• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于基塘系統(tǒng)的珠江三角洲多尺度水敏設(shè)計(jì)研究

    2019-12-02 14:21:18孫傳致斯特芬奈豪斯格雷戈里布拉肯
    風(fēng)景園林 2019年9期
    關(guān)鍵詞:洪水尺度水利

    孫傳致 (荷)斯特芬·奈豪斯 (英)格雷戈里·布拉肯

    珠江三角洲(簡(jiǎn)稱珠三角)是世界上城市化最快的三角洲之一,具有潛力的同時(shí)也面臨著挑戰(zhàn):如洪水風(fēng)險(xiǎn)增加、生態(tài)和社會(huì)價(jià)值的喪失等。珠三角位于中國(guó)東南沿海地區(qū),西江、北江和東江是其主要的河流動(dòng)脈,經(jīng)歷了1 000多年的自然過程,如淤積和沉積[1],珠三角形成了2個(gè)次級(jí)三角洲以及一個(gè)河口的地形地貌特點(diǎn)。由于土壤肥沃,珠三角長(zhǎng)期以來一直非常適合農(nóng)業(yè)生產(chǎn)。人類干預(yù)始于大約1 000年前,通過開發(fā)一種被稱為基塘系統(tǒng)的綜合水陸農(nóng)業(yè)養(yǎng)殖模式[2]13,逐漸將珠三角轉(zhuǎn)變?yōu)橹袊?guó)最富裕的農(nóng)業(yè)區(qū)之一。這種基于基塘所形成的獨(dú)特的景觀是水利、農(nóng)業(yè)、生態(tài)、工業(yè)和居住聚落之間歷史悠久而錯(cuò)綜復(fù)雜的關(guān)系的結(jié)果(圖1)。西江次級(jí)三角洲——順德區(qū)域,位于易發(fā)洪水的低地,在該地這種景觀清晰可見,是當(dāng)?shù)厝藗冮L(zhǎng)達(dá)幾個(gè)世紀(jì)解決洪水和暴雨內(nèi)澇問題、通過實(shí)踐取得的成果。然而,長(zhǎng)時(shí)間的筑堤圍墾、硬化河道以及城市化所帶來的傳統(tǒng)基塘大量消失,不僅導(dǎo)致了蓄洪能力的喪失和洪水風(fēng)險(xiǎn)的增加,更威脅到了整個(gè)三角洲的水安全問題。為了解決這些問題,急需一種更具適應(yīng)性的城市化戰(zhàn)略:一種以社會(huì)生態(tài)介入、更具水敏感性和包容性的多尺度方法[3]。為了總結(jié)這一方法,須重點(diǎn)研究傳統(tǒng)的區(qū)域特定水陸農(nóng)業(yè)實(shí)踐以及歷史水管理方法,以便得出可以為當(dāng)代空間發(fā)展戰(zhàn)略提供幫助的設(shè)計(jì)和規(guī)劃原則。

    筆者通過對(duì)順德傳統(tǒng)基塘系統(tǒng)的分析,結(jié)合該地區(qū)多尺度的生態(tài)水利系統(tǒng)的歷史發(fā)展與進(jìn)化,發(fā)掘隱藏在這一獨(dú)特景觀表象之下的豐富設(shè)計(jì)原則。由于這些原則是基于該地區(qū)悠久的歷史與獨(dú)特的水文、生態(tài)與人文社會(huì)結(jié)構(gòu)總結(jié)而出,它們有極大的潛力成為未來適應(yīng)性城市規(guī)劃和設(shè)計(jì)的工具。隨后,這些原則將以設(shè)計(jì)規(guī)劃實(shí)踐的形式被應(yīng)用于改善當(dāng)代的雨洪消納能力、修復(fù)河道生態(tài)以及重塑和凸顯城市的獨(dú)特文化個(gè)性。最后,本文筆者將討論該研究在珠三角其他地區(qū)應(yīng)用的適應(yīng)性與普遍性,以建立更廣泛的聯(lián)系。

    1 綜合水陸農(nóng)業(yè)養(yǎng)殖實(shí)踐

    西江和北江之間的農(nóng)業(yè)低地在雨季期間容易發(fā)生洪水,造成上游河流排水達(dá)到峰值。洪水主要發(fā)生在6—8月,往往雨洪同期發(fā)生,因此內(nèi)部積水由于外江水位較高而無法排放到外河。這種自然的水文環(huán)境孕育了肥沃的土壤,從而形成一種特殊類型的水陸農(nóng)業(yè)養(yǎng)殖模式——基塘系統(tǒng),作為當(dāng)?shù)亟?jīng)濟(jì)生產(chǎn)的基礎(chǔ)(圖2、3)[2]30。

    基塘系統(tǒng)發(fā)展于14世紀(jì),由堤壩上種植的果樹及中心魚塘組成,是當(dāng)?shù)鼐用裨谝装l(fā)洪水的自然條件下發(fā)明的一種獨(dú)特的農(nóng)漁混合耕種模式。17世紀(jì)初,這一系統(tǒng)變成了桑樹與魚塘中四大家魚的組合,形成了絲綢綜合漁業(yè)的經(jīng)濟(jì)模式。從那時(shí)起,這種農(nóng)業(yè)水產(chǎn)養(yǎng)殖模式繼續(xù)繁榮發(fā)展,直到20世紀(jì)20年代達(dá)到頂峰。在此之后,全球絲綢市場(chǎng)的蕭條以及日本侵略極大地打擊了珠三角地區(qū)的生絲市場(chǎng),絲綢價(jià)格急劇下跌,最終人們不得不尋求其他替代絲綢的基塘作物組合(香蕉、甘蔗)?;料到y(tǒng)因其擁有能量和物質(zhì)合理循環(huán)的優(yōu)點(diǎn)而享譽(yù)世界,它不僅是一種自足且高效的土地利用方式,也體現(xiàn)了對(duì)該地區(qū)特殊地貌的有效利用(圖4)。人們利用從池塘中挖出來的塘泥來建造周圍的堤壩,并在堤壩上種植桑樹以養(yǎng)蠶,蛹以及吃剩的葉子和蠶糞是非常好的飼料,可以被回收以喂魚。塘中,魚吃剩的飼料與魚糞富含有機(jī)物,這些有機(jī)物被塘內(nèi)微生物分解落到池塘底部增加了塘泥的肥力。最后,人們通過每年挖掘塘泥并將其堆回堤壩,又增加了土壤肥力從而為桑樹提供營(yíng)養(yǎng)。然而,這個(gè)綜合系統(tǒng)直到1350年左右[4]66才被開發(fā)出來。隨著水利系統(tǒng)的發(fā)明,在古代河口周圍的河岸地區(qū)已經(jīng)開始建設(shè)堤壩,以保護(hù)低于河岸低地的農(nóng)業(yè)地區(qū)。由于其優(yōu)良的抗洪能力和高產(chǎn)能力,這種土地利用方法集中在西江和北江之間易發(fā)洪水的低地。此后,基塘系統(tǒng)遍布珠三角,并成為綜合水利系統(tǒng)中重要元素之一。因此,我們需要了解整個(gè)系統(tǒng)才能正確理解這種特殊的農(nóng)業(yè)水產(chǎn)養(yǎng)殖模式如何起到防洪的作用。

    2 多尺度的水利系統(tǒng)

    1 基塘景觀展示了水利、農(nóng)業(yè)、生態(tài)、工業(yè)和居民點(diǎn)之間錯(cuò)綜復(fù)雜的關(guān)系Dike-pond landscape showcasing the intricate relationships between water management, agriculture,ecology, industry, and settlements

    珠三角歷史悠久,形成于6 000多年前,在當(dāng)時(shí),順德仍然是南海的一部分。到了宋代(960—1279年),三角洲中心的大部分由于沉積作用已逐漸形成。此時(shí)西江的分流加快了土地圍墾的速度,形成了順德西南的杏壇、均安等地[5]32。1450年,清代建立順德縣,以防止富農(nóng)和貧困漁民之間由于稀缺土地資源而產(chǎn)生沖突。土地持續(xù)開墾導(dǎo)致漁民逐漸失去生存空間,而富農(nóng)希望進(jìn)一步加速開墾以獲利。因此,順德縣政府的成立平衡了這一矛盾,同時(shí)也保護(hù)了整個(gè)區(qū)域的農(nóng)業(yè)免受洪水侵害,建立了各鄉(xiāng)各堡的合作原則。該地區(qū)的行政區(qū)劃以水利防洪為基礎(chǔ),倡導(dǎo)包括40個(gè)縣和297個(gè)村的通力協(xié)作[6]。通過來自不同縣、村和部族人們的共同努力,保護(hù)河岸及其腹地免受洪水侵襲,這種以合作為導(dǎo)向的區(qū)劃體系幫助建立了跨區(qū)域、系統(tǒng)性的水利管理方法。該水利系統(tǒng)包含4個(gè)級(jí)別的防洪干預(yù):區(qū)域、縣、村和建筑(圖5)。這4個(gè)尺度彼此之間有著密切的關(guān)系,并共同發(fā)展形成一個(gè)整體系統(tǒng),起到防洪、促進(jìn)居住區(qū)建立、發(fā)展農(nóng)業(yè)生產(chǎn)和形成社會(huì)結(jié)構(gòu)的作用。因此,理解不同的水管理原則以及它們?nèi)绾瓮ㄟ^這些尺度相互關(guān)聯(lián)非常重要。

