• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Special Manásevich-Mawhin Continuation Theorems with Applications

    2020-04-21 05:47:48ZhouKaiZhouYinggao

    Zhou Kai Zhou Yinggao

    (School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China)

    Abstract Avoiding the calculation of any topological degree also means to minimize the processing of practical problems when a continuation theorem of topological degree theory is used. In this paper, a special continuation theorem and several corollaries are given. Compared with the classical Manásevich-Mawhin continuation theorem, we can avoid calculating any topological degree and reduce the conditions of the theorem when using this special continuation theorem and its corollaries in applications. More importantly, the conditions for verifying this special continuation theorem will be easier and more convenient. As an application, we use this special continuation theorem and its corollary to study the existence of periodic solutions and positive periodic solutions for a generalized Rayleigh type p-Laplacian equation with deviating arguments and obtain some new sufficient conditions which generalize and improve the known results in the literatures.

    Key words Topological degree Manásevich-Mawhin continuation theorem Rayleigh type p-Laplacian equation Periodic solution Positive periodic solution

    1 Introduction

    The Manásevich-Mawhin continuation theorem is as follows.

    Theorem 1.(Manásevich-Mawhin continuation theorem[17]) Consider the boundary value problem

    (φ(x′))′=f(t,x,x′),x(0)=x(T),x′(0)=x′(T),

    (1)

    wheref:[0,T]×Rn×Rn→Rnis Caratheodory,φ:Rn→Rnis continuous and satisfies the conditions:

    (A1)(φ(x1)-φ(x2),x1-x2)>0, for anyx1,x2∈Rn,x1≠x2;

    (A2)(φ(x),x)≥a(|x|)|x|,?x∈Rn, wherea:[0,+∞)→[0,+∞) anda(t)→+∞ ast→+∞.

    Assume that Ω is a bounded open set inC1Tsuch that the following conditions hold.

    (i) For eachλ∈(0,1), the problem (φ(x′))′=λf(t,x,x′),x(0)=x(T),x′(0)=x′(T) has no solution on ?Ω;

    (iii) The Brouwer degree deg(F,Ω∩Rn,0)≠0.

    To use the Manásevich-Mawhin continuation theorem, we need to calculate the topological degree deg(F,Ω∩Rn,0). But, in practice, it is almost impossible to calculate directly the topological degree. In order to obtain the topological degree, homotopy invariance is often used to transform the problem into the topological degree of a special operator. The process is actually quite complicated. Therefore, it is the goal of researchers to avoid computing any topological degree. Obviously, avoiding the calculation of any topological degree will also greatly simplify the processing of practical problems in applying topological degree theory.

    In this paper, we first give a corollary of the above Manásevich-Mawhin continuation theorem and a special continuation theorem with a corollary. Compared with the classical Manásevich-Mawhin continuation theorem, we can avoid calculating any topological degree and reduce the conditions of the theorem when using this special continuation theorem and its corollaries in applications. More importantly, the conditions for verifying this special continuation theorem will be easier and more convenient. As an application, we then use the new continuation theorem and its corollary to study the existence of periodic solutions and positive periodic solutions for a generalized Rayleigh typep-Laplacian equation with deviating arguments.

    It is worth pointing out that those proofs through the classical Manásevich-Mawhin continuation theorem in the above mentioned papers can be simplified by using the special Manásevich-Mawhin continuation theorem and its corollary.

    2 A Special Manásevich-Mawhin continuation theorem and corollaries

    ProofCase I. For (f(x),x)>0, the assertion follows from the Acute Angle Principle in general topological degree theory.

    Case II. For(f(x),x)<0, we have (-f(x),x)>0, which means that deg(-f,Ω,0)=1 by the Acute Angle Principle, and so deg(f,Ω,0)=(-1)n≠0. The proof is complete.

    Lemma 2Letf(x) be continuous on an open interval (a,b) with closure [a,b], then deg(f,(a,b),0)≠0 if and only iff(a)f(b)<0.

