区乱码不卡18| 日本-黄色视频高清免费观看| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 国产精品无大码| 国产欧美日韩一区二区三区在线| 性少妇av在线| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久 | 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 宅男免费午夜| 国产成人免费无遮挡视频| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区国产| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| av免费在线看不卡| 一区二区日韩欧美中文字幕| 黄片播放在线免费| 午夜福利在线免费观看网站| 2021少妇久久久久久久久久久| 中文天堂在线官网| 精品国产超薄肉色丝袜足j| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 亚洲av福利一区| 国产午夜精品一二区理论片| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 在线观看免费视频网站a站| 成人影院久久| 看免费成人av毛片| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 国产成人精品婷婷| 午夜老司机福利剧场| 亚洲成人手机| 国产一区二区激情短视频 | 久久综合国产亚洲精品| 久久精品熟女亚洲av麻豆精品| 国产成人91sexporn| 韩国精品一区二区三区| 久久精品国产自在天天线| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久精品电影小说| 汤姆久久久久久久影院中文字幕| 天天躁夜夜躁狠狠躁躁| 桃花免费在线播放| 赤兔流量卡办理| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 侵犯人妻中文字幕一二三四区| 国产精品成人在线| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 久久久久国产网址| 日本欧美国产在线视频| 在线观看免费日韩欧美大片| 天天躁夜夜躁狠狠躁躁| 国产成人精品婷婷| 91精品三级在线观看| av国产久精品久网站免费入址| 永久免费av网站大全| 韩国av在线不卡| 久久精品国产自在天天线| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看国产h片| 日韩熟女老妇一区二区性免费视频| 久久国内精品自在自线图片| av在线观看视频网站免费| 久久人人97超碰香蕉20202| 在线观看三级黄色| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 日韩精品有码人妻一区| 国产精品香港三级国产av潘金莲 | 国产成人精品婷婷| 91精品三级在线观看| 性色avwww在线观看| 男女边摸边吃奶| 午夜精品国产一区二区电影| 一级片'在线观看视频| 伦精品一区二区三区| 咕卡用的链子| 丝袜人妻中文字幕| 亚洲图色成人| 丰满乱子伦码专区| 成人亚洲精品一区在线观看| 曰老女人黄片| 看非洲黑人一级黄片| 国产成人精品一,二区| 久久综合国产亚洲精品| 中文字幕人妻丝袜制服| 麻豆精品久久久久久蜜桃| 久久这里只有精品19| 一区二区日韩欧美中文字幕| 国产1区2区3区精品| 成人毛片60女人毛片免费| 亚洲精品在线美女| 成人国语在线视频| 人人妻人人爽人人添夜夜欢视频| 最近手机中文字幕大全| 国产精品久久久久成人av| 电影成人av| 18禁观看日本| 免费av中文字幕在线| 国产精品.久久久| 国产精品久久久久久精品电影小说| 成人黄色视频免费在线看| 国产精品麻豆人妻色哟哟久久| 国产一区二区 视频在线| 久久久久久久久久人人人人人人| 最近的中文字幕免费完整| 欧美日韩一级在线毛片| 美女午夜性视频免费| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 婷婷成人精品国产| 啦啦啦在线观看免费高清www| 国产探花极品一区二区| 久久久久网色| 99热国产这里只有精品6| 男人添女人高潮全过程视频| 高清不卡的av网站| 男女下面插进去视频免费观看| 亚洲五月色婷婷综合| 亚洲伊人久久精品综合| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 青草久久国产| 国产免费又黄又爽又色| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 激情视频va一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产成人一区二区在线| 欧美国产精品va在线观看不卡| 午夜日本视频在线| 欧美成人精品欧美一级黄| 成人国产麻豆网| 伊人久久国产一区二区| 成人国语在线视频| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 国产伦理片在线播放av一区| 又黄又粗又硬又大视频| 一区在线观看完整版| 美女中出高潮动态图| 卡戴珊不雅视频在线播放| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 有码 亚洲区| 成人亚洲精品一区在线观看| 人妻系列 视频| 各种免费的搞黄视频| 日本黄色日本黄色录像| 成年人午夜在线观看视频| 日韩精品有码人妻一区| 蜜桃在线观看..| 日韩免费高清中文字幕av| 亚洲色图 男人天堂 中文字幕| 久久狼人影院| av卡一久久| 国产精品偷伦视频观看了| 巨乳人妻的诱惑在线观看| 免费观看无遮挡的男女| 国产黄色免费在线视频| 久久久国产欧美日韩av| 91在线精品国自产拍蜜月| 国产精品 国内视频| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 亚洲国产精品一区二区三区在线| 男人舔女人的私密视频| 成人18禁高潮啪啪吃奶动态图| 国产免费福利视频在线观看| 久久人人97超碰香蕉20202| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 亚洲国产最新在线播放| 婷婷色麻豆天堂久久| av在线老鸭窝| 亚洲精品av麻豆狂野| 精品人妻偷拍中文字幕| 亚洲av在线观看美女高潮| 国产综合精华液| 免费观看在线日韩| 少妇熟女欧美另类| 99香蕉大伊视频| 高清在线视频一区二区三区| 久久久国产一区二区| 欧美97在线视频| 国产激情久久老熟女| 国产在线视频一区二区| 国产成人aa在线观看| 最近最新中文字幕免费大全7| 黄色配什么色好看| 韩国av在线不卡| 欧美精品国产亚洲| 夫妻性生交免费视频一级片| 婷婷成人精品国产| 精品一区在线观看国产| 狠狠婷婷综合久久久久久88av| 国产欧美日韩一区二区三区在线| 久久久久人妻精品一区果冻|