    2.1 區(qū)域尺度的水敏設(shè)計(jì)

    區(qū)域規(guī)模包括40個(gè)縣,297個(gè)村莊。每個(gè)縣有20%~50%的邊界毗鄰西江或北江[5]24,每個(gè)縣的縣界都以平衡優(yōu)勢(shì)與分?jǐn)偡汉轱L(fēng)險(xiǎn)為原則,即平衡沿河的生產(chǎn)和運(yùn)輸利益,同時(shí)分擔(dān)水利措施建設(shè)以保護(hù)整個(gè)區(qū)域免受洪水的危險(xiǎn)。幾個(gè)世紀(jì)以來,洪水一直是順德區(qū)的主要威脅。明清兩代(分別為1368—1644年和1644—1911年)平均每年記錄在冊(cè)的有3次洪水,不包括季風(fēng)季節(jié)(4—9月)幾乎每月發(fā)生的小洪水。堤防建設(shè)一經(jīng)發(fā)明便成為該地區(qū)防洪的主要措施之一。然而,由于缺乏技術(shù)和人力資源,當(dāng)時(shí)的大型堤壩建設(shè)不僅需要縣或村內(nèi)進(jìn)行合作,而且需要長(zhǎng)期的努力(圖6)[7]。

    2 順德區(qū):珠三角西江和北江之間的一個(gè)易發(fā)洪水的低地,擁有數(shù)百年的傳統(tǒng),通過綜合農(nóng)業(yè)水產(chǎn)養(yǎng)殖系統(tǒng)與水為生Shunde district: a flood prone lowland between the PRD’s Xijiang River and Beijiang River with a centuries’ old tradition of working with water via integrated agri-aquaculture systems

    3 典型的帶有農(nóng)舍的堤壩結(jié)構(gòu),2019年Typical dike-pond structure with farmhouses, 2019

    從宋代開始一直到清代,區(qū)域堤防建設(shè)逐漸發(fā)展出了幾個(gè)防洪原則。在宋代近3個(gè)世紀(jì)中,人們?cè)谖?、北、東江沿岸建造了大量的堤壩(共28個(gè))[8]39,特別是在西江,桑園圍是當(dāng)時(shí)最大的堤圍系統(tǒng)[4]32。堤防的主要功能是保護(hù)定居點(diǎn)免受河流洪水的影響,其主要原則如下[5]45:利用自然地形(使其成為堤壩的一部分,利用上游和下游之間的高度差進(jìn)行排水);2)保持堤圍與河流的足夠距離;3)在堤壩完成后,于其旁邊修建寺廟(紀(jì)念和作為未來治水、議會(huì)的場(chǎng)所)。

    在元代(1271—1368年),舊堤壩的高度被增加并加固,包含11個(gè)縣的西江沿岸繼續(xù)新建堤防,最終形成34個(gè)新堤圍[8]13。然而,由于下游河口的延伸和淤積加劇了上游的洪水堵塞,施工往往集中在河流的上游岸線部分。同時(shí),通過使用石制水閘和堤壩,施工技術(shù)也得到了改善。

    明代人口與經(jīng)濟(jì)的繁榮意味著這一時(shí)期堤防建設(shè)和土地圍墾達(dá)到了頂峰。人口和經(jīng)濟(jì)空前繁榮,對(duì)土地的需求也劇烈增加,而同時(shí)人們發(fā)現(xiàn)堤防建設(shè)有利于促進(jìn)自然淤積從而形成陸地,于是人們利用這種方法開始進(jìn)行大規(guī)模的圍墾。歷朝歷代都主要采用線性堤防,在島嶼的西部和東部建造以防止洪水,但在明朝期間,由于開墾和淤積導(dǎo)致海水倒灌,人們不得不尋求新的堤圍修建方法。因此,修建原則從開口堤圍建設(shè)以防止河水泛濫,變成了封閉的堤防系統(tǒng)以防止海潮泛濫,例如明代初期通過在東南部增加堤壩而關(guān)閉了桑園圍[5]55。然而,這一系列的封閉式堤防結(jié)構(gòu)加劇了腹地的洪水問題,特別是在強(qiáng)降雨無法有效排放時(shí)的季風(fēng)季節(jié)。正是在此期間,基塘系統(tǒng)被發(fā)明出來,并且作為一種特殊的農(nóng)業(yè)用地,通過吸納多余雨洪緩解這一內(nèi)澇問題。

    這種在明代末期出現(xiàn)的基塘系統(tǒng)一直繁榮發(fā)展到清代中期[8]36。農(nóng)業(yè)的蓬勃發(fā)展鼓勵(lì)了更多的土地圍墾、堤防建設(shè)。然而,由于河道渠化導(dǎo)致河床空間大量減少,從而導(dǎo)致大型堤圍內(nèi)的河流容易在雨季發(fā)生更嚴(yán)重的洪水。因此,人們開始在較大的堤壩內(nèi)部建造小的堤圍以保護(hù)村莊免受內(nèi)部洪水的影響,最終形成了嵌套的環(huán)狀布局。與此同時(shí),為了防御來自外部河流的洪水,不同的堤壩被連接起來形成更大、更堅(jiān)固和更安全的堤圍,并在其中建造水閘以控制排水。最終,形成了一個(gè)環(huán)環(huán)相套的整合式水利基礎(chǔ)設(shè)施,由一個(gè)大型的堤圍和內(nèi)部較小的堤圍組成。反思通過漫長(zhǎng)過程逐步建立的區(qū)域水利系統(tǒng)時(shí),研究了解到以下關(guān)于水敏設(shè)計(jì)的原則:1)水利系統(tǒng)需要協(xié)同合作:防洪系統(tǒng)只有通過不同層級(jí)的政府機(jī)構(gòu)(鄉(xiāng)—堡—都—圍)和學(xué)科團(tuán)隊(duì)合作,并從區(qū)域角度共同規(guī)劃、設(shè)計(jì)和建設(shè)時(shí)才能卓有成效;2)在對(duì)當(dāng)?shù)厮牡睦斫庵?,要認(rèn)清每種水資源(例如海水、河水和雨水)都有各自隨時(shí)間的動(dòng)態(tài)變化規(guī)律(例如,整個(gè)季節(jié)的排水量不斷變化),并且對(duì)于水利的方法有特定的要求;3)通過對(duì)當(dāng)?shù)厮牡脑隽繉W(xué)習(xí),當(dāng)?shù)厝税l(fā)現(xiàn)為雨水和洪水消納提供足夠的空間是非常重要的:通過引入天然水流和水體來為洪水提供更大的緩沖空間;在筑堤時(shí)需要和河流之間保持一定距離;利用自然地形建造堤防并分配布置排水(灌溉)的溝渠和運(yùn)河。

    2.2 縣(堡)尺度的水敏設(shè)計(jì)

    區(qū)域范圍內(nèi)的水利系統(tǒng)涉及外部洪水的管理與疏導(dǎo),而縣(堡)尺度干預(yù)措施則側(cè)重于調(diào)節(jié)內(nèi)部水患。“堡”這一行政區(qū)劃僅在順德區(qū)被發(fā)現(xiàn)使用,它是一個(gè)基本的治水單位,其防御的兩個(gè)主要威脅分別為洪水和海盜[9]。堡內(nèi)的水利設(shè)施由3個(gè)部分組成,形成有效的系統(tǒng):堤圍、水網(wǎng)和不同的連接通道(圖7),這3個(gè)要素密切相關(guān)。傳統(tǒng)的水利單位劃分可歸納為“外海、外堤、內(nèi)河、海灣、運(yùn)河、溝渠、排水系統(tǒng)”[10]。

    4 ?;~塘的循環(huán)系統(tǒng)Circular system of dike-fishponds

    5 4種尺度的水利措施Scheme showing four scales of water management

    堡尺度的水利系統(tǒng)包括汛期的排水和旱季的蓄水,與每日和每月的水量變化密切配合。例如,在汛期,沿著主要河道建造的大型堤壩將防止來自外部河流或海洋的洪水,而大雨引起的內(nèi)部洪水可暫時(shí)存儲(chǔ)在內(nèi)河、運(yùn)河、小溪、海灣和基塘中。在退潮期間,當(dāng)外部水位降低時(shí),這些水可以通過排水孔從基塘排入溝渠與運(yùn)河,然后流入內(nèi)河、小溪中。最后,隨著外堤上水閘的打開,多余的洪水可以排入外河。在干旱季節(jié),這個(gè)系統(tǒng)可以反過來用于儲(chǔ)存雨水以及農(nóng)業(yè)灌溉。有了這個(gè)可以隨時(shí)調(diào)整的雙向系統(tǒng),堡內(nèi)的定居點(diǎn)和農(nóng)業(yè)能夠積極地應(yīng)對(duì)洪水和干旱。因此,該水利系統(tǒng)不僅能夠防洪,還能夠進(jìn)行灌溉和運(yùn)輸,為農(nóng)業(yè)提供了灌溉用水和有機(jī)土壤,同時(shí)建立了便捷的交通。