    Necessity. If deg(f,(a,b),0)≠0, then 0∈f(?(a,b)) by the definition of Brouwer degree, i.e.,f(a)≠0 andf(b)≠0. Iff(a)f(b)>0, thenf(a)>0,f(b)>0, orf(a)<0,f(b)<0.

    (1) deg(g,(a,b),0)=0 by the definition of the Brouwer degree;

    (2)fandghave the same the boundary values, i.e.,f(x)=g(x) for allx∈?(a,b).

    Therefore, by the Boundary Value Theorem of Brouwer degree,deg(f,(a,b),0)=deg(g,(a,b),0)=0, which is a contradiction. Similarly, we can prove thatf(a)<0,f(b)<0 is also impossible. This completes the proof.

    Using Lemma1, we can get a corollary of the Manásevich-Mawhin continuation theorem as follows.

    Corollary 1Suppose that the condition (i) of the Manásevich-Mawhin continuation theorem holds. If

    then the conclusion of the Manásevich-Mawhin Continuation Theorem holds.

    Whenn=1, we can get the following especial Manásevich-Mawhin continuation theorem by using Lemma 2.

    (1) For eachλ∈(0,1), the problem (known as auxiliary equation)

    (φ(x′))′=λf(t,x,x′),x(0)=x(T),x′(0)=x′(T)

    has no solution on ?Ω;

    Remark 1Notice that the condition (3) in Theorem 2 is equivalent to the two conditions (ii) and (iii) in Theorem 1 whenn=1. So Theorem 2 is an equivalent one of Theorem 1 in the casen=1.

    Corollary 2Assume that the conditions (1) and (2) in Theorem 2 hold. If, for almost everyt∈[0,T],

    f(t,a,0)f(t,b,0)<0,

    3 Some applications

    Consider the following Rayleigh typep-Laplacian equation with deviating arguments

    (φp(x′))′+f(t,x′(t-σ(t)))+g(t,x(t-τ(t)))=e(t),

    (2)

    wherep>1 is a constant,φp:R→Ris given byφp(y)=|y|p-2yfory≠0 andφp(0)=0,f,g∈C(R2,R) areT- periodic in its first argument andf(t,0)=0,σ,τ, ande∈C(R,R) areT- periodic (T>0).

    Whenp=2, the Eq.(2) is the Rayleigh equation with deviating arguments. In the last few years, the existence of periodic solutions for a kind of Rayleigh equation with deviating arguments has received a lot of attention, see [13,14,19,30,31,33] and the references therein.

    More recently, periodic solutions under special cases for the Eq.(2) have been studied by some researchers, for example, the case:σ=τ≡0 is studied by the authors in [6,21,24], and the case:σ≡0,τ≠0 is investigated by the authors in [3,8,10,20,22,32]. Whenσ≠0,τ≠0, Zong and Liang [27] discussed the existence of periodic solutions for the Eq.(2) and obtained some sufficient conditions under some special cases.

    In this section, we discuss the existence ofT- periodic solutions of the Eq.(2). By using the above special Manásevich-Mawhin continuation theorem and its corollaries, we obtain some new sufficient conditions for the existence ofT-periodic solutions of the Eq.(2). These results generalize and improve those in [27].

    Lemma 3[29]Letx(t) be a continuous derivableT-periodic function. Then for everyt*∈(-∞,+∞),

    3.1 Existence of periodic solutions for the Laplacian equation

    Theorem 3Assume that there exist constantsK1,K2>0,d>0,α:0<α≤p-1 and non-negative continuous functionsr1(t),r2(t) such that

    (H1) |f(t,x)|≤r1(t)|x|α+K1, for (t,x)∈R2;

    (H2)x(g(t,x)-e(t))>0 and |g(t,x)-e(t)|>r1(t)|x|α+K1, fort∈R,|x|>d;

    (H3)g(t,x)-e(t)≥-r2(t)|x|α-K2, fort∈R,x<-d.

