黃桂媛 張瑛 林玲 韓佳宇 時曉芳 曹雄軍 郭榮榮
摘要:【目的】利用酵母單雜交文庫篩選巨峰葡萄VvFT基因啟動子上游調控因子,挖掘參與調控葡萄開花時間的因子,為揭示花期轉變代謝通路和定向改良葡萄品種提供理論參考?!痉椒ā坷肞lantCARE分析預測VvFT基因啟動子順式作用元件,并以VvFT基因啟動子為誘餌,利用酵母單雜交文庫篩選技術,篩選作用在VvFT基因啟動子上游的調控因子。【結果】葡萄VvFT基因啟動子區(qū)域存在13種啟動子順式作用元件,包括A-box、CAAT-box和TATA-box組成型調控元件;光響應調控元件ATC-motif、Box 4、G-Box和GT1-motif;茉莉酸甲酯(MeJA)響應調控元件CGTCA-motif和TGACG-motif;干旱誘導的MYB結合位點元件MBS;玉米蛋白代謝必需的調控元件O2-site;參與生物鐘控制的調控元件circadian;厭氧誘導必需調控元件ARE。以VvFT基因啟動子為誘餌,篩選獲得34條表達序列標簽(EST),其中有21條為未知功能,有13條在植物生長、抗逆防御、信號轉導、轉錄調控、蛋白酶等方面均有已知或預測的功能,包括轉錄抑制因子ft41、GRF1互作因子ft44、NAP1相關蛋白ft64及ft70分子伴侶DnaJ10。酵母單雜交點對點驗證結果表明VvDnaJ10和VvFT基因啟動子之間有相互作用?!窘Y論】通過酵母單雜交文庫篩選獲取13條候選EST,雖然大部分EST功能預測分析結果與VvFT調控開花時間無明顯的直接關系,但研究結果為進一步探索VvFT轉錄或表達水平控制葡萄開花時間的分子機制提供侯選基因。
關鍵詞: 葡萄;VvFT基因;啟動子;酵母單雜交文庫;調控因子;篩選
中圖分類號: S663.1? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)12-2875-09
Abstract:【Objective】Screening of upstream regulatory factors of VvFT gene promoter in kyoho grape by yeast one-hybrid library and exploring factors that involved in the regulation of flowering time of grape could help to reveal the me-tabolic pathway during flowering and provide a theoretical basis for the directional improvement of grape varieties. 【Me-thod】Potential cis-acting regulatory elements of the VvFT promoter were analyzed online in PlantCARE database. VvFT promoter sequence was used as a bait to search potential regulatory factors acting on VvFT promoter upstream by yeast one-hybrid library screening system in latent buds. 【Result】There were 13 cis-acting elements in the VvFT promoter region of kyoho grape, including constitutive regulatory elements(A-box, CAAT-box and TATA-box), light responsive elements(ATC-motif, Box 4, G-box and GT1-motif), cis-acting regulatory elements involved in the MeJA-responsiveness(CGTCA-motif and TGACG-motif), MYB binding site involved in drought-inducibility, cis-acting regulatory element involved in zein metabolism regulation(O2-site), cis-acting regulatory element involved in circadian control(circadian) and cis-acting regulatory element essential for the anaerobic induction(ARE). Using VvFT promoter as a bait,a total of 34 ESTs were acquired in the yeast one-hybrid library. Functional classification results showed that 21 were unknown functional proteins,and 13 had known or predicted functions including plant growth, stress resistance, signal transduction, transcriptional regulation, proteases. Among them,there were transcriptional suppressor ft41,GRF1 interaction factor ft44, NAP1-related protein ft64 and ft70 molecular chaperone DnaJ10. The results of yeast single hybridization point to point verification showed that there was interaction between VvDnaJ10 and VvFT promoter. 【Conclusion】In this study,13 candidate ESTs are obtained by yeast one-hybrid library screening system. Although most of the results of ESTs function prediction analysis have no obvious direct relationship with VvFT regulating flowering time,? the results provide candidate gene resources for further exploration of the molecular mechanism of VvFT transcription or expression level controlling flowering time in grape.