    基于以上理解,可以總結(jié)得出關(guān)于水敏設(shè)計(jì)的原則:1)通過建立龐大的供水網(wǎng)絡(luò)以緩沖和臨時(shí)儲(chǔ)存洪水:不同的水要素連接在一起形成一個(gè)網(wǎng)絡(luò),為臨時(shí)儲(chǔ)存雨洪提供足夠的空間,并可以用于灌溉和排水;2)堡尺度水網(wǎng)的多層次結(jié)構(gòu)可以通過不同水體之間的動(dòng)態(tài)控制實(shí)現(xiàn)自適應(yīng)性的雨洪管理,從而可以隨時(shí)調(diào)節(jié)水位,其中排水孔、溝渠、運(yùn)河和水閘等調(diào)節(jié)系統(tǒng)都在整個(gè)系統(tǒng)中起著至關(guān)重要的作用;3)需要形成一個(gè)完整且多功能的水利系統(tǒng):洪水防御、蓄水、農(nóng)業(yè)和交通都被認(rèn)為是系統(tǒng)的組成部分,為農(nóng)業(yè)生產(chǎn)發(fā)展、定居點(diǎn)發(fā)展以及加強(qiáng)社會(huì)交往提供了條件。

    2.3 村莊尺度的水敏設(shè)計(jì)

    除了保護(hù)整個(gè)堡免受洪水侵襲的水利系統(tǒng)外,村莊也擁有與防洪相關(guān)的選址、布局和建筑技術(shù)原則。這些原則不僅有助于降低洪水風(fēng)險(xiǎn),而且形成了與水為生和以水為鄰的特殊范式,并側(cè)重于不同地理?xiàng)l件下的村莊布局,蓄水和排水方法以及社會(huì)結(jié)構(gòu)等方面。首先,本文確定了兩種主要的村莊類型,其名稱來自其地理?xiàng)l件:依山村落和平原村落。

    依山村落通常垂直于等高線布置,以利用高低差地形進(jìn)行排水和集水(圖8)。此外,垂直排布于建筑之間的排水通道,被稱為“冷巷”,促進(jìn)通過空氣壓力差而進(jìn)行的冷暖空間循環(huán)。這個(gè)原則產(chǎn)生了“梳式”布局[11],其中主要的排水渠通過小巷中的溝渠連接垂直于它們布置的房屋,有助于快速排水。這些排水通道有時(shí)也與公共建筑物(如寺廟、學(xué)院和學(xué)校)前面的池塘相連,稱為“風(fēng)水”池塘。該類池塘不僅用于收集雨水,還象征著財(cái)富和祝福。此外,這些池塘周圍還設(shè)有公共空間(如小廣場(chǎng)),為集會(huì)、交流和傳統(tǒng)節(jié)日提供場(chǎng)所。從這個(gè)意義上講,該類池塘具有儲(chǔ)水和促進(jìn)社交聯(lián)系的多種功能。除了風(fēng)水池塘外,在山地村落周圍還發(fā)現(xiàn)了基塘,通過排水孔與運(yùn)河或河流相連。池塘內(nèi)的水可以通過下部排水孔輕易地排入運(yùn)河或河流中,同時(shí),水也可以通過上部排水孔從運(yùn)河河流中注入池塘。用于農(nóng)業(yè)生產(chǎn)和住宅的小屋位于池塘堤壩上,為灌溉、施肥和收獲提供便利。村莊內(nèi)部的運(yùn)河大多渠化,并作為交通、社會(huì)交流和防洪的重要骨架。市場(chǎng)、港口和周圍的寺廟都分布于這些運(yùn)河沿岸。

    平原村落也遵循這些關(guān)于布局、排水和社會(huì)結(jié)構(gòu)的原則。然而,與山地村落有2個(gè)重要的區(qū)別:1)水網(wǎng)通常更密集,有時(shí)在村邊界挖掘運(yùn)河,以防止洪水和海盜;2)在平原村莊內(nèi)有更多的風(fēng)水池塘和基塘緊鄰建筑用于收集多余的雨水(而在山地村落中,基塘通常都與定居點(diǎn)分開設(shè)置,圖9)。

    根據(jù)這些信息,可以從村莊尺度的研究中得出以下經(jīng)驗(yàn)教訓(xùn):1)基于地形的定居點(diǎn)組織與開發(fā),其中自然地形作為建筑環(huán)境的分配和布局的基礎(chǔ),包括排水、蓄水和農(nóng)業(yè);2)公共建筑和公共空間與主要水體有關(guān),例如運(yùn)河或風(fēng)水池塘,以刺激社會(huì)交流與互動(dòng)。

    6 不同朝代的堤防建設(shè)過程Process of dike construction in different dynasties

    7 縣(堡)尺度水利系統(tǒng)要素的解構(gòu)Deconstruction of water-management element at the county scale

    2.4 建筑尺度的水敏設(shè)計(jì)

    寺廟、民居和農(nóng)舍是3種典型的建筑類型,在該地區(qū)的整體水利系統(tǒng)中發(fā)揮著重要作用。雖然它們具有不同的功能,但有相似的排水和儲(chǔ)水原則。寺廟通常位于運(yùn)河旁或風(fēng)水池塘后面(圖10)。這樣的布局有很大的排洪優(yōu)勢(shì):從建筑物中排出的雨水能夠便捷快速地流入運(yùn)河或被儲(chǔ)存在風(fēng)水池塘中供日常灌溉等使用。內(nèi)部庭院作為雨水排蓄緩沖區(qū),通常低于建筑平面以收集從屋頂(釉面瓷磚覆蓋)落入其中的雨水。民居通常有一個(gè)較小的庭院,中間有一個(gè)水箱,可以收集雨水以供日常使用(圖11)。云母制成的天窗可以自由開關(guān),有利于引入日光同時(shí)可以有效防雨。通常在建筑物之間布置排水溝以收集雨水,將其輸送到較大的溝渠或運(yùn)河。農(nóng)舍用于與農(nóng)業(yè)生產(chǎn)相關(guān)的活動(dòng),通常修建在基塘上,靠近運(yùn)河,以利用運(yùn)輸資源。建筑材料也取自在基塘上種植的作物,如桑樹的枝條或稻殼。此外,屋頂?shù)挠晁蜕钗鬯梢灾苯优湃氤靥吝M(jìn)行灌溉和施肥。建筑尺度的水敏設(shè)計(jì)原則:1)建筑物的分配、定位、布局和材料基于對(duì)氣候模式(降水量/蒸發(fā)強(qiáng)度,風(fēng)力強(qiáng)弱和溫度高低)以及水利的深刻理解,以通過儲(chǔ)存在不同形式(包括蓄水池、庭院池或吸水的材料)中的水體提供降溫效果和淡水供應(yīng);2)水是循環(huán)自給自足系統(tǒng)的一部分(例如飲用水、冷卻水、污水處理、象征/宗教用水等)。

    3 水敏感規(guī)劃設(shè)計(jì)的特點(diǎn)

    通過解讀隱藏在順德區(qū)典型水陸農(nóng)業(yè)景觀中的知識(shí),歸納總結(jié)出不同尺度的設(shè)計(jì)原則,這些原則共同協(xié)作從而使整個(gè)系統(tǒng)成功運(yùn)作?;趯?duì)該地區(qū)傳統(tǒng)水利和水陸農(nóng)業(yè)養(yǎng)殖實(shí)踐的理解,可以確定水敏規(guī)劃和設(shè)計(jì)的某些關(guān)鍵特點(diǎn)。這些特點(diǎn)可以被提取,并作為減輕洪水風(fēng)險(xiǎn)的基礎(chǔ)原則,同時(shí)也可以促進(jìn)可持續(xù)的城市化建設(shè)。這些原則不僅能被運(yùn)用于順德區(qū),而且能服務(wù)于整個(gè)珠三角。

    3.1 長(zhǎng)期發(fā)展過程

    其中一個(gè)關(guān)鍵特征是水敏感景觀是長(zhǎng)期發(fā)展所形成的結(jié)果。如上所述,順德區(qū)的水利系統(tǒng)是上千年不斷累積的試驗(yàn)和觀察的結(jié)果,這一特點(diǎn)使其成為現(xiàn)今和未來水敏城市建設(shè)的寶貴水利系統(tǒng)模范,并能從中提取適應(yīng)雨洪的地方性基礎(chǔ)知識(shí)。然而,當(dāng)代的水利措施主要集中在水利工程解決方案方面,這些系統(tǒng)通常在短時(shí)間內(nèi),建立并且完全依賴于人造的、單功能的城市排水網(wǎng)絡(luò)和堤防建設(shè)。事實(shí)證明,這種方法是無效的,隨著近年來洪水事件的頻頻發(fā)生,這種完全摒棄舊有的歷史水利系統(tǒng)而用與其無關(guān)的城市肌理取而代之的建設(shè)模式帶來了更多麻煩而非利益。從這個(gè)意義上講,考慮景觀的長(zhǎng)期發(fā)展過程應(yīng)該被予以足夠的重視,因?yàn)樵谶@一原則中,景觀被視為一個(gè)多層級(jí)且含有不同過程的系統(tǒng),這些過程不僅具有不同的自我變化動(dòng)態(tài),更相互影響、相互作用[12]。在珠三角,由于自然沉積和侵蝕等力量,以及通過水利和農(nóng)業(yè)的人為干預(yù)不斷地改變景觀,景觀動(dòng)態(tài)和轉(zhuǎn)變成為景觀研究和設(shè)計(jì)的關(guān)鍵問題[13]。