    ProofConsider the auxiliary equation

    (φp(x′(t)))′+λf(t,x′(t-σ(t)))+λg(t,x(t-τ(t)))=λe(t),λ∈(0,1).

    (3)

    Letx=x(t) be anyT- periodic solution of the Eq.(3). Integrating both sides of the Eq.(3) on [0,T], we have

    (4)

    It follows that there exists at1∈[0,T] such that

    f(t1,x′(t1-σ(t1)))+g(t1,x(t1-τ(t1)))-e(t1)=0.

    (5)

    We assert that there exists at*∈[0,T] such that

    (6)

    Case 1:r1(t1)=0. From (5) and (H1), we have

    |g(t1,x(t1-τ(t1)))-e(t1)|≤K1,

    which, together with (H2), implies that

    |x(t1-τ(t1))|≤d.

    (7)

    Case 2:r1(t1)≠0. If |x(t1-τ(t1))|>d, then it follows from (5), (H1) and (H2) that

    r1(t1)|x(t1-τ(t1))|α+K1<|g(t1,x(t1-τ(t1)))-e(t1)|

    ≤r1(t1)|x′(t1-σ(t1))|α+K1.

    Thus, we have

    (8)

    Combining (7) and (8), we see that

    Note thatx(t) is periodic. Then there exists at*∈[0,T] such that (6) holds. By Lemma 3, we have

    (9)

    LetE1={t:t∈[0,T],x(t-τ(t))>d},E2={t:t∈[0,T],x(t-τ(t))<-d},E3={t:t∈[0,T],|x(t-τ(t))|≤d}. From (4) and (H2), we obtain

    Asx(0)=x(T), there exists at*∈[0,T] such thatx′(t*)=0. By Lemma 3, we get

    It follows from (9) that

    LetM>max{M0,M1} and

    Ω={x∈X:|x(t)|

    (f(t,0)+g(t,M)-e(t))(f(t,0)+g(t,-M)-e(t))

    =(g(t,M)-e(t))(g(t,-M)-e(t))<0.

    Therefore, from corollary 2, the Eq. (2) has at least a periodic solution. This completes the proof.

    Similarly, we have the following theorem.

    Theorem 4Assume that (H1) and (H2) hold and the following condition

    (H4)g(t,x)-e(t)≤r2(t)xα+K2, fort∈R,x>d

    (H2)′xg(t,x)>0 and |g(t,x)|>r1(t)|x|α+K1, fort∈R,|x|>d;

    (H3)′g(t,x)≥-r2(t)|x|α-K2, fort∈R,x<-d

    and (5) is reduced to

    f(t1,x′(t1-σ(t1)))+g(t1,x(t1-τ(t1)))=0.

    Similar to the proof of Theorem 3, we can get (6) and (9). LetE1,E2andE3be defined as in Theorem 3. Then

    and

    Therefore, by Theorem 2, the Eq.(2) has at least a periodic solution. This completes the proof.

    (H4)′g(t,x)≤r2(t)xα+K2, fort∈R,x>d

    Remark 2Whenr1=r2≡0 andT=2π, Theorem 5 and Theorem 6 are reduced to Theorem 1 and Theorem 2 in [27], respectively. So our results generalize and improve the corresponding results in [27].

    3.2 Existence of positive periodic solutions for the Laplacian equation

    Theorem 7Assume that there exist constantsK>0,d>0,α:0<α≤p-1 and non-negative continuous functionr(t) such that

    (P1) |f(t,x)|≤r(t)|x|α+K, for (t,x)∈R2;

    (P2)g(t,x)-e(t)>r(t)xα+K, fort∈R,x>d;

    (P3)g(t,0)-e(t)<0, fort∈R.

    Ifα=p-1 andrT<1, orα

    ProofLetx=x(t) be any positiveT- periodic solution of the auxiliary equation (3). Integrating both sides of (3) on [0,T], we can obtain at1∈[0,T] such that (5) holds.