Key words: grape; VvFT gene; promoter; yeast one-hybrid library; regulator; screening
Foundation item: Guangxi Natural Science Foundation(2017GXNSFBA198100,2020GXNSFBA297006);Key Research and Development Plan Project of Guangxi(Guike AB18126005); Basic Research Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT127)
0 引言
【研究意義】光周期、春化、環(huán)境溫度、植物激素和自主開花通路相互關聯(lián)并協(xié)調開花時間,以提高植物適應性和繁殖率(Wickland and Hanzawa,2015) 。自主開花通路下游有2個重要基因,分別為FT(FLOWERING LOCUS T)和TFL1(TERMINAL FLOWER 1),其編碼1對與磷脂酰乙醇胺結合蛋白(PEBP)高度同源性的開花調節(jié)因子(Wickland and Hanzawa,2015),控制植物開花時間。葡萄(Vitis vinifera L.)是世界上廣泛種植的果樹之一,我國的鮮食葡萄產量占全球葡萄產量的14%(高世敏等,2018)。挖掘參與葡萄開花時間調控因子,如參與溫度、激素和調節(jié)自主開花等響應因子,揭示開花時間調控代謝通路,有助于定向改良葡萄品種,優(yōu)化葡萄植株營養(yǎng)生長與生殖生長的時空關系,以實現(xiàn)葡萄高產優(yōu)產的目的?!厩叭搜芯窟M展】莖頂端分生組織向花分生組織的分化是有花植物的一個關鍵發(fā)育過程?;ㄆ谵D變主要通過整合環(huán)境和內源性刺激來調節(jié),從而形成一個復雜的分級信號網(wǎng)絡。FT蛋白是其中的一個重要移動信號,也是成花素的主要成分,在介導開花過程中發(fā)揮核心作用,其編碼基因轉錄受正調控因子和負調控因子調控。葉片維管組織中轉錄調控因子CO(CONSTANS)與FT基因啟動子近端區(qū)域的一個獨特的順式元件結合并激活FT基因轉錄,有效地促進花期的轉變(An et al.,2004;Tiwari et al.,2010)。除光周期外,環(huán)境因素也調節(jié)FT基因表達。針對FT基因啟動子或非編碼區(qū)域的溫度響應型FT調節(jié)因子FLC(FLOWERING LOCUS C)與SVP(SHORT VEGETATIVE PHASE)形成MADS-box蛋白復合物,并直接與第一個內含子和FT啟動子區(qū)域的CArG位點結合來抑制FT基因轉錄(Searle et al.,2006;Lee et al.,2007;Li et al.,2008)。與大多數(shù)參與發(fā)育機制的基因轉錄本一樣,F(xiàn)T基因mRNA也會迅速降解(Seo et al.,2011)。但近年研究表明,F(xiàn)T基因mRNA是由WER(WEREWOLF)的間接作用穩(wěn)定下來,而WER是只存在于表皮組織的蛋白復合物的一部分(Seo et al.,2011)。此外,已有較多FT基因互作蛋白的相關研究報道(Liu et al.,2012)。如編碼分子伴侶DnaJ蛋白的J3基因能調控擬南芥提前開花(Shen et al.,2011),說明DnaJ蛋白對FT基因功能具有潛在調節(jié)作用;蘋果中VOZ1(Vascular plant one zinc finger protein 1)和TCP(TEOSINTE BRANCHED 1,CYCLOIDEA and PROLIFERATING CELL FACTORs)蛋白均與FT蛋白相互作用控制葉片和果實的發(fā)育(Mimida et al.,2011)?!颈狙芯壳腥朦c】FT基因的功能在蛋白水平上的調控機制鮮有報道,更多的FT互作蛋白有待被挖掘與研究。與研究葡萄FT基因(VvFT)功能相比,對VvFT基因啟動子區(qū)域潛在的調控因子挖掘,更有利于從轉錄水平了解該基因對葡萄開花時間的調控機理,但目前鮮見相關報道?!緮M解決的關鍵問題】利用PlantCARE預測VvFT基因啟動子順式作用元件,并以VvFT基因啟動子為誘餌,利用酵母單雜交文庫篩選技術篩選作用于VvFT基因啟動子上游的調控因子,挖掘潛在參與調控葡萄開花時間的因子,為揭示VvFT基因對花期的調控機制、花期轉變代謝通路和定向改良葡萄品種提供理論參考。
1 材料與方法
1. 1 試驗材料
