周松望 張艷 王棟
摘 要:當(dāng)負(fù)壓沉箱被用作深水管匯或管道終端基礎(chǔ)時(shí),除了受到上部結(jié)構(gòu)傳來(lái)的豎向力、水平力和彎矩,還會(huì)受到扭矩,扭矩可能降低沉箱的豎向承載力、水平承載力和抗彎能力。采用理論分析和有限元法研究復(fù)合加載條件下典型沉箱(長(zhǎng)徑比介于1~2之間)與正常固結(jié)黏性土的相互作用,考慮安裝造成的沉箱側(cè)壁周圍土體的弱化,得到了不排水條件下沉箱單向最大扭矩,探索了扭矩與不同荷載分量聯(lián)合作用時(shí)承載能力的改變。結(jié)果表明,當(dāng)扭矩不超過(guò)20%的抗扭轉(zhuǎn)能力時(shí),可以忽略扭矩對(duì)豎向承載力、水平承載力或抗彎能力的影響;當(dāng)扭矩介于抗扭轉(zhuǎn)能力的20%~80%時(shí),其他承載力分量最多降低20%。提出了能夠用于工程設(shè)計(jì)的扭矩對(duì)其他荷載分量抗力的影響系數(shù)。
關(guān)鍵詞:海底管線;負(fù)壓沉箱;有限元;扭矩;承載力
中圖分類號(hào):TU449 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2096-6717(2020)01-0018-06
Abstract:When suction caissons are used as foundation of the manifold or pipe terminal in deep waters, they are subjected to a torsion except for the vertical force, horizontal force and moment applied. The torsion may reduce the vertical, horizontal and moment bearing capacities of caisson foundation. In this study, theoretical analyses and finite element simulations are conducted to study the interaction between normally consolidated clay and the typical caisson (with a length-to-diameter ratio between 1 and 2) subjected to combined loadings. The strength reduction of the soil around the caisson skirt induced by installation are considered in the theoretical and numerical analyses. For caissons under undrained conditions, the uniaxial torsion capacity and the influences of the torsion on the other capacities are obtained. The results show that when it is less than 20% of the torsional capacity, the torsion applied has slight effect on the vertical, horizontal or moment capacities. When torsion applied reaches 20%~80% of the torsional capacity, the other three capacity components can be reduced by as much as 20%. The torsion influence factors against three capacities are proposed for routine designs.
Keywords:on-bottom pipelines; suction caisson; finite element methods; torsion; capacity
負(fù)壓沉箱常用作固定平臺(tái)和海底管匯的支撐基礎(chǔ)[1-4]。在海底管道的日常運(yùn)行階段,受管道內(nèi)熱應(yīng)力和海底底流的影響,負(fù)壓沉箱不僅要承受豎向荷載(V)、水平荷載(H)和彎矩(M)的作用,還會(huì)受到扭矩(T)的影響,扭矩可能引起沉箱其他承載力分量的降低。Finnie等[5]給出了考慮扭矩影響的淺基礎(chǔ)和樁基礎(chǔ)的水平與豎向承載力計(jì)算公式;針對(duì)扭矩和水平荷載聯(lián)合作用下的淺埋矩形基礎(chǔ),Nouri等[6]提供了塑性極限分析和三維有限元解答。對(duì)于長(zhǎng)徑比L/D(L和D分別代表沉箱的入土長(zhǎng)度和直徑)大于1、作為錨泊基礎(chǔ)的負(fù)壓沉箱,扭矩會(huì)造成豎向抗拔承載力和水平承載力的降低,但當(dāng)施加的扭矩不超過(guò)20%的扭轉(zhuǎn)承載能力時(shí),扭矩的影響可以忽略[7-10]。支撐管匯的負(fù)壓沉箱承受的豎向荷載為壓力,而不是拉力,長(zhǎng)徑比L/D又常介于1~2之間[4],目前,還不清楚該長(zhǎng)徑比范圍內(nèi)沉箱承受的扭矩對(duì)其他承載力分量(即V、H和M)的影響程度。
筆者采用有限元方法,模擬不同扭矩條件下L/D=1~2的沉箱與正常固結(jié)黏土的相互作用,探索扭矩對(duì)豎向承載力、水平承載力和抗彎能力的削弱機(jī)制。在分析大量變動(dòng)參數(shù)的基礎(chǔ)上,提出考慮扭矩影響的承載力計(jì)算公式。
1 有限元模型與參數(shù)設(shè)置
采用Abaqus軟件建立沉箱與土相互作用的三維有限元模型。與已有的研究[11-12]類似,取沉箱頂面中心為討論水平荷載和彎矩的參考點(diǎn)。圖1給出了沉箱尺寸、荷載與位移的符號(hào)和方向規(guī)定:z向向下為正,u和w分別為水平和豎向位移;轉(zhuǎn)角θ對(duì)應(yīng)彎矩M,代表沉箱圍繞參考點(diǎn)的轉(zhuǎn)動(dòng)角度;β為對(duì)應(yīng)扭矩T的沉箱扭轉(zhuǎn)角度。取典型長(zhǎng)徑比L/D=1、1.5和2,沉箱壁厚為0.01D。各承載力結(jié)果將采用歸一化表達(dá),試算表明,沉箱直徑D的取值不影響歸一化公式,因此,除特殊聲明外,均以D=10 m進(jìn)行討論。為避免邊界對(duì)承載力的影響,模擬的土體范圍為:徑向由沉箱側(cè)壁向外延伸3.5D;深度方向由沉箱底部向下延伸3L。土體側(cè)邊界徑向位移為零,土體底部為固定邊界。以L/D=2為例,有限元網(wǎng)格如圖2所示,土體剖分采用線性六面體單元,完全積分,沉箱附近土體采用細(xì)網(wǎng)格,側(cè)壁和刃角下的典型單元大小為0.01D。負(fù)壓沉箱剛度遠(yuǎn)大于土體,因此,將其簡(jiǎn)化為剛體。
5 結(jié) 論