    We claim that there exists at*∈[0,T] such that

    (10)

    Case 1:r(t1)=0. From (5) and (P1), we have

    g(t1,x(t1-τ(t1)))-e(t1)≤K,

    which, together with (P2), implies that

    0≤x(t1-τ(t1))≤d.

    (11)

    Case 2:r(t1)>0. Ifx(t1-τ(t1))>d, then it follows from (5), (P1) and (P2) that

    r(t1)x(t1-τ(t1))α+K

    Thus, we have

    (12)

    Combining (11) and (12), we see that

    Note thatx(t) is periodic. Then there exists at*∈[0,T] such that (10) holds. By Lemma 3, we have

    (13)

    LetE1={t:t∈[0,T],0≤x(t-τ(t))≤d},E2={t:t∈[0,T],x(t-τ(t))>d}. From (4) and (P2), we obtain

    Asx(0)=x(T), there exists at*∈[0,T] such thatx′(t*)=0. By Lemma 3, we obtain

    It follows from (13) that

    LetM>max{M0,M1} and

    Ω={x∈X:0

    then the condition (1) in Corollary 2 holds. Since for anyx∈?Ω∩R,x=M(>d) orx=0, we have, in view of (P2) and (P3),

    (f(t,0)+g(t,M)-e(t))(f(t,0)+g(t,0)-e(t))=(g(t,M)-e(t))(g(t,0)-e(t))<0.

    Hence, from Corollary 2, the Eq. (2) has at least a positiveT- periodic solution. This completes the proof.

    Similarly, we have the following theorem.

    Theorem 8Assume that there exist constantsK>0,d>0,α:0<α≤p-1 and non-negative continuous functionr(t) such that (P1) holds, and the following conditions hold:

    (P4)g(t,x)-e(t)<-r(t)xα-K, fort∈R,x>d;

    (P5)g(t,0)-e(t)>0, fort∈R.

    Ifα=p-1 andrT<1, orα

    Corollary 3Assume that (P3) holds, and that there exist constantsK>0 andd>0 such that

    (C1) |f(t,x)|≤K, for (t,x)∈R2;

    (C2)g(t,x)-e(t)>K, fort∈R,x>d.

    Then the Eq.(2) has at least a positiveT-periodic solution.

    Corollary 4Assume that there exist constantsK>0 andd>0 such that (C1) and (P5) hold. If

    (C3)g(t,x)-e(t)<-K, fort∈R,x>d

    holds, then the Eq.(2) has at least a positiveT-periodic solution.

    Example 1Consider the following equation

    (φp(x′(t)))′+costsinx′(t-sint)+g(t,x(t-cost))=sin2t,

    (14)

    whereg(t,x)=x1/3-1 fort∈R,x≤0, andg(t,x)=2ex-1fort∈R,x>0. Then the Eq. (14) has at least a positive 2π- periodic solution.

    ProofFrom (14), we havef(t,x)=costsinxwith |f(t,x)|≤1 andf(t,0)=0,σ(t)=sint,τ(t)=cost,e(t)=sin2tare 2π- periodic, andg(t,x)-e(t)>1 fort∈R,x>1 andg(t,0)-e(t)≤-1 fort∈R. Namely, (C1),(C2) and (P3) hold. By Corollary 3, the Eq.(14) has at least a positive 2π-periodic solution.

    4 Acknowledgements

    This work is partially supported by the Natural Science Foundation of China(No.11871475), the Natural Science Foundation of Hunan Province (No.2019JJ40354), the Degree and Graduate Education Reform Research Project of Hunan Province(No.2020JGYB031), and the Graduate Education and Teaching Reform Research Project of Central South University(No.2020JGB020).