供試葡萄品種為6年生巨峰葡萄(V. labrusca×V. vinifera‘Kyoho),種植于廣西農業(yè)科學院五十畝雙季葡萄栽培示范基地,采用簡易避雨雙十字V型架栽培模式,栽植密度為2.0 m×3.3 m,樹勢中等,管理水平良好。采集巨峰葡萄一季果冬芽,用于VvFT基因啟動子克隆、酵母單雜交文庫構建和VvDnaJ10基因克隆。高效植物基因組DNA提取試劑盒購自天根生化科技(北京)有限公司。T4 DNA連接酶,Taq DNA聚合酶、SD/-Ura DO Supplement、SD/Leu DO Supplement、金擔子素A(AbA)、Matchmaker Insert Check PCR Mix 1、CHROMA SPIN TE-400層析柱和Make Your Own “Mate & Plate” Library System試劑盒均購自Clontech公司;腺嘌呤硫酸鹽[Adenine Sulfate(Ade)]購自Amresco公司;限制性內切酶和凝膠回收試劑盒均購自Fermentas公司。
1. 2 試驗方法
1. 2. 1 VvFT啟動子克隆及序列分析 以歐洲葡萄黑比諾中FT基因上游1500 bp左右的序列設計引物pFT-F:5'-CGGGGTACCATGAGTTTTTTTATTTAT TGTTATCTCATA-3'(下劃線為Kpn I酶切位點)和pFT-R:5'-CCCAAGCTTAGCTATCCAAACTGTATT GATCTATGGATT-3'(下劃線為Hind III酶切位點)。使用高效植物基因組DNA提取試劑盒提取巨峰葡萄冬芽總DNA。以巨峰葡萄冬芽總DNA為模板,PCR擴增VvFT基因啟動子序列(pVvFT),PCR反應體系25.0 μL:Premix TaqTM 12.5 μL,10 μmol/L引物pFT-F和pFT-R各1.0 μL,50 ng/μL DNA模板1.0 μL,ddH2O補足至25.0 μL。擴增程序:94 ℃ 3 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 1 min 30 s,進行33個循環(huán);72 ℃ 10 min。將擴增的目的片段連接至pMD18-T載體上,獲得重組質粒pMD18-T-pVvFT,送至北京六合華大基因科技股份有限公司測序。利用PlantCARE對VvFT基因啟動子序列進行順式調控元件預測分析。
1. 2. 2 誘餌載體pAbAi-pVvFT構建 用限制性內切酶Kpn I和Hind III對測序正確的重組質粒pMD18-T-pVvFT和pAbAi載體進行雙酶切,回收目的片段并進行連接,獲得誘餌載體pAbAi-pVvFT,轉化大腸桿菌TOP10感受態(tài)細胞,取150 μL菌液涂布于含30 ng/mL氨芐青霉素的LB固體培養(yǎng)基上,37 ℃過夜培養(yǎng)。提取陽性克隆單菌落的重組質粒pAbAi-pVvFT進行雙酶切鑒定,并送至北京六合華大基因科技股份有限公司測序鑒定。
1. 2. 3 誘餌載體pAbAi-pVvFT轉化酵母菌株 分別將限制性內切酶Bstb I線性化的誘餌載體pAbAi-pVvFT和陽性對照質粒pAbAi-p53轉化Y1HGold酵母感受態(tài)細胞,并各取150 μL菌液涂布于SD/-Ura和SD/-Ura/AbA(500 ng/mL)培養(yǎng)基上,30 ℃培養(yǎng)3 d。挑取SD/-Ura培養(yǎng)基上的單菌落,利用Matchmaker Insert Check PCR Mix 1進行菌落PCR鑒定。分別挑取含誘餌載體pAbAi-pVvFT和陽性對照pAbAi-p53的陽性單菌落,在SD/-Ura/AbA(500 ng/mL)培養(yǎng)基上劃線培養(yǎng)3 d,獲得Y1H-pAbAi-pVvFT和Y1H-pAbAi-p53酵母菌株。
1. 2. 4 cDNA文庫構建 參照TRIzol試劑盒說明提取冬芽總RNA,采用Oligotex mRNA試劑盒分離純化mRNA。以mRNA為模板,經(jīng)SMART逆轉錄合成cDNA第一鏈,利用長距離PCR(LD-PCR)擴增技術合成雙鏈cDNA,并用1%瓊脂糖凝膠電泳進行檢測,最后用CHROMA SPIN TE-400層析柱進行純化,參照Make Your Own “Mate & Plate”Library System試劑盒使用說明構建葡萄冬芽cDNA文庫。
1. 2. 5 VvFT基因啟動子互作蛋白篩選 通過酵母單雜交技術篩選出與VvFT啟動子互作的蛋白,具體操作:將cDNA文庫和pGADT7-Rec線性化質粒共轉化陽性誘餌菌株Y1H-pAbAi-pVvFT感受態(tài)細胞,取150 μL轉化菌液涂布于SD/-Leu/AbA(500 ng/mL)培養(yǎng)基上,30 ℃培養(yǎng)3 d,挑選陽性克隆至YPDA液體培養(yǎng)基擴大培養(yǎng)3 d后抽提質粒,并利用獵物質粒pGADT7-T的通用引物(T7:5'-TAATACGACTCAC TATAGGGCGAGCGCCGCCATG-3'和ADR:5'-GTG AACTTGCGGGGTTTTTCAGTATCTACGATT-3')進行PCR鑒定,以pGADT7-T質粒為模板作為陽性對照,以水為模板作為陰性對照。PCR產物用1%瓊脂糖凝膠電泳檢測,將電泳圖譜中500~2000 bp間有條帶的質粒送北京六合華大基因科技股份有限公司測序。利用NCBI的BLASTx在線工具對cDNA插入片段進行序列比對,對其進行功能注釋,從而篩選出與VvFT基因啟動子互作的蛋白(鄒禹等,2019)。