    3.2 多尺度視角

    另一個(gè)特征是水敏景觀的發(fā)展強(qiáng)調(diào)多尺度的干預(yù),這些不同尺度一起構(gòu)成互補(bǔ)系統(tǒng)。這一點(diǎn)可以通過“堡”中的系統(tǒng)組成和防洪機(jī)制很好地說明:堡規(guī)模的水利系統(tǒng)是具有不同水體的密集水網(wǎng)絡(luò)。該系統(tǒng)通過在2個(gè)方向(即排水和儲(chǔ)存)中調(diào)節(jié)河流、運(yùn)河和基塘中的水,使其對(duì)洪水具有彈性與適應(yīng)性。此外,它通過將大型堤圍與內(nèi)部較小的堤防相結(jié)合,提供多層級(jí)的防洪保護(hù),因此可以保護(hù)人們免受外部和內(nèi)部洪水的侵害。通過將水系統(tǒng)和堤防系統(tǒng)劃分為較小的系統(tǒng),以減輕特定的洪水危險(xiǎn)(例如外堤圍防河洪、內(nèi)堤圍防雨洪),這個(gè)原則將珠三角的水利系統(tǒng)視為一個(gè)復(fù)雜的問題,因此我們不應(yīng)該通過一個(gè)單一的解決方案來解決每一個(gè)要素(河流、溪流、海灣、基塘)的問題。這使得多尺度的視角不僅在防洪方面發(fā)揮著重要作用,而且在提供更大的靈活性方面也起著重要作用(如儲(chǔ)水和保留洪水區(qū))?,F(xiàn)代實(shí)踐中常??吹降慕ㄔ煲粋€(gè)單一巨大的水利工程堤防以保護(hù)整個(gè)縣的做法是失敗的,相反,一個(gè)多尺度協(xié)調(diào)合作、對(duì)不同雨洪問題更有針對(duì)性的水利系統(tǒng)不僅更有效,而且對(duì)于建設(shè)適應(yīng)性的城市景觀規(guī)劃至關(guān)重要。

    8 山地村落水利系統(tǒng)Water management in mountain villages

    9 平原村落水利系統(tǒng)Water management in plain villages

    3.3 協(xié)同作用

    正如順德區(qū)的案例所示,水敏感規(guī)劃設(shè)計(jì)需要當(dāng)局、專家和其他利益相關(guān)者之間協(xié)作,與不同的堡或村莊共同合作努力,這對(duì)區(qū)域范圍內(nèi)的水敏設(shè)計(jì)也是至關(guān)重要的,當(dāng)涉及整個(gè)地區(qū)的洪水時(shí),單個(gè)縣或村莊做出的單獨(dú)決定是不夠的。其原因在于整個(gè)地區(qū)中,河流、潮汐、沉積物以及其他需要區(qū)域共識(shí)和宏觀層面決策的能源或物質(zhì)密切相關(guān),因此需要從全局的角度出發(fā)才能解決問題。區(qū)域戰(zhàn)略必須由不同的地方政府共同制定,以便根據(jù)當(dāng)?shù)氐牟煌闆r進(jìn)行調(diào)整,并將措施付諸實(shí)踐。這需要多個(gè)學(xué)科,當(dāng)局和其他利益相關(guān)方的合作,以便為更具彈性的水利系統(tǒng)制定共同的理解和戰(zhàn)略。

    3.4 了解地形條件

    如上所述,地形條件,如地形、水文和土壤決定了定居點(diǎn)的分配和布局。這些特點(diǎn)決定了場(chǎng)地是否容易發(fā)生洪水。因此,傳統(tǒng)村莊通常位于丘陵或山脈的山腳下、天然河堤上或基塘系統(tǒng)的堤壩上。這些地點(diǎn)可以保證定居點(diǎn)免受洪水侵襲,同時(shí)還可以提供足夠的水資源。該布局不僅提供了一種有效的排水方式,并且創(chuàng)造了小氣候效益,例如引進(jìn)風(fēng)和水蒸發(fā)帶來的冷卻效果。然而,現(xiàn)代的開發(fā)實(shí)踐中通常以發(fā)展基礎(chǔ)設(shè)施(交通運(yùn)輸)為優(yōu)先,其他的開發(fā)則依從于這一交通框架,因?yàn)樵摽蚣軒砹吮憷倪\(yùn)輸和外部資源。這種開發(fā)方法有利于快速發(fā)展,但忽略了自然地形和特定布局,使得其往往不能夠抵御雨水和河流引起的洪水。通過重新確定由交通優(yōu)先轉(zhuǎn)變?yōu)榈匦位蛩W(wǎng)絡(luò)發(fā)展優(yōu)先的戰(zhàn)略,未來將在遠(yuǎn)離洪水風(fēng)險(xiǎn)的更安全地區(qū)發(fā)展。

    3.5 自然做功以及納水滯洪空間

    了解景觀系統(tǒng)及其水文和生態(tài)過程是水敏感規(guī)劃設(shè)計(jì)的另一個(gè)重要特征。由于水和植被有其自身的發(fā)展動(dòng)態(tài),并遵循一定的發(fā)展過程和周期,因此在不同的時(shí)間尺度(日、月、年)為其提供生長(zhǎng)發(fā)展、演替變化的機(jī)會(huì)以及靈活彈性的空間是很重要的。為水位消漲、河流和生態(tài)系統(tǒng)創(chuàng)造更多自我消納與修復(fù)的空間將緩解整個(gè)水利系統(tǒng)的防洪壓力,同時(shí)還可以增加生物多樣性,刺激肥沃土壤的沉積以利于農(nóng)業(yè)發(fā)展,并且創(chuàng)造更多自然環(huán)境以滿足人們的娛樂休閑需求,最后,還為發(fā)展特定地點(diǎn)(不同的地形、土壤和水位消落環(huán)境)的住房類型提供了合適條件。然而,旨在嚴(yán)格控制水位變化以達(dá)到防洪目的的現(xiàn)代水利工程方法限制了水和自然的動(dòng)態(tài)變化,并且使得水利(堤壩、渠道)局限于單一的功能,這一系列的做法最終增加了洪水風(fēng)險(xiǎn)并加劇了生態(tài)破壞。與水相關(guān)的自然過程需要開放和包容的設(shè)計(jì)策略,而不是制定一個(gè)藍(lán)圖式的設(shè)計(jì)策略。相反,提供一個(gè)可調(diào)整并尊重自然和水文過程的框架指導(dǎo)開發(fā),將為適應(yīng)性開發(fā)和規(guī)劃設(shè)計(jì)未來的水敏感(城市)景觀創(chuàng)造極好的條件。

    3.6 多功能水利系統(tǒng)

    10 寺廟的水利系統(tǒng)Scheme of water management in temples

    11 農(nóng)舍的水利系統(tǒng)Scheme of water management in cottages

    順德地區(qū)歷史水利系統(tǒng)的另一個(gè)重要特征在于多功能性。順德區(qū)的水利系統(tǒng)不只用于防洪,同時(shí)集防御、商業(yè)、社會(huì)交流、農(nóng)業(yè)和城市發(fā)展于一體。這樣一個(gè)龐大的供水網(wǎng)絡(luò)還促成了一個(gè)廣泛連接的交通網(wǎng)絡(luò),提供不同村莊之間的交通運(yùn)輸和交易。市場(chǎng)往往設(shè)置在水閘或堤壩旁,以利用其運(yùn)輸優(yōu)勢(shì)。這一原則不只將防洪和水資源管理問題視為一種威脅或者是工程措施,而是將其視為一種為人們提供新的水上生活、水上通勤、與水為樂的范例。因此,這些不同功能之間相互促進(jìn),為人們提供了三角洲生活的全新體驗(yàn)。在動(dòng)態(tài)使用公共空間的做法中我們也能看到關(guān)于多功能使用的考慮,如風(fēng)水池塘和私人庭院空間不同狀態(tài)(雨、旱)的利用。多功能使用的做法還考慮了天氣和季節(jié)的變化,并將這些變化轉(zhuǎn)變?yōu)槎喙δ苁褂霉病牍部臻g的優(yōu)勢(shì)。這種做法將社交、娛樂和其他公共生活或活動(dòng)等與排水和儲(chǔ)水相結(jié)合,使對(duì)洪水消長(zhǎng)的利用成為人們?nèi)粘I畹囊徊糠?,為人們帶來了景觀和水位的季節(jié)性變化。不僅為人們提供了景觀的美麗動(dòng)態(tài)變化,還警示人們:洪水的風(fēng)險(xiǎn)就在身邊。在這方面,規(guī)劃者和設(shè)計(jì)者應(yīng)利用水利措施與其他開發(fā)的整合,以鼓勵(lì)多功能使用并提供更多的適應(yīng)性。

    3.7 再生和循環(huán)