    美女被艹到高潮喷水动态| 国产色婷婷99| 别揉我奶头~嗯~啊~动态视频| 欧美xxxx性猛交bbbb| 一卡2卡三卡四卡精品乱码亚洲| 在线观看午夜福利视频| 日本a在线网址| 亚洲最大成人av| 国产精品精品国产色婷婷| 大型黄色视频在线免费观看| 国产精品国产高清国产av| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 日日撸夜夜添| 天天躁日日操中文字幕| 日韩欧美国产在线观看| 一级黄色大片毛片| 欧美日本亚洲视频在线播放| 99久久中文字幕三级久久日本| 欧美在线一区亚洲| 日本三级黄在线观看| 天天一区二区日本电影三级| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 免费观看精品视频网站| 老熟妇仑乱视频hdxx| 黑人高潮一二区| 插阴视频在线观看视频| 国产高清三级在线| 免费在线观看影片大全网站| 久久久久久久午夜电影| 最近的中文字幕免费完整| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 五月玫瑰六月丁香| 一进一出抽搐动态| 99久久精品一区二区三区| 国产精品一区二区性色av| 亚州av有码| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 日日啪夜夜撸| 亚洲av第一区精品v没综合| 国产69精品久久久久777片| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 卡戴珊不雅视频在线播放| 女的被弄到高潮叫床怎么办| 亚洲色图av天堂| 最新中文字幕久久久久| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 欧美不卡视频在线免费观看| 国产成人91sexporn| 亚洲婷婷狠狠爱综合网| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 国产高清视频在线观看网站| 美女 人体艺术 gogo| 欧美潮喷喷水| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 性欧美人与动物交配| 欧美+日韩+精品| 国产男靠女视频免费网站| 九九热线精品视视频播放| 最近的中文字幕免费完整| 中文字幕av在线有码专区| 天天躁夜夜躁狠狠久久av| 久久久久久久午夜电影| 国产精品伦人一区二区| 不卡视频在线观看欧美| 丰满的人妻完整版| 亚洲国产色片| 国产精品人妻久久久久久| av中文乱码字幕在线| 一级毛片久久久久久久久女| 国产91av在线免费观看| 国产高清不卡午夜福利| 精品久久久久久久久av| 女人被狂操c到高潮| 欧美人与善性xxx| 久久国产乱子免费精品| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 亚洲精品粉嫩美女一区| 男人狂女人下面高潮的视频| 欧美日韩综合久久久久久| 久久这里只有精品中国| 少妇熟女aⅴ在线视频| 国产爱豆传媒在线观看| 有码 亚洲区| 51国产日韩欧美| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 男插女下体视频免费在线播放| 国产单亲对白刺激| 少妇裸体淫交视频免费看高清| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 联通29元200g的流量卡| 精品一区二区三区视频在线观看免费| 村上凉子中文字幕在线| 一区福利在线观看| 有码 亚洲区| 一区二区三区免费毛片| 国产精品一二三区在线看| 真实男女啪啪啪动态图| 不卡视频在线观看欧美| 日韩欧美 国产精品| 最新中文字幕久久久久| 国产一区二区三区在线臀色熟女| 日本一二三区视频观看| 亚洲精品粉嫩美女一区| 性色avwww在线观看| 欧美xxxx性猛交bbbb| 色av中文字幕| 精品久久久久久久久久免费视频| 日本熟妇午夜| 亚洲欧美精品自产自拍| 久久精品久久久久久噜噜老黄 | 久久国内精品自在自线图片| 亚洲精品456在线播放app| 国产激情偷乱视频一区二区| 国产老妇女一区| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 欧美成人免费av一区二区三区| 午夜视频国产福利| 亚洲中文字幕一区二区三区有码在线看| 亚洲自拍偷在线| 免费观看人在逋| 麻豆乱淫一区二区| 免费av观看视频| 国产极品精品免费视频能看的| 婷婷色综合大香蕉| 91久久精品国产一区二区三区| 99久久精品国产国产毛片| 欧美中文日本在线观看视频| 午夜精品一区二区三区免费看| 小说图片视频综合网站| 免费看a级黄色片| 国产国拍精品亚洲av在线观看| 天天躁日日操中文字幕| 国产v大片淫在线免费观看| 91在线观看av| 国内少妇人妻偷人精品xxx网站| 