1. 2. 6 酵母單雜交點對點驗證互作蛋白 根據(jù)NCBI數(shù)據(jù)庫中VvDnaJ10基因(GenBank登錄號XM_010665750.2)序列設計PCR引物,VvDnaJ10-F:5'-GGAATTCCATATGGTGAAGGAGACAGAATACT ATG-3'(下劃線為Nde I酶切位點)和VvDnaJ10-R:5'-CCGCTCGAGTCACTCTCTGCCTGTTGAAG-3'(下劃線為Xho I酶切位點)。以巨峰葡萄冬芽總DNA為模板克隆VvDnaJ10基因,連接至pMD18-T上后進行測序鑒定。用限制性內切酶Nde I和Xho I對測序正確的pMD18-T-VvDnaJ10重組質粒和pGADT-7空載體進行雙酶切,回收目的片段進行連接,以構建獵物質粒pGADT7-VvDnaJ10,將其轉化Y1H-pAbAi-pVvFT菌株感受態(tài)細胞,涂布于SD/-Leu和SD/-Leu/AbA(200 ng/mL)培養(yǎng)基,30 ℃培養(yǎng)3 d,觀察菌斑生長情況。以陽性質粒pGADT7-p53轉化Y1H-pAbAi-p53菌株為陽性對照、獵物空載體pGADT-7轉化Y1H-pAbAi-p53菌株為陰性對照。
2 結果與分析
2. 1 VvFT基因啟動子序列分析
以巨峰葡萄冬芽總DNA為模板克隆VvFT基因啟動子,經(jīng)測序鑒定該序列長1466 bp。利用PlantCARE數(shù)據(jù)庫在線分析VvFT基因啟動子的順式作用調控元件,結果(表1)顯示,共預測到13種順式作用調控元件,包括A-box、CAAT-box和TATA-box組成型調控元件;光響應調控元件ATC-motif、Box 4、G-Box和GT1-motif;茉莉酸甲酯(MeJA)響應調控元件CGTCA-motif和TGACG-motif;干旱誘導的MYB結合位點元件MBS;玉米蛋白代謝必需的調控元件O2-site;參與生物鐘控制的調控元件circadian;厭氧誘導必需調控元件ARE,推測VvFT基因啟動子區(qū)域具有潛在調節(jié)因子結合的結構基礎。
2. 2 誘餌菌株Y1H-pAbAi-pVvFT構建
使用T4 DNA連接酶將VvFT基因啟動子序列(1466 bp)與pAbAi質粒連接構建誘餌載體pAbAi-pVvFT,用限制性內切酶Bstb I線性化后轉化Y1HGold酵母感受態(tài)細胞,涂布于SD/-Ura培養(yǎng)基上培養(yǎng)3 d,挑取單菌落進行PCR驗證,結果顯示成功構建Y1H-pAbAi-pVvFT誘餌菌株。將其涂布于SD/-Ura和SD/-Ura/AbA(500 ng/mL)培養(yǎng)基上培養(yǎng),結果(圖1)顯示,當AbA濃度為500 ng/mL時完全抑制酵母單菌落生長,因此確定AbA的工作濃度為500 ng/mL。
2. 3 cDNA文庫構建及互作蛋白篩選
提取的葡萄冬芽總RNA電泳檢測結果(圖2)顯示,28S rRNA條帶的亮度約是18S rRNA的2倍,說明總RNA的完整性良好;OD260/OD280為1.94,濃度為4799 ng/μL,說明RNA純度質量好,可用于cDNA文庫的構建。以純化的mRNA為模板,通過逆轉錄和LD-PCR獲得雙鏈cDNA,再利用CHROMA SPIN TE-400層析柱純化雙鏈 cDNA,用于構建葡萄冬芽cDNA文庫。將cDNA文庫和線性化pGADT7-Rec質粒共轉化Y1H-pAbAi-pVvFT感受態(tài)細胞,涂布于SD/-Leu/AbA(500 ng/mL)培養(yǎng)基上,30 ℃培養(yǎng)3 d,提取陽性克隆質粒進行PCR鑒定,PCR產物用瓊脂糖凝膠電泳檢測,結果如圖3所示。cDNA插入片段的大小不一,陽性克隆所含質粒攜帶基因大小為500~2000 bp。將38個陽性克隆質粒進行測序,結果獲得34條表達序列標簽(EST)序列,其中100~500 bp序列占7.7%;501~1000 bp序列占76.9%;大于1000 bp序列占15.3%。
2. 4 EST序列的BLASTx分析和功能注釋結果