    傳統(tǒng)上,基塘景觀是再生和循環(huán)利用的典范。循環(huán)原理在于重新使用灰水和黑水進(jìn)行凈化、灌溉、施肥和其他用途。以基塘系統(tǒng)作為循環(huán)中心,來自庭院或屋頂?shù)挠晁约昂铀梢猿蔀槌靥裂a(bǔ)給水的來源,而這些池塘中的水也可以用來灌溉基塘上的作物。來自房屋的污水也可以流入魚塘作為肥料。之后,經(jīng)過一系列生物降解過程,營(yíng)養(yǎng)物質(zhì)將被植被或水中的微生物吸收并凈化。這種循環(huán)原理不僅可以成為一系列雨水收集和凈化系統(tǒng)的設(shè)計(jì)原則,而且可以在不同季節(jié)充分利用雨水。

    綜上所述,分析得到的水敏規(guī)劃和設(shè)計(jì)方法特點(diǎn)有:1)長(zhǎng)期發(fā)展過程:將景觀理解為具有不同動(dòng)態(tài)的長(zhǎng)期過程;2)協(xié)作:政府以及具有不同學(xué)科背景的專家和其他利益相關(guān)者共同努力,為更具彈性的水系統(tǒng)制定協(xié)同戰(zhàn)略;3)多尺度的景觀設(shè)計(jì):從區(qū)域尺度到建筑尺度的防洪集水解決方案;4)了解地形條件:景觀系統(tǒng)及其地形條件是村莊、建筑和土地利用的分配、組織和布局的基礎(chǔ);5)自然做功以及納水滯洪空間:修復(fù)河流與降雨的系統(tǒng)并恢復(fù)其自然的生態(tài)過程,如演替、沉積和侵蝕等;6)多功能水利系統(tǒng):不僅關(guān)注水利,還包括規(guī)劃設(shè)計(jì)中的生態(tài)、社會(huì)、文化和經(jīng)濟(jì)方面;7)再利用和循環(huán):促進(jìn)水循環(huán)的發(fā)展,在建筑、村莊、縣和地區(qū)的尺度上推動(dòng)雨洪的收集和再利用。

    這些特征是綜合水利系統(tǒng)的基礎(chǔ),水利系統(tǒng)不僅起到防洪的作用,而且還是生態(tài)發(fā)展、循環(huán)、交通、農(nóng)業(yè)生產(chǎn)、聚落、社會(huì)聯(lián)系和政府管理的驅(qū)動(dòng)力。從這個(gè)角度來看,水成為增長(zhǎng)和繁榮的主要條件;通過水敏規(guī)劃設(shè)計(jì),水成為文化性和地方性的催化劑。這一設(shè)計(jì)理念不僅汲取了歷史“技術(shù)”的經(jīng)驗(yàn)教訓(xùn),而且還具有構(gòu)成珠三角強(qiáng)大區(qū)域特征即地方性和適應(yīng)性的內(nèi)在文化品質(zhì)。

    3.8 水敏原理在順德規(guī)劃設(shè)計(jì)中的應(yīng)用

    通過對(duì)歷史水利和生態(tài)堤防——基塘系統(tǒng)的研究所學(xué)到的水敏原理將被應(yīng)用于杏壇縣,以實(shí)現(xiàn)更具彈性的城市景觀設(shè)計(jì)。運(yùn)用上述原則,該設(shè)計(jì)中構(gòu)建了一個(gè)強(qiáng)大的水網(wǎng)系統(tǒng),可以引導(dǎo)過量洪水,并且通過一系列雨洪調(diào)控將其儲(chǔ)存起來,通過凈化過程實(shí)現(xiàn)再利用,并將修復(fù)一條歷史溪流,改造成新的中央洪泛平原,以幫助消納該縣內(nèi)運(yùn)河和小溪帶來的過量雨洪(圖12)。此外,通過恢復(fù)河流的自然漲落動(dòng)態(tài)和泥沙沉積過程,修復(fù)了其生態(tài)功能,加速自然界物質(zhì)能量循環(huán)并增加了生物多樣性(圖13)。因此,這些天然泥沙沉積物可用于加強(qiáng)該地區(qū)的農(nóng)業(yè)。作為新洪泛平原的一部分,該方案還提出了一個(gè)多功能的水利基礎(chǔ)設(shè)施,包括現(xiàn)有的道路系統(tǒng):新的公共交通、自行車道和人行道。這個(gè)新的交通體系不僅是連接所有村莊、城鎮(zhèn)和其他主要道路或高速公路的主干道路系統(tǒng),同時(shí)也作為新型堤防住宅的交通基礎(chǔ)。通過擴(kuò)展基礎(chǔ)設(shè)施并逐漸發(fā)展新的“交通分支”,這一生長(zhǎng)的交通體系還為兩棲住宅(可建于洪泛平原)和漂浮住宅增加了可達(dá)性,并利用現(xiàn)有的農(nóng)業(yè)水產(chǎn)養(yǎng)殖模式進(jìn)行水循環(huán)和減輕洪水威脅(圖14)??傊?,該方法為珠三角地區(qū)的城市發(fā)展提供了嶄新的視角,利用從生態(tài)基塘和水利方法中提取的原則,將其轉(zhuǎn)化為現(xiàn)代規(guī)劃和設(shè)計(jì)語(yǔ)言以進(jìn)行實(shí)踐。此外,這一方法探索了城市化新的可能性:使我們有可能將傳統(tǒng)的水陸農(nóng)業(yè)養(yǎng)殖模式轉(zhuǎn)變成為具有適應(yīng)性和彈性的景觀基礎(chǔ)設(shè)施并能夠促進(jìn)可持續(xù)的城市化發(fā)展。

    12 新的杏壇綜合區(qū)域計(jì)劃(宏觀尺度),該計(jì)劃基于可持續(xù)的水利和基礎(chǔ)設(shè)施框架,考慮水系統(tǒng),新基礎(chǔ)設(shè)施,生態(tài)系統(tǒng),農(nóng)業(yè)和住房的發(fā)展A new integrated regional plan that takes the development of the water system,new infrastructure, ecosystem, agriculture, and housing into consideration based on a sustainable water and infrastructure framework

    13 中觀尺度水敏景觀的時(shí)序規(guī)劃。這一注重過程性的規(guī)劃著重于恢復(fù)水動(dòng)態(tài)并建立一個(gè)彈性生長(zhǎng)的基礎(chǔ)設(shè)施系統(tǒng)Phasing plan of water-sensitive landscape development in middle scale. This process-oriented plan focuses on restoration of the water dynamics as well as building up a growing system of flexible infrastructure

    4 結(jié)論

    本研究最重要的貢獻(xiàn)是提供在珠三角地區(qū)城市化實(shí)踐的嶄新視角,將傳統(tǒng)的水陸農(nóng)業(yè)養(yǎng)殖(基塘)系統(tǒng)知識(shí)與未來城市發(fā)展聯(lián)系起來,架構(gòu)了地方性、歷史性設(shè)計(jì)原則與現(xiàn)代雨洪城市設(shè)計(jì)的橋梁。在這種可持續(xù)轉(zhuǎn)型發(fā)展的視角之下,景觀被視為空間戰(zhàn)略和干預(yù)的基礎(chǔ)。由于一些地方歷史地圖的不準(zhǔn)確性(即在某些情況下缺乏原始數(shù)據(jù)),這項(xiàng)研究面臨著資料不完整的困難。然而,該研究確實(shí)為更加注重動(dòng)態(tài)雨洪防范的方法提供了新的思路:其中包括上面列出的水敏規(guī)劃方法特征。通過學(xué)習(xí)傳統(tǒng)的水陸農(nóng)業(yè)養(yǎng)殖實(shí)踐,可以開發(fā)出水敏規(guī)劃設(shè)計(jì)的新原則,這些原則可以減輕洪水風(fēng)險(xiǎn),同時(shí)也可以促進(jìn)可持續(xù)的城市化和農(nóng)業(yè)發(fā)展。這些方法將不僅僅能夠被應(yīng)用于順德區(qū),而且可以擴(kuò)展至整個(gè)珠三角。這種觀點(diǎn)需要規(guī)劃者正確理解景觀及其背后的設(shè)計(jì)規(guī)劃原理,并以此為基礎(chǔ)制定發(fā)展戰(zhàn)略,而不是應(yīng)用中國(guó)近現(xiàn)代城市化進(jìn)程中出現(xiàn)的“白紙式”的發(fā)展模式(與這種方法相關(guān)的問題也是如此)??傊∪缙浞值貞?yīng)用和適應(yīng)上述原則和特征不僅可以為城市景觀發(fā)展提供嶄新的視角,而且還可以為規(guī)劃和設(shè)計(jì)更具彈性和適應(yīng)性的珠三角提供新的范例。

    圖片來源:

    圖1由招力行攝;圖2由斯特芬·奈豪斯繪;圖3由孫傳致攝;圖4、5、8~14由孫傳致繪;圖6由孫傳致基于參考文獻(xiàn)[7]繪;圖7由孫傳致基于《順德縣志》繪。

    14 基于杏壇基塘系統(tǒng)轉(zhuǎn)型而成的水敏社區(qū)闡釋了一種新的與水而生的范式,同時(shí)結(jié)合了公共空間,濕地與新的住房類型Elaboration of a new water-sensitive community transformed from the dike-fishpond pattern in Xingtan County that implies a new paradigm of water life with public space, wetland, and new housing typologies