欧美又色又爽又黄视频| 国产私拍福利视频在线观看| 免费人成视频x8x8入口观看| 久久99热6这里只有精品| 精品一区二区三区av网在线观看| av天堂中文字幕网| 黄片wwwwww| 一个人免费在线观看电影| 少妇人妻精品综合一区二区 | 欧美xxxx性猛交bbbb| 国产色婷婷99| 你懂的网址亚洲精品在线观看 | 国产老妇女一区| 看非洲黑人一级黄片| 69av精品久久久久久| 老女人水多毛片| 日韩一本色道免费dvd| 亚洲精品色激情综合| 亚洲欧美日韩高清专用| 国产精品福利在线免费观看| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 欧美区成人在线视频| 麻豆国产97在线/欧美| 91精品国产九色| 久久精品91蜜桃| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 成年女人看的毛片在线观看| 午夜亚洲福利在线播放| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 69人妻影院| 丝袜喷水一区| 免费看a级黄色片| 日日摸夜夜添夜夜爱| 天堂网av新在线| 最好的美女福利视频网| 中国美女看黄片| 日日摸夜夜添夜夜添小说| 美女免费视频网站| 男插女下体视频免费在线播放| 免费av观看视频| 日韩制服骚丝袜av| 国产精品一区www在线观看| 亚洲欧美日韩东京热| 波多野结衣高清作品| 麻豆av噜噜一区二区三区| 国产黄片美女视频| 国产精品三级大全| 欧美高清性xxxxhd video| 成人毛片a级毛片在线播放| 最近中文字幕高清免费大全6| 日本一本二区三区精品| 免费看a级黄色片| 俺也久久电影网| 日日摸夜夜添夜夜添av毛片| 亚洲av成人av| 国产av一区在线观看免费| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| 国产激情偷乱视频一区二区| 久久久成人免费电影| 51国产日韩欧美| 婷婷精品国产亚洲av| 女生性感内裤真人,穿戴方法视频| 一卡2卡三卡四卡精品乱码亚洲| av在线蜜桃| 狠狠狠狠99中文字幕| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 中文字幕精品亚洲无线码一区| 日本成人三级电影网站| 嫩草影院精品99| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| 禁无遮挡网站| 黄色日韩在线| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 夜夜夜夜夜久久久久| 你懂的网址亚洲精品在线观看 | 九九热线精品视视频播放| 国产精品永久免费网站| 男人舔奶头视频| 午夜福利在线观看吧| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| av视频在线观看入口| 级片在线观看| 国产高潮美女av| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 久久久久久久久久成人| 国产真实伦视频高清在线观看| .国产精品久久| 亚洲精品成人久久久久久| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 可以在线观看毛片的网站| 久久精品人妻少妇| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 亚洲成人av在线免费| 国产高清视频在线观看网站| 99久国产av精品国产电影| 中文字幕久久专区| 此物有八面人人有两片| 午夜福利视频1000在线观看| av福利片在线观看| 综合色丁香网| 亚洲国产日韩欧美精品在线观看| 成年女人永久免费观看视频| 色av中文字幕| av在线蜜桃| 18禁在线播放成人免费| 国产精品一二三区在线看| 内射极品少妇av片p| 日韩中字成人| 久久午夜福利片| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 精品久久久久久久久av| 久久精品国产亚洲网站| 欧美绝顶高潮抽搐喷水| 精品国产三级普通话版| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 亚洲精品日韩在线中文字幕 | 日韩欧美免费精品| 日本在线视频免费播放| 国产极品精品免费视频能看的| 亚洲无线在线观看| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 秋霞在线观看毛片| 日韩欧美 国产精品| 高清毛片免费观看视频网站| av天堂中文字幕网| 亚洲七黄色美女视频| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 亚洲精品乱码久久久v下载方式| 