對測序獲得34條EST序列進行BLASTx比對搜索,篩選出期望值e-10以下的序列進行同源對比,并對其進行功能注釋,結果發(fā)現(xiàn)21條EST為未知功能序列,其余13條EST被功能注釋(表2)。13條EST序列與同源基因表現(xiàn)出較高的相似性,僅ft64序列與同源基因的相似性為93%,其他EST序列與同源基因的相似性均大于95%,尤其是ft15和ft41序列與同源基因的相似性高達100%。13條EST序列中,38.46%與植物生長、抗逆防御、信號轉導及轉錄調控相關,其中ft49(休眠相關蛋白)與植物休眠相關,ft64(NAP1相關蛋白)和ft44(GRF1互作因子3)與植物器官生長發(fā)育相關,ft70(分子伴侶DnaJ10)與高溫脅迫和花芽分化相關,ft41(轉錄抑制因子ILP1)與基因轉錄調節(jié)相關;38.46%的EST被注釋為蛋白酶,包括肽蛋氨酸亞砜還原酶B5(ft15)、角鯊烯環(huán)氧酶3(ft19)、S-腺苷甲硫氨酸合成酶(ft42)、氧依賴的糞卟啉原-III氧化酶(ft60)和超氧化物歧化酶(ft68)。
2. 5 VvDnaJ10與VvFT基因啟動子互作驗證結果
采用同源克隆的方法獲得VvDnaJ10基因。通過酵母單雜交點對點鑒定VvDnaJ10與VvFT基因啟動子間是否存在互作。將獵物質粒pGADT7-VvDnaJ10轉化Y1H-pAbAi-pVvFT菌株感受態(tài)細胞,取不同稀釋倍數(shù)(10-1、10-2、10-3和10-4倍)的感受態(tài)細胞涂布于SD/-Leu和SD/-Leu/AbA(200 ng/mL)培養(yǎng)基上,結果(圖4)顯示,轉化菌均在SD/-Leu和SD/-Leu/AbA(200 ng/mL)培養(yǎng)基上有菌落生長,而轉化獵物空載體pGADT-7的Y1H-pAbAi-pVvFT和Y1H-pAbAi-p53菌株感受態(tài)細胞在SD/-Leu/AbA(200 ng/mL)培養(yǎng)基上均不能生長,表明獵物蛋白VvDnaJ10與VvFT基因啟動子之間相互作用激活了報告基因AbA的表達,從而證明VvDnaJ10與VvFT基因啟動子存在互作。
3 討論
基因表達調控網(wǎng)絡由順反作用因子構成。葡萄VvFT基因啟動子上游存在13種順式調控元件。CGTCA-motif和TGACG-motif為MeJA響應元件。MeJA參與植物根的生長、逆境脅迫及開花時間的調控(張旺等,2000;Rakwal et al.,2002;閆志強等,2014)。據(jù)文獻報道,水稻噴施MeJA不僅有效促進花期提前(閆志強等,2014),還可誘導粳稻不育系開穎,提高作物產量(張旺等,2000)。植物轉錄因子MYB參與花藥和花粉的分化發(fā)育調控(錢景華等,2016)。VlFT基因啟動子上游的MYB結合位點CAACTG是葡萄控制花器官性別分化的結構基礎之一。
ILP1是一種轉錄抑制因子,與GCF(GC-binding factor)的C端結構域同源。GCF也是一種轉錄抑制因子,可與表皮生長因子受體(Epidermal growth factor receptor,EGFR)、β-actin和鈣依賴蛋白酶基因啟動子區(qū)域的GC-rich序列相結合(Kageyama and Pastan,1989)。核內再復制是細胞周期的一種,從常規(guī)的有絲分裂細胞周期進入可能涉及不同的細胞周期相關基因表達。CYCLINA2(CYCA2)家族的所有成員在ILP1過表達系中的表達均降低。擬南芥中CYCA2;1表達的缺失導致多倍體的增加,證明ILP1通過調控CYCA2基因轉錄來控制核內再復制(Imai et al.,2006)。
轉錄共激活因子GIF,即GRF相互作用因子(GRF-interacting factor)是細胞增殖的正向調節(jié)因子,在植物體側器官生長發(fā)揮重要作用。GIF蛋白家族由GIF1、GIF2和GIF3組成,與生長調節(jié)因子GRF形成功能復合體(Kim and Kende,2004;Horiguchi et al.,2005;Lee et al.,2009)。擬南芥中gif1 gif2 gif3三重突變體表現(xiàn)出嚴重的花藥結構和功能缺陷,既不產生小孢子囊,也不產生花粉粒(Lee et al.,2014)?;蛐蛄蟹治霰砻鳎珿IF1是人類SYT(Synovial sarcoma translocation)轉錄共激活子的功能同源物。Kim和Kende(2004)研究發(fā)現(xiàn)GIF1蛋白的N端區(qū)域參與其與GRF1的相互作用。grf突變體和gif1突變體的葉片和花瓣較野生型窄,且gif1與grf突變組合表現(xiàn)出協(xié)同效應。gif1和grf三倍體的窄葉表型是由沿葉寬軸的細胞數(shù)量減少引起。因此,GRF1和GIF1分別是轉錄激活因子和共激活因子,為調控葉子和花瓣生長及形狀復合物的一部分。