正常固結(jié)黏土中支撐管匯的負(fù)壓沉箱長(zhǎng)徑比大多在1~2之間,采用理論分析和有限元方法探索了扭矩對(duì)沉箱豎向承載力、水平承載力和抗彎能力的影響。結(jié)果表明,扭矩會(huì)造成其他承載力分量的降低,降低程度與扭矩大小有關(guān):對(duì)于長(zhǎng)徑比介于1~2的沉箱,在常規(guī)土體強(qiáng)度分布情況下(sum=0~20 kPa,k=0~2.5 kPa/m),當(dāng)扭矩不超過(guò)20%的單向最大扭矩時(shí),扭矩對(duì)其他承載力分量的影響非常小,可以忽略;當(dāng)扭矩介于20%~80%的單向最大扭矩時(shí),其他承載力分量最大降低20%??偨Y(jié)大量的有限元變動(dòng)參數(shù)分析結(jié)果,給出了扭矩不超過(guò)80%的單向最大扭矩時(shí)扭矩對(duì)其他荷載分量的影響系數(shù)表達(dá)式。參考文獻(xiàn):
[1] LAURITZSEN R, SCHJETNE K. Stability calculations for offshore gravity structures[C]//Proceedings of the 8th Offshore Technology Conference, Houston, 1976: 75-82.
[2] RANDOLPH M F, GAUDIN C, GOURVENEC S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 2011, 38(7): 818-834.
[3] FORESI A, BUGHI S. Suction pile foundation for a PLET subsea structure[M]//FORESI A, BUGHI S. eds. Frontiers in Offshore Geotechnics III. CRC Press, 2015: 245-250.
[4] BUGHI S, PARKER E. Suction pile foundations: experience in theMediterranean offshore and installation feedback[C]//Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, 2011: 951-963.
[5] FINNIE I M S, MORGAN N. Torsional loading of subsea structures[C]//Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, 2004: 326-333.
[6] NOURI H, BISCONTIN G, AUBENY C P. Undrained sliding resistance of shallow foundations subject to torsion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(8): 04014042.
[7] TAIEBAT H A, CARTER J P. Effects of torsion on caisson capacity in clay[C]//Proceedings of the 9th Australia New Zealand Conference on Geomechanics, Auckland, 2004: 130-136.
[8] TAIEBAT H A, CARTER J P. A failure surface for caisson foundations in undrained soils[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics, Perth, 2005: 289-295.
[9] SUROOR H, HOSSAIN J. Effect of torsion on suction piles for subsea and mooring applications[C]//Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics, Oslo, 2015: 325-330.
[10] SAVIANO A, PISAN F. Effects of misalignment on the undrained HV capacity of suction anchors in clay[J]. Ocean Engineering, 2017, 133: 89-106.
[11] GEROLYMOS N, ZAFEIRAKOS A, KARAPIPERIS K. Generalized failure envelope for caisson foundations in cohesive soil: Static and dynamic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 78(5): 154-174.
[12] SUPACHAWAROTE C. Inclined load capacity of suction caisson in clay[D]. Australia: University of Western Australia, 2006.
[13] KAY S, PALIX E. Caisson capacity in clay: VHM resistance envelope-Part 2: VHM envelope equation and design procedures[C]//Proceedings of the 2nd International Symposium on Frontiers in Offshore Geotechnics, Perth, 2010: 741-746.
[14] DET N V. Recommended practice for geotechnical design and installation of suction anchors in clay: DNVGL-RP-E303[S]. Oslo: Det Norsk Veritas, 2017.
[15] HU Y X, RANDOLPH M F. Bearing capacity of caisson foundations on normally consolidated clay[J]. Soils and Foundations, 2002, 42(5): 71-77.
[16] HUNG L C, KIM S R. Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay[J]. Ocean Engineering, 2012, 52(1): 75-82.
[17] American Petroleum Institute. Design and analysis of station keeping ystems for floating structures: API RP 2SK[S]. 3th edition. Washington, D.C.: American Petroleum Institute, 2005.
(編輯 王秀玲)