国产三级在线视频| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 六月丁香七月| h日本视频在线播放| 搡老妇女老女人老熟妇| 在线国产一区二区在线| 少妇的逼好多水| 日韩欧美国产在线观看| avwww免费| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 国产精品一区www在线观看| 久久精品91蜜桃| 中国美女看黄片| 成年版毛片免费区| 日日干狠狠操夜夜爽| 中国美白少妇内射xxxbb| 国产精品三级大全| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 美女黄网站色视频| 欧美国产日韩亚洲一区| 最新中文字幕久久久久| 99久国产av精品| 亚洲乱码一区二区免费版| 51国产日韩欧美| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 一级毛片我不卡| 精品福利观看| 天天躁日日操中文字幕| 婷婷亚洲欧美| 卡戴珊不雅视频在线播放| 国内精品一区二区在线观看| 美女xxoo啪啪120秒动态图| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| av在线天堂中文字幕| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 乱人视频在线观看| 精品久久久噜噜| 亚洲av中文av极速乱| 听说在线观看完整版免费高清| 女的被弄到高潮叫床怎么办| 国产精品综合久久久久久久免费| 国产成人91sexporn| 美女高潮的动态| 国内精品美女久久久久久| 欧美在线一区亚洲| 亚洲欧美成人精品一区二区| 亚洲av.av天堂| 亚洲av不卡在线观看| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 在线国产一区二区在线| 天堂动漫精品| 亚洲一区高清亚洲精品| 国产女主播在线喷水免费视频网站 | or卡值多少钱| 亚洲国产日韩欧美精品在线观看| 天美传媒精品一区二区| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 久久久久久久久中文| 国国产精品蜜臀av免费| 美女被艹到高潮喷水动态| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 91午夜精品亚洲一区二区三区| 日本一二三区视频观看| 成人特级黄色片久久久久久久| 亚洲av一区综合| 亚洲在线观看片| 亚洲熟妇中文字幕五十中出| 国产在线男女| 一级毛片久久久久久久久女| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 一本久久中文字幕| 亚洲欧美精品自产自拍| 老司机影院成人| 91久久精品电影网| 国产美女午夜福利| 午夜福利在线在线| 日本黄色片子视频| av国产免费在线观看| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 亚洲第一电影网av| 国产精品一及| 99热精品在线国产| 久久久精品94久久精品| 亚洲无线观看免费| 我要看日韩黄色一级片| 国产亚洲精品综合一区在线观看| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 亚洲人成网站高清观看| 美女黄网站色视频| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 成人一区二区视频在线观看| 97在线视频观看| 精品人妻视频免费看| 精品久久久久久久末码| 婷婷精品国产亚洲av| 免费搜索国产男女视频| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 卡戴珊不雅视频在线播放| 大香蕉久久网| 亚洲五月天丁香| 国产白丝娇喘喷水9色精品| 丝袜美腿在线中文| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 中文字幕av成人在线电影| 国产亚洲欧美98| 日韩中字成人| 真实男女啪啪啪动态图| 哪里可以看免费的av片| 国产精品不卡视频一区二区| 免费人成视频x8x8入口观看| 亚洲第一区二区三区不卡| 在线免费十八禁| 男人舔奶头视频| 老司机午夜福利在线观看视频| 日本 av在线| 国产 一区 欧美 日韩| 少妇的逼好多水| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频 | 日韩三级伦理在线观看| 午夜视频国产福利| 搡老妇女老女人老熟妇| 在线a可以看的网站| 男人和女人高潮做爰伦理| av专区在线播放| 麻豆一二三区av精品| 无遮挡黄片免费观看| 午夜精品国产一区二区电影 | 久久99热这里只有精品18| 欧美成人免费av一区二区三区| 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 看黄色毛片网站| 97超视频在线观看视频| 校园春色视频在线观看| 村上凉子中文字幕在线| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 日本爱情动作片www.