    The Pearl River Delta (PRD) is one of the world’s fastest urbanizing deltas, with all the related challenges and potentials that this entails (e.g.increasing flood risk, loss of ecological and social values, etc.). The PRD is located in the southeast coastal region of China, with the Xijiang River,Beijiang River and Dongjiang River being its main riverine arteries. This river-dominated delta has been formed by natural processes, such as siltation and deposition, for more than a millennium[1]. The resulting lowland is characterized by two sub-deltas(Beijiang River/Xijiang River) and an estuary. The PRD is an area that has long been well suited to agriculture because of its rich soil. Human intervention, which began around 1,000 years ago, gradually transformed the delta into one of the richest agricultural regions in China by developing an integrated agri-aquaculture, known as the dikepond system[2]13. This unique landscape is the result of an historic and intricate relationship between water management, agriculture, ecology, industry, and settlement (Fig. 1). In the sub-delta of the Xijiang River, a flood prone lowland near Shunde, this is clearly visible via its centuries’ old tradition of coping with river floods and excessive rainwater. However,the ongoing process of dike-ring construction and the channelization of watercourses, as well as the partial disappearance of the dike-pond system due to urbanization, has led to a dramatic decrease in flood storage capacity and has seriously increased flood risk from rivers and rain water, not only in this region, but in the PRD as a whole. In order to address these issues a more adaptive urbanization strategy is required: a multiscale approach that is more water sensitive and inclusive in a socio-ecological way[3]. In order to develop such an approach, it is important to study traditional region-specific agricultural practices as well as historical water-management methods in order to derive design and planning principles that can inform contemporary spatial development strategies.

    The objective of this paper is to identify landscape architecture principles for multiscale water-sensitive design based on traditional agriaqucultural practices and historical development of ecological water management in the sub-delta of the Xijiang River (in particular the dike-pond system) in order to increase flood storage. Since these systems were formed gradually and refined by residents through practical lessons learned over centuries, there is wealth of accumulative knowledge hidden in the landscape that can be used for flood protection, ecology, and the cultural formation of contemporary urban development.After that, this tacit knowledge which is as yet largely unexplored but proven useful, would be applied for adaptive urban planning and design in order to illustrate how these principles can be put into practice in contemporary situations. Finally,the link between this research and its possible application in the PRD will be discussed, while connecting it to a wider context.

    1 Integrated Agri-aquaculture Practice

    The agricultural lowlands of the area between the Xijiang River and Beijiang River is flood prone due to heavy rain which causes a peak river discharge from upper parts of the river basins. Floods occur mainly between June and August, a time when these two flood dangers happen at the same time, causing internal floods that cannot be discharged to the outer river due to the higher level of the water. This natural hydrological circumstance resulted in a fertile soil which in turn led to a particular type of agriaquaculture known as the dike-pond system, which became the basis for local economic production(Fig. 2, 3)[2]30.

    The dike-pond system developed in the 14th century with fruit trees being planted on dikes around fish ponds at their centre. This changed in the early 17th century into a combination of mulberry and four major fish species, creating a local silk and fisheries economy. Since then, this agriaquaculture pattern continued to grow and prosper until it hit a peak around the 1920s. After this time, the worldwide depression, and later Japanese aggression, led to market changes with other alternatives being explored and developed. The dikepond system had been well-known as a self-sufficient and productive use of land because of its closed energy and material circulation (Fig. 4). It makes use of soil dug from the pond to build the surrounding dikes, on which the mulberry was planted to feed silkworms. After the worms had been reared,their chrysalis, along with the leaves and silkworm excrement, were returned to feed the fish, providing very good forage. The forage that was left then combined with fish manure and other rich organic matter, which was decomposed by microorganisms and fell to the bottom of the pond as fertilizer. By the digging the organically enriched mud two to three times a year and putting it back onto the dike it also offered nutrients to the mulberry trees.

    However, this integrated system was not fully developed until around 1350[4]66, by which time water-management methods were in place and dike construction already begun in riparian areas around the old estuary to reclaim the low tidal flat for agriculture. Because of its excellent flood tolerance and high productive capacity, land use was concentrated in the flood-prone lowland between the Xijiang River and Beijiang River. Later it sprawled all over the PRD as a result of the region’s watermanagement system and also became one of the most important elements in an integrated watermanagement system. A look at the whole system is required to properly understand how this special agri-aquaculture pattern functioned as a floodprotection system.

    2 Multiscale Water-management System

    The Pearl River Delta is ancient, having been formed more than 6,000 years ago, a time when Shunde was still part of the South China Sea. By the Song Dynasty (960—1279), a large amount of the central part of the delta had been formed very gradually from sedimentation. The diversion of the Xijiang River at this time accelerated the speed of land reclamation, forming Xingtan,Jun’an, and other places to the southwest of Shunde[5]32. In 1450, the Qing Dynasty established Shunde county partly in an effort to prevent conflict over scarce land resources between rich farmers and poor fishermen, which had resulted from the continuous land reclamation, but also to protect agriculture from flooding, thereby establishing a principle of cooperative flood defence. As a result, the administrative divisions were based on cooperation for water management and included 40 counties and 297 villages[6]. This classification system helped build up a systematic water-management system thanks to the joint efforts of people from the different counties,villages, and clans to protect both the waterfront and its hinterland from flooding. This historical water-management system contains interventions at four levels of scale: regional, county, village,and building (Fig. 5). These four scales have a strong relationship with each other and developed together to form an integral system that functions as a flood defence, as well as for settlement establishment, agricultural production, and social structure. It is, thus, very important to understand the different water-management principles, and how they are interrelated through these scales.

    2.1 Water-sensitive Design at the Regional Level

    The regional scale includes 40 counties, which manage 297 villages. Each county has 20 to 50 percent of its boundary abutting either the Xijiang River or Beijiang River[5]24, and each tries to balance profit with danger, i.e. balance production and transportation along the river while protecting from the danger of flooding.Flood has been a major threat in the Shunde district for centuries. Floods were recorded on average three times a year during the Ming and Qing Dynasties (1368—1644 and 1644—1911 respectively), and this did not include the frequent small floods that happening nearly monthly during the monsoon season (usually April to September). Once invented, dike construction became one of the main measures against flooding. However,due to a lack of technique and human resource at the time, the building of large dikes required cooperation not only within a county or village, but also their joint efforts over a long time period (Fig. 6)[7].

    Regional dike construction evolved several flood-defence principles, starting in the Song Dynasty and continuing through the Qing Dynasty.During the nearly three centuries of the Song Dynasty, people built a large number of dikes(28 in total) along the banks of the Xijiang River,Beijiang River and Dongjiang River[8]39particularly along the Xijiang River, where the Sangyuan dike was the largest at that time[4]32. The main function of the dike was to protect settlements from river floods using three main principles[5]45: 1) Utilize natural topography (i.e. make it part of the dike to make use of height difference between upstream and downstream for drainage); 2) Keep enough distance from the river; 3) Build temples besides the dikes (for commemoration and as places of deliberation).

    In the Yuan Dynasty (1271—1368), old dikes had their heights raised and were reinforced, and new construction of dikes continued along the Xijiang River in 11 counties, resulting in 34 new dikes[8]13. At this time construction tended to focus on the upstream parts of the river due to the more serious floods caused by the extension and siltation of the estuary downstream. Construction techniques were also improved by using stone for the sluices and dikes.

    The flourishing of both population and economy during the Ming Dynasty meant that this period saw the largest extent of dike construction and land reclamation. Population and economy were witnessing a prosperity which led to an increased demand for land, thus reclamation was widely carried out using dike construction to capture natural sediment. While in former dynasties the dikes were mainly linear, constructed on the west and east sides of islands to protect from river floods, during the Ming this was inverted because reclamation and siltation had caused tidal water infusion from the sea. Thus, the principle changed from open dike construction, to prevent river flooding, to a closed dike-ring system against sea flooding, for example, the Sangyuan dike was closed in the early Ming Dynasty by adding dikes on its southeast[5]55. However, this series of closed dike-ring constructions caused further flooding problems in the hinterland, especially during the monsoon season, when heavy rainfall could not be discharged effectively. It was at this time that the dikepond system was invented as a special agricultural land use to mitigate this problem by providing capacity for extra excess water.

    This dike-pond system, which appeared in the late Ming Dynasty, prospered into the middle of Qing Dynasty[8]36. The burgeoning of agriculture in this period encouraged more land reclamation downstream, which required more dike construction and connections. However, this caused more serious flooding from the river inside the large dike rings because there was less space for water. As a result, smaller dike rings were constructed inside the large ones to protect settlements from internal floods, which led to a nested loop-like layout. At the same time, to defend from floods from the external river, different dikes were connected to form large stronger and safer dike rings, and sluices were built in them to control drainage. Finally, the whole water-management system was formed into an infrastructure of large connected dike rings with smaller dike rings inside them.

    While reflecting on the long-term development of the regional water-management system, the following lessons for water-sensitive design can be learned: 1) Water management is a collaborative effort:flood defence can only be effective when different authorities and disciplines team up and jointly plan,design, and construct the water-management system from a regional perspective; 2) It is important to acknowledge that each water source (e.g. sea, river,and rain water) has its own temporal dynamic in the amount of water in each (e.g. changing levels of discharge throughout the seasons) and have specific requirements for water management; 3) As a result of an incremental learning process in this region it was considered important to provide enough space for water and flood storage by incorporating natural water streams and water bodies, have a certain distance between dike and river, and utilize natural topography to build dikes and allocate and orient drainage/irrigation ditches and canals.