組蛋白伴侶伴隨初生組蛋白從細胞質到細胞核,參與DNA復制、修復和基因轉錄過程中染色質的動態(tài)調控(Ransom et al.,2010;Avvakumov et al.,2011;Zhu et al.,2013)。NAP1屬于H2A-H2B組蛋白分子伴侶。在擬南芥中NAP1相關蛋白(NAP1-rela-ted protein,NRP)NRP1和NRP2的雙突變體nrp1-1nrp2-1的根尖細胞周期在G2/M時停止,植株表現(xiàn)出短根和異位根毛等異常表型,進一步分析發(fā)現(xiàn)根毛形成關鍵轉錄因子基因GLABRA2(GL2)表達水平下降;染色質免疫共沉淀(ChIP)檢測結果顯示,NRP1和NRP2與位于轉錄活躍的常染色質上的基因相結合(Zhu et al.,2006)。Zhu等(2017)研究證實,NRP1在體內與轉錄因子WER相互作用,并以WER依賴的方式在GL2基因啟動子區(qū)域富集,經(jīng)結晶學分析發(fā)現(xiàn),NRP1通過N-末端的α-螺旋結構形成二聚體,NRP1的突變體中α-螺旋二聚作用被破壞或C末端的酸性尾巴被移除,從而損害其與組蛋白和WER的結合,無法激活GL2基因轉錄,導致nrp1-1nrp2-1突變表型異常。干細胞生態(tài)位(SCN)的完整性對生物體的發(fā)育至關重要。H3/H4組蛋白伴侶染色質組裝因子1(CAF-1)和H2A/H2B組蛋白伴侶NAP1相關蛋白1/2(NRP1/2)在擬南芥根SCN維持中發(fā)揮協(xié)同作用;與m56-1雙突變體(NRP1和NRP2缺失)和fas2-4突變體(CAF-1缺失)相比,m56-1fas2-4雙突變體的短根表型更嚴重(Ma et al.,2018)。
DnaJ蛋白家族屬于熱休克蛋白(Heat-shock proteins,HSPs),作為分子伴侶,其單獨或與HSP70伴侶相結合,參與植物發(fā)育、信號轉導和逆境脅迫的生理過程(Shen et al.,2011;Yang et al.,2009,2010;Zhou et al.,2012)。植物中SVP是抑制FT和SOC1(SUPPRESSOR of the OVEREXPRESSION of CO1)表達的關鍵開花調控因子。Shen等(2011)研究發(fā)現(xiàn)擬南芥中的開花啟動子DnaJ同源蛋白3(J3)通過與SVP的相互作用介導開花信號的整合;J3在細胞核中直接與SVP相互作用,阻止SVP與SOC1和FT調節(jié)序列相結合,上調SOC1和FT基因表達從而實現(xiàn)花期轉變,而J3功能的喪失導致出現(xiàn)晚花表型,推測是由于SOC1和FT的表達降低導致。DnaJ蛋白是細胞的壓力傳感器,其表達受熱、強光和低溫誘導(Piippo et al.,2006;Scarpeci et al.,2008;Rajan and DSilva,2009)。高溫脅迫常引起植物蛋白質的變性。因此,維持蛋白質的功能構象對植物在高溫脅迫下的生存尤為重要(Lee and Vierling,2000;Yang et al.,2010)。研究發(fā)現(xiàn),DnaJ蛋白在重建正常蛋白構象和細胞蛋白穩(wěn)態(tài)過程中發(fā)揮分子伴侶的作用(Wang et al.,2004);編碼擬南芥DnaJ蛋白的TMS1基因在花粉管的耐熱性中發(fā)揮重要調控作用(Yang et al.,2009);敲除AtDjB1基因會降低擬南芥的耐熱性(Zhou et al.,2012 )。
為了探究調控葡萄開花時間核心基因VvFT的分子調控機制,更多直接或間接參與調節(jié)開花時間的調控因子有待挖掘。進一步通過基因遺傳轉化及表觀遺傳學分析等技術手段驗證候選調控基因的生物學功能,為研究VvFT基因的功能和分子機理提供參考。
4 結論
通過葡萄冬芽cDNA文庫構建及酵母單雜交技術篩選出13個與VvFT啟動子區(qū)域結合的潛在調控因子基因,其在植物生長、抗逆防御、信號轉導、轉錄調控、蛋白酶等方面均有已知或預測功能的候選調控因子基因。雖然大部分基因預測功能與VvFT調控開花時間無明顯的直接關系,但研究結果為進一步探索VvFT轉錄或表達水平控制葡萄開花時間的分子機制提供了候選基因。
參考文獻:
高世敏,董陽,王武,陶建敏. 2018. 葡萄赤霉素合成關鍵基因VvGA20ox2的克隆、亞細胞定位和表達分析[J]. 江蘇農業(yè)學報,34(6):1331-1338. [Gao S M,Dong Y,Wang W,Tao J M. 2018. Cloning,subcellular localization and expression analysis of the key gene VvGA20ox2 in gibbere-llin synthesis of grapevine[J]. Jiangsu Journal of Agricultural Sciences,34(6):1331-1338.]
