• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3≤m≤8,n≥6時(shí)射影平面網(wǎng)格圖G璵,n的L(2,1)-標(biāo)號(hào)

    2019-12-25 01:24:42徐禮禮董曉媛
    關(guān)鍵詞:上界科研課題標(biāo)號(hào)

    徐禮禮 董曉媛

    【摘要】本文通過(guò)歸納綜合的方法,研究了當(dāng)3≤m≤8,n≥6時(shí),射影平面網(wǎng)格圖Gm,n的L(2,1)-標(biāo)號(hào)問(wèn)題,得到了以下結(jié)果:當(dāng)3≤m≤8,n≥6時(shí),Gm,n的L(2,1)-標(biāo)號(hào)數(shù)的上界為9.

    【關(guān)鍵詞】L(2,1)-標(biāo)號(hào);L(2,1)-標(biāo)號(hào)數(shù);射影平面網(wǎng)格圖

    【基金項(xiàng)目】南通師范高等專(zhuān)科學(xué)校2018年度校級(jí)科研課題:兩個(gè)圖的直積和曲面網(wǎng)絡(luò)圖的L(2,1)-標(biāo)號(hào),編號(hào):TSGZ201806.

    一、引 言

    一個(gè)圖的k-L(2,1)-標(biāo)號(hào)是從圖G的頂點(diǎn)集V(G)到非負(fù)整數(shù)集{0,1,…,k}的一個(gè)映射,使得對(duì)圖G中的任意兩個(gè)頂點(diǎn)u,v,當(dāng)d(u,v)=1時(shí),|f(u)-f(v)|≥2;當(dāng)d(u,v)=2時(shí),|f(u)-f(v)|≥1,這里d(u,v)表示u,v的距離.圖G的L(2,1)-標(biāo)號(hào)數(shù)是最小的k,使得G有一個(gè)k-L(2,1)-標(biāo)號(hào).圖G的L(2,1)-標(biāo)號(hào)數(shù)記為λ(G).

    射影平面網(wǎng)格圖Gm,n是這樣一個(gè)圖,頂點(diǎn)V={wij|1,2,…,m,j=1,2,…,n},邊集E={wi1,j1wi2,j2|如果i1=i2且|j1-j2|=1或j1=j2且|i1-i2|=1}∪{w1,j1,wm,j2|如果j1+j2=n+1}.本文通過(guò)研究給出了當(dāng)3≤m≤8,n≥6時(shí),Gm,n的L(2,1)-標(biāo)號(hào)數(shù)的上界.

    二、主要結(jié)論

    【參考文獻(xiàn)】

    [1]GRIGGS J R,YEH R K.Labeling graphs with a condition at distance 2[J].SIAM Journal Discrete Math,1992(4):586-595.

    [2]徐禮禮,董曉媛.3≤m≤8,3≤n<6時(shí)射影平面網(wǎng)格圖Gm,n的L(2,1)-標(biāo)號(hào)[J].江西電力職業(yè)技術(shù)學(xué)院學(xué)報(bào),2018(10):39-40.

    猜你喜歡
    上界科研課題標(biāo)號(hào)
    我校開(kāi)展科研課題申報(bào)與科研能力提升培訓(xùn)
    Clinical efficacy of acupuncture in treatment of chronic urticaria and its effects on the content of IgE and the imbalance of Th1/Th2 cell function
    一個(gè)三角形角平分線(xiàn)不等式的上界估計(jì)
    一道經(jīng)典不等式的再加強(qiáng)
    Clinical observation on electroacupuncture at four sacral points for overactive bladder syndrome
    非連通圖2D3,4∪G的優(yōu)美標(biāo)號(hào)
    Nekrasov矩陣‖A-1‖∞的上界估計(jì)
    非連通圖D3,4∪G的優(yōu)美標(biāo)號(hào)
    非連通圖(P1∨Pm)∪C4n∪P2的優(yōu)美性
    科研課題的七問(wèn),你知道嗎?
    余庆县| 伽师县| 陆川县| 蒙山县| 湘阴县| 全南县| 久治县| 广元市| 郓城县| 阳城县| 潞城市| 中江县| 明星| 贞丰县| 富平县| 安西县| 都匀市| 江源县| 洪雅县| 建湖县| 汝州市| 长宁县| 太仆寺旗| 靖江市| 巴青县| 盐池县| 额尔古纳市| 台东县| 江口县| 高尔夫| 揭西县| 庄河市| 阿坝县| 洮南市| 金川县| 靖边县| 于都县| 乌鲁木齐市| 柳州市| 克拉玛依市| 海阳市|