    2.2 Water-sensitive Design at the County (Fort)Scale

    Water management at the regional scale deals with external water; at the county scale(also known as the Fort scale) interventions focus on regulating internal water. The name “Fort”for a county is used only in Shunde district and highlights a basic unit of division which is strongly related to defence from the two main enemies: flood and pirates[9]. Water management inside a Fort consists of three main components in order to form an effective system: dikes, rivers,and connectors (Fig. 7). These three elements were closely interrelated. The traditional division of the water management can be summarized as “external river, outer dike, internal river, bay,canal, ditch, drainage system”[10].

    The water-management system at the Fort scale consists of drainage in the flood season and water storage in the dry season, which also works closely with the daily and monthly tidal change.For example, in the flood season, floods from the external river or the sea will be prevented by the large dikes constructed along the main river course,while the internal flood waters caused by heavy rain can be temporarily stored in internal rivers, canals,creeks, bays, and dike-ponds. During low tide,when the outer water table is lower, this water can be drained from the ponds through drainage holes into canals and thence to internal rivers, creeks, or rivulets. Finally, with the opening of sluices on the outer dikes, it can be drained into the outer rivers. In the dry season this system works conversely to store rain water, using it and river water for irrigation.With this double-sided and regular system, that could be adjusted at any time, the settlements and agriculture inside the Fort were able to deal with both flood and drought. As a result, this water system was not only capable of flood protection,but also of irrigation and transportation. It provided agriculture with water as well as rich sediment and convenient transportation.

    Based on this understanding the following lessons can be learned for water-sensitive design:1) Buffering and storing water through a water network: water elements are connected and form a network that provides enough space for temporary storage of rain and river water for irrigation and drainage; 2) The hierarchy in the water network enables adaptive water management through dynamic control between different water bodies enabling the regulation of the water table at any time; the drainage holes,ditches, canals, and sluices all play key important roles in the whole system; 3) Water management requires an integral approach; the water system is multifunctional:flood defence, water storage, agriculture, and transportation are all considered integral to the system and provide conditions for the development of agricultural production, settlement development, as well as enhancing social communication.

    2.3 Water-sensitive Design at the Village Scale

    Besides the water-management system that protects the whole Fort from flood risk, the village also has its principles of site selection, layout, and building techniques related to flood protection.These principles not only help people reduce flood risk, but also form a special paradigm for living and interacting with water, and focus on aspects such as the layout of villages in different geographical conditions, methods of water storage and drainage,as well as social structure. First, two main village types are identified in this article, taking their names from their geographical conditions: the mountain village and the plain village.

    The mountain village is usually arranged perpendicular to the contours of the terrain to make use of it for drainage and catchment (Fig. 8). In addition, small alleys are reserved as drainage aisles between perpendicular rows of buildings, which are called “cold alleys” since they aid the circulation of cool air from the water body thanks to differences in air pressure. This principle results in what is known as a “tomb” layout[11]where a main drainage canal is connected to a number of perpendicular houses via the ditches in the alleys that help drain water quickly.Sometimes these drainage aisles are also linked to ponds in front of public buildings like temples,colleges, and schools. These are known as “fengshui”ponds. This type of pond is used not only for rain water collection but also symbolizes wealth and blessings. In addition, public spaces (e.g. small plazas)are arranged around these ponds, offering a place for assembly, communication, and traditional festivals.In that sense they have the multifunctional purpose of storing water and allowing for social connection.Besides the fengshui pond, dike-fishponds are also found surrounding the mountain villages and are connected to canals or rivers via drainage holes.The water inside these ponds can be easily drained into the canals or rivers through the lower drainage hole and, conversely, water can also be poured into the ponds via an upper drainage hole. Cottages for agricultural production, as well as dwelling, are located on pond dikes which offer convenience for irrigation,fertilization, and harvesting. The canals in the village are always channelized and regarded as an important framework for transportation, social communication,and flood prevention as can be seen by the markets,ports, and temples surrounding them.

    The plain villages also follow these principles regarding layout, drainage, and social structure.However, there are two crucial differences with the mountain village: first, the water network is usually denser and sometimes a canal was excavated around the village boundary to protect against flooding and pirates; second, there are more fengshui ponds and dike-fishponds inside the plain villages for the collecting of excess water (in mountain villages,dike-fishponds are usually separated from the settlements, Fig. 9).

    Based on this information the following lessons can be derived from the village scale:1) Terrain-sensitive organization and development of settlements, where the natural terrain serves as the basis for the allocation and layout of the built environment, including drainage, water storage, and agriculture; 2) Public buildings and public spaces are related to the main water bodies, e.g. canals or fengshui ponds, which stimulate social interaction.

    2.4 Water-sensitive Design at the Building Scale

    Temples, folk houses, and cottages are three of the typical building types that play a significant role in the integral water management of the region. Though they have different functions, they share principles of water drainage and storage.Temples are usually located besides canals or behind fengshui ponds (Fig. 10). This helps the rain water that runs off the building to be easily drained into the canal or stored in fengshui pond for daily irrigation use. The inner court serves as a water buffer zone, with a lower-level surface to collect rainwater that drops into it from the roof(which is covered in glazed ceramic tiles). Folk houses usually have a smaller courtyard with a water tank in the middle to collect rain water for daily use (Fig. 11). Skylights made of mica can be opened or closed to let in sunlight or keep out rain.A drainage ditch is usually laid out between the buildings to collect water and deliver it to a larger ditch or canal. Cottages are typically buildings used for activities related to agricultural production and are usually built besides the dike-ponds and canals to prioritize transportation. Their building materials are also taken from the crops grown on the dikes,like the branches of mulberry tree or rice husks. In addition, the rainwater from the roof and domestic sewage can be drained directly into ponds for irrigation and fertilization.

    Lessons for water-sensitive design at the building level: 1) Allocation, orientation, layout, and materialization of buildings are based on a deep understanding of climate patterns (precipitation/evaporation, wind, and temperature) as well as water management to provide for cooling effects and fresh water supply via water storage in many different forms, ranging from cisterns,pools in courtyards, or to materials that absorb water; 2) Water is part of a circular, self-sufficient system (e.g. drinking water, cooling water, sewage treatment, symbolic/religious water, etc.).

    3 Characteristics of Water-sensitive Planning and Design

    By interpreting the accumulative knowledge hidden in the typical agri-aquaculture landscape of Shunde district, design principles can be identified for each scale that, working together, make them collaborate successfully. Based on an understanding of traditional water-management and agriaquacultural practices in this district, certain key characteristics of water-sensitive planning and design can be identified. These characteristics could serve as a basis for mitigating flood risk while also allowing for increased but sustainable urbanization,not only in the Shunde district but also for the Pearl River Delta as a whole.

    3.1 Long-term Development Process

    One of the key characteristics is that a watersensitive landscape is the result of a long-term development process. As has been shown above, the water-management system of Shunde district was the result of incremental experimentation and observation over a millennium, which makes it a valuable basis on which to build for today and the future. However,current practice is focused on fixed engineering solutions, often built in a short time frame and depending exclusively on manmade mono-functional urban-drainage networks and dike construction. This approach has proved to be ineffective, as illustrated by increased flooding events in recent times. In fact, it has brought more trouble than benefits by demolishing the historical water-management pattern, replacing it with an urban texture that has no relation with the existing water network. In that sense, taking into account the long-term development process is vital because it regards the current landscape as a layered entity where different processes and systems influence each other and have a different dynamic of change[12].In the PRD, natural forces like sedimentation and erosion, along with human intervention through water management and agriculture, have constantly changed the landscape, which makes landscape dynamics and transformation a key issue in landscape research and design[13].

    3.2 Multiscale Approach

    Another characteristic is that the development of a water-sensitive landscape addresses multiple scale levels that, taken together, make for a complementary system. This might best be illustrated by the following:the water-management system at the Fort scale is a dense water network with different water bodies. This system, by regulating water in rivers, canals, and dikeponds in both directions (e.g. drainage and storage)makes the settlement more resilient to flooding.In addition, it offers multiple flood defences by combining the large dike ring with the smaller dikes inside, so they protect people from both external and internal flooding. By dividing the water system and the dike system into smaller systems that work to mitigate specific flood dangers (e.g. the outer dike for river flooding, the inner against rain flooding), this principle see water management in the PRD as a complicated issue that should not be addressed by one single solution. Every single element (river, rivulet, bay, dikefishpond) plays an important role not only in flood defence but also in accommodating greater flexibility(for things like water storage and reserved flood zones). Thus, instead of modern practices which see the construction of one single dike to protect a whole county, which has proved subject to failure, a water system that addresses multiple scales is not only more effective, but is vital for adaptive urban-landscape planning.