錢景華,李增強,廖小芳,湯丹峰,史奇奇,周瑞陽,陳鵬. 2016. 調控植物花發(fā)育的MYB類轉錄因子研究進展[J]. 生物技術通訊,27(2):283-288. [Qian J H,Li Z Q,Liao X F,Tang D F,Shi Q Q,Zhou R Y,Chen P. 2016. Advance on MYB transcription factors in regulating plant flower development[J]. Leteers in Biotechnology,27(2):283-288.]
閆志強,徐海,馬作斌,高東昌,徐正進. 2014. 秈稻與粳稻花時對茉莉酸甲酯(MeJA)響應的敏感性差異[J]. 中國農業(yè)科學,47(13):2529-2540. [Yan Z Q,Xu H,Ma Z B,Gao D C,Xu Z J. 2014. Differential response of floret opening to exo-methyl jasmonate between subsp.Indica and subsp. Japonica in rice[J]. Scientia Agricultura Sinica,47(13):2529-2540.]
張旺,曾曉春,周燮,沈惠源,吳天賜. 2000. 茉莉酸甲酯在雜交粳稻制種中的應用研究[J]. 雜交水稻,15(3):15-16. [Zhang W,Zeng X C,Zhou X,Shen H Y,Wu T C. 2000. Application of methyl jasmonate(MeJA) in hybrid seed production of japonica rice[J]. Hybrid Rice,15(3):15-16.]
鄒禹,劉園園,錢寶云,占新春,鄭樂婭,張煒,張培江. 2019. 水稻高鹽脅迫下的酵母雙雜交文庫構建及OsRPK1胞內互作蛋白質的篩選[J]. 江蘇農業(yè)學報,35(4):753-763. [Zou Y,Liu Y Y,Qian B Y,Zhan X C,Zheng L Y,Zhang W,Zhang P J. 2019. Construction of yeast two-hybrid cDNA library of rice under high salinity stress and screening of intracellular interacting protein of OsRPK1[J]. Jiangsu Journal of Agricultural Sciences,35(4):753-763.]
An H,Roussot C,Suárez-López P,Corbesier L,Vincent C,Pi?eiro M,Hepworth S,Mouradov A,Justin S,Turnbull C,Coupland G. 2004. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic ?owering of Arabidopsis[J]. Development,131(15):3615-3626.
Avvakumov N,Nourani A,Jacques C?té. 2011. Histone chapero-nes:Modulators of chromatin marks[J]. Molecular Cell,41(5):502-514.
Horiguchi G,Kim G T,Tsukaya H. 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 re-gulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. The Plant Journal,43(1):68-78.
Imai K K,Ohashi Y,Tsuge T,Yoshizumi T,Matsui M,Oka A,Aoyama T. 2006. The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication[J]. The Plant Cell,18(2):382-396.
Kageyama R,Pastan I. 1989. Molecular cloning and characteri-zation of a human DNA binding factor that represses transcription[J]. Cell,59(5):815-825.
Kim J H,Kende H. 2004. A transcriptional coactivator,AtGIF1,is involved in regulating leaf growth and morpholo-gy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,101(36):13374-13379.
Lee B H,Ko J H,Lee S,Lee Y,Pak J H,Kim J H. 2009. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties[J]. Plant Physiology,151(2):655-668.
Lee B H,Wynn A N,F(xiàn)ranks R G,Hwang Y S,Lim J,Kim J H. 2014. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development[J]. Develop-mental Biology,386(1):12-24.
Lee G J,Vierling E. 2000. A small heat shock protein coopera-tes with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiology,122(1):189-198.
Lee J H,Yoo S J,Park S H,Hwang I,Lee J S,Ahn J H. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes Development,21(4):397-402.