在线观看 | www.色视频.com| 校园春色视频在线观看| 美女大奶头视频| 99热这里只有是精品在线观看| 国产三级中文精品| 久久精品夜色国产| 午夜福利高清视频| 久久久国产成人免费| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| 变态另类成人亚洲欧美熟女| 久久韩国三级中文字幕| 日本熟妇午夜| 午夜亚洲福利在线播放| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 久久久久久久久中文| 少妇裸体淫交视频免费看高清| 人人妻人人澡人人爽人人夜夜 | 亚洲中文字幕日韩| 麻豆乱淫一区二区| www.色视频.com| 国产伦精品一区二区三区四那| 日韩强制内射视频| 在线播放无遮挡| 免费看美女性在线毛片视频| 国产精品亚洲美女久久久| 美女xxoo啪啪120秒动态图| 日韩国内少妇激情av| 91久久精品国产一区二区成人| 亚洲av二区三区四区| 性色avwww在线观看| 精品一区二区三区视频在线观看免费| 国产成人a∨麻豆精品| 变态另类成人亚洲欧美熟女| 97热精品久久久久久| 国产老妇女一区| 男插女下体视频免费在线播放| av天堂中文字幕网| 夜夜爽天天搞| 91狼人影院| 在线观看美女被高潮喷水网站| 午夜精品一区二区三区免费看| 国产av不卡久久| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 亚洲三级黄色毛片| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 国产一区二区激情短视频| 99热精品在线国产| 国产成人freesex在线 | 十八禁国产超污无遮挡网站| 久久这里只有精品中国| 日本三级黄在线观看| av在线观看视频网站免费| 高清毛片免费观看视频网站| 欧美一区二区精品小视频在线| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 久久九九热精品免费| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 日韩人妻高清精品专区| 一级黄片播放器| 无遮挡黄片免费观看| 人妻久久中文字幕网| 日韩精品有码人妻一区| 亚洲第一电影网av| 黑人高潮一二区| 免费人成在线观看视频色| 天堂√8在线中文| 国产综合懂色| 丰满的人妻完整版| 老女人水多毛片| 长腿黑丝高跟| 国产欧美日韩精品一区二区| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清| 亚洲最大成人中文| 欧美成人a在线观看| 亚洲电影在线观看av| 亚洲欧美中文字幕日韩二区| 久久久午夜欧美精品| 国产亚洲欧美98| 少妇丰满av| 老女人水多毛片| 国产一区二区激情短视频| 日韩成人伦理影院| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 日本欧美国产在线视频| 亚洲精品亚洲一区二区| 欧美3d第一页| 最新中文字幕久久久久| 国产综合懂色| 女生性感内裤真人,穿戴方法视频| 成人美女网站在线观看视频| 亚洲欧美日韩卡通动漫| 国内少妇人妻偷人精品xxx网站| 色尼玛亚洲综合影院| 18禁在线播放成人免费| 麻豆久久精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美| 国产精品1区2区在线观看.| 久久人人爽人人片av| av免费在线看不卡| 日本熟妇午夜| 亚洲人与动物交配视频| av免费在线看不卡| 少妇熟女aⅴ在线视频| 午夜福利在线观看免费完整高清在 | 人妻少妇偷人精品九色| 久久精品国产亚洲av香蕉五月| 欧美日本视频| 欧美成人a在线观看| 国产免费一级a男人的天堂| 亚洲成a人片在线一区二区| 全区人妻精品视频| 丰满乱子伦码专区| 久久久久国产精品人妻aⅴ院| 久久九九热精品免费| 国产三级在线视频| 一本精品99久久精品77| a级毛片免费高清观看在线播放| 欧美激情久久久久久爽电影| 男人和女人高潮做爰伦理| 久久人人精品亚洲av| 日本三级黄在线观看| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 国产黄色小视频在线观看| 女同久久另类99精品国产91| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 精品99又大又爽又粗少妇毛片| 深夜精品福利| 搡老熟女国产l中国老女人| av卡一久久| 老熟妇仑乱视频hdxx| 成年女人毛片免费观看观看9|