Li D,Liu C,Shen L,Wu Y,Chen H,Robertson M,Helliwell C A,Ito T,Meyerowitz E,Yu H. 2008. A repressor complex governs the integration of ?owering signals in Arabidopsis[J]. Developmental Cell,15(1):110-120.
Liu L,Liu C,Hou X L,Xi W Y,Shen L S,Tao Z,Wang Y,Yu H. 2012. FTIP1 is an essential regulator required for florigen transport[J]. PLoS Biology,10(4):e1001313.
Ma J,Liu Y,Zhou W,Zhu Y,Dong A W,Shen W H. 2018. Histone chaperones play crucial roles in maintenance of stem cell niche during plant root development[J]. Plant Journal,95(1):86-100.
Mimida N,Kidou S I,Iwanami H,Moriya S,Abe K,Voogd C,Varkonyi-Gasic E,Kotoda N. 2011. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development[J]. Tree Physiology,31(5):555-566.
Piippo M,Allahverdiyeva Y,Paakkarinen V,Suoranta U M,Battchikova N,Aro E M. 2006. Chloroplast-mediated re-gulation of nuclear genes in Arabidopsis thaliana in the absence of light stress[J]. Physiological Genomics,25(1):142-152.
Rajan V B,DSilva P. 2009. Arabidopsis thaliana J-class heat shock proteins:Cellular stress sensors[J]. Functional & Integrative Genomics,9(4):433-446.
Rakwal R,Tamogami S,Agrawal G K,Iwahashi H. 2002. Octadecanoid signaling component “burst” in rice(Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan[J]. Biochemical and Biophysical Research Communications,295(5):1041-1045.
Ransom M,Dennehey B K,Tyler J K. 2010. Chaperoning histones during DNA replication and repair[J]. Cell,140(2):183-195.
Scarpeci T E,Zanor M I,Carrillo N,Mueller-Roeber B,Valle E M. 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis:A focus on rapidly induced genes[J]. Plant Molecular Biology,66(4):361-378.
Searle I,He Y,Turck F,Vincent C,F(xiàn)ornara F,Kr?ber S,Amasino R A,Coupland G. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes Development,20(7):898-912.
Seo E,Yu J,Ryu K H,Lee M M,Lee I. 2011. WEREWOLF,a regulator of root hair pattern formation,controls ?owering time through the regulation of FT mRNA stability[J]. Plant Physiology,156(4):1867-1877.
Shen L,Kang Y G,Liu L,Yu H. 2011. The J-domain protein J3 mediates the integration of ?owering signals in Arabidopsis[J]. The Plant Cell,23(2):499-514.
Tiwari S B,Shen Y,Chang H C,Hou Y,Harris A,Ma SF,McPartland M,Hymus G J,Adam L,Marion C,Belachew A,Repetti P P,Reuber T L,Ratcliffe O J. 2010. The ?owering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element[J]. New Phytologist,187(1):57-66.
Wang W,Vinocur B,Shoseyov O,Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant in Science,9(5):244-252.
Wickland D,Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family:Functional evolution and molecular mechanisms[J]. Molecular Plant,8(7):983-997.
Yang K Z,Xia C,Liu X L,Dou X Y,Wang W,Chen L Q,Zhang X Q,Xie L F,He L,Ma X,Ye D. 2009. A mutation in THERMOSENSITIVE MALE STERILE 1,enco-ding a heat shock protein with DnaJ and PDI domains,leads to thermosensitive gametophytic male sterility in Arabidopsis[J]. The Plant Journal,57(5):870-882.
Yang Y,Qin Y,Xie C,Zhao F,Zhao J,Liu D,Chen S,F(xiàn)uglsang A T,Palmgren M G,Schumaker K S,Deng X W,Guo Y. 2010. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. The Plant Cell,22(4):1313-1332.
Zhou W,Zhou T,Li M X,Zhao C L,Jia N,Wang X X,Sun Y Z,Li G L,Xu M,Zhou R G,Li B. 2012. The Arabidopsis J-protein AtDjB1 facilitates thermo tolerance by protecting cells against heat-induced oxidative damage[J]. New Phytologist,194(2):364-378.
Zhu Y,Dong A,Meyer D,Pichon O,Renou J P,Cao K,Shen W H. 2006. Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postem-bryonic root growth[J]. The Plant Cell,18(11):2879-2892.
Zhu Y,Dong A,Shen W H. 2013. Histone variants and chromatin assembly in plant abiotic stress responses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,1819(3-4):343-348.
Zhu Y,Rong L,Luo Q,Wang B H,Zhou N N,Yang Y,Zhang C,F(xiàn)eng H Y,Zheng L N,Shen W H,Ma J B,Dong A W. 2017. The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development[J]. The Plant Cell,29(2):260-276.
(責任編輯 陳 燕)