    3.3 Collaborative Effort

    As illustrated by the Shunde district case, a water-sensitive approach requires a collaborative effort between authorities, experts, and other stakeholders. Their joint efforts, by working together with the different Forts or villages, is also crucial in the regional scale because it reminds us that separate decisions taken by a single county or village will not be enough when it comes to floods in the whole region. The reason for this is that the whole region is closely connected by rivers, tides, sediment,and other energy or material flows which require regional consensus and decisions taken at the macro level. Regional strategies have to be formulated by different local governments working together to put things into practice depending on their different local situations. This requires a collaboration of multiple disciplines, authorities, and other stakeholders to develop common understandings and strategies for a more resilient water system.

    3.4 Understanding Terrain Conditions

    As highlighted above, terrain conditions such as topography, water courses, and soil determine the allocation and layout of settlements. As a result, the site determines if a settlement is prone to flooding.Traditional villages were therefore usually located at the foot of hills or mountains, on natural river levees, or on the dikes of an agri-aquaculture system.These locations keep the settlements safe from flooding, but at the same time provided access to water, which acted as an effective way of draining rainwater and provided microclimatic benefits, such as the cooling effects of wind and evaporation.However, modern practice usually privileges transportation in its development framework, since this brings convenience and external resources. This approach is beneficial for rapid development but ignores the natural terrain and the specific layout that makes it resilient to flooding caused by rain and river. By reprioritising from a traffic — to a terrain — or water-network-development strategy,future development will have the advantage of being located in places that are safer from flooding.

    3.5 Working with Nature and Space for Water

    Understanding the landscape system and its hydrological and ecological processes is another important characteristic of water-sensitive planning and design. Since water and vegetation have their own dynamics of development, and follow their own processes and cycles, it is important to provide space for development, change, and flexibility in different temporal scales (diurnal, monthly, yearly,etc.). Space for fluctuating water levels, room for rivers, and the development of ecosystems will ease pressure on the water system as a whole, increase biodiversity, stimulate sedimentation of fertile soil for agriculture, create possibilities for recreation,and open up opportunities for the development of site-specific housing typologies. However, modern engineering methods that aim at making strict controls limit the dynamic of water and nature and result in a mono-functional system that contributes to increasing flood risk and ecological damage.Working with natural processes connected to water demands open and inclusive design strategies, not blueprint designs, aimed at guiding development and creating conditions for a more adaptive and water-sensitive (urban) landscape.

    3.6 Multifunctional Water Management

    Another important characteristic lies in multifunctionality. The water system of Shunde district integrated defence, business, social communication,agriculture, and urban development and was, thus, not merely used for water protection. The water network also contributed to a widely connected transportation network for communication and trading between different villages. Markets were arranged beside sluices or on dikes to make use of their transportation advantages. This principle regarded the issues of flood protection and water management not only as a threat or an engineering problem, it also saw it as an opportunity to offer a new paradigm of living with water, commuting with water, and generally enjoying life with water. As a result, these combined functions promoted each other to provide people with a new experience of delta life. Multifunctionality was also visible in the dynamic use of public spaces,like the fengshui ponds and the private courtyard spaces. It also took fluctuation of weather and seasons into consideration, transforming these into advantages for multiple uses. It combined activities like social communication, recreation, and other public life or events with water drainage and storage and made it part of people’s daily life. It brought the seasonal changes in landscape and water to the people, which not only warned them of possible flooding but also provided beautiful scenery. In that respect, the integration of water management with other developments should be utilized by planners and designers to encourage multifunctional use and accommodate more adaptation.

    3.7 Re-use and Circularity

    The agri-aquacultural landscape was traditionally one of re-use and circularity. The circulation principle lies in the re-use of grey and black water for irrigation,fertilization, and other purposes. Taking the dikepond system as the circulation centre, rain water from the courtyard or roof, as well as river water, could be a source of water replenishment for the ponds while the water in these ponds could also be used to irrigate crops on the dike. Sewer water from houses could also flow into the dike-fishpond to act as fertilizer.Later, after a series of bio-degradation processes,nutrients would be absorbed by vegetation or by microbes in the water and purified. This circulation principle could be the inspiration for a series of water collection and purification systems that make the best use of water during the dry season today.

    To sum up, a water-sensitive planning and design approach is characterized by: 1) Longterm development process: understanding the landscape as a long-term process with different dynamics; 2) Collaboration: collaborative efforts of authorities, multiple experts with different disciplinary backgrounds, and other stakeholders to develop a common understanding and strategies for a more resilient water system; 3) Multiple scale levels:complementary water solutions ranging from the regional scale to the building scale; 4) Understanding terrain conditions: the landscape system and its terrain conditions are the basis for the allocation,organization, and layout of settlements, buildings,and land use; 5) Working with nature and space for water: employing natural river and rain-water systems and processes, and also make use of natural processes such as ecological succession, sedimentation, and erosion, etc; 6) Multifunctional water management:not only focused on water management but also includes ecological, social, cultural, and economic aspects in planning and design; 7) Re-use and circularity: stimulating the development of closed loops of water, re-use of water at the levels of scale of building, village, county, and region.

    These characteristics are the basis for an integrated water system that not only functions as flood defence but also serves as a driving force for ecological development, circularity, transportation, agricultural production, settlement advancement, social connection,and governance. From this perspective, water becomes the main condition for growth and prosperity; it boosts culture through water-sensitive planning and design,because not only does it apply “technical” lessons learned but also carries the intrinsic cultural qualities of local adaptations that make up the strong regional identity of the PRD.

    3.8 Application of Water-sensitive Principles in Shunde

    By applying the water-sensitive principles learned through the study of historical watermanagement and the ecological dike-fishpond system to Xingtan county for a more resilient urban landscape design, this approach creates a robust water network that could allow excessive water to be guided,stored, and purified through a series of processes and controls. It is proposed that a historical creek will be renovated as a new central flood plain that could help absorb heavy rainwater brought by canals and rivulets inside the county (Fig. 13). In addition, by bringing water fluctuation and sedimentation back to the river,this intervention also restores its ecological function,like circulation and biodiversity, through natural processes (Fig. 12). As a result, this sediment could be utilized for enhancing agriculture in this region. A multifunctional water infrastructure which consists of existing road systems, new public transportation, as well as biking and pedestrian paths is also proposed as part of the new flood plain. This not only serves as an arterial road system that connects all the villages,towns, and other main roads or highways, but it is also the basis for a new type of dike house. By extending the infrastructure and creating new “branches”through this development process, it also offers accessibility to the amphibious houses, terp houses,and floating houses that make use of the existing agriaquacultural pattern for water circulation and flood mitigation (Fig. 14). In conclusion, this approach offers a transformative perspective that makes use of the principles extracted from the ecological dikefishpond and water-management methods and converts them into practice with modern planning and design language. In addition, the exploration provides us with a possibility of transforming and adapting the traditional agri-aquaculture into a more resilient and sustainable urban landscape.

    4 Conclusion

    The most vital contribution of this paper is to build a bridge between traditional practices in agriaquaculture and future urban development to offer a transformative perspective that takes landscape as the basis for spatial strategies and interventions.The difficulty with this research consists in the incompleteness of some of its information due to the inaccuracy of some local historical maps(even a lack of these in some cases). However,the research does provide clues for a more watersensitive approach that includes the characteristics listed above. By learning from traditional agriaquacultural practices new principles for watersensitive planning and design can be developed which can mitigate flood risk while also allowing for increased but sustainable urbanization and agricultural development, not just for the Shunde district but the PRD as a whole. This perspective requires a proper understanding of landscape, and the principles behind it, to build on such a system,instead of taking a tabula rasa-development model,which can be seen everywhere in China’s recent urbanization (as can the problems associated with this approach). In conclusion, a proper application and adaptation of the above-mentioned principles and characteristics would not only provide a transformative perspective for urban landscape development but would also offer a new paradigm for planning and designing for a more resilient and adaptive Pearl River Delta.

    Sources of Figures:

    Fig.1 ? Zhao Lixing; Fig.2 ? Steffen Nijhuis; Fig.3-5, 8-14? Sun Chuanzhi; Fig.6 Sun Chuanzhi draw based on the reference [7]; Fig. 7 Sun Chuanzhi draw based onShunde County Annals(《順德縣志》).

    猜你喜歡
    洪水尺度水利
    財(cái)產(chǎn)的五大尺度和五重應(yīng)對(duì)
    為奪取雙勝利提供堅(jiān)實(shí)水利保障(Ⅱ)
    為奪取雙勝利提供堅(jiān)實(shí)水利保障(Ⅰ)
    水利工會(huì)
    洪水時(shí)遇到電線低垂或折斷該怎么辦
    又見洪水(外二首)
    宇宙的尺度
    太空探索(2016年5期)2016-07-12 15:17:55
    洪水來了
    幼兒畫刊(2016年8期)2016-02-28 21:00:52
    論設(shè)計(jì)洪水計(jì)算
    9
    18+在线观看网站| 国产精品女同一区二区软件| 亚洲av免费在线观看| 国产精品,欧美在线| 久久精品国产清高在天天线| 亚洲一级一片aⅴ在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av一区综合| 国产黄色视频一区二区在线观看 | 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 在线播放国产精品三级| 网址你懂的国产日韩在线| 精品人妻视频免费看| 日韩强制内射视频| 精品人妻熟女av久视频| 国产亚洲精品综合一区在线观看| 12—13女人毛片做爰片一| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 黄色配什么色好看| 热99在线观看视频| 欧美成人一区二区免费高清观看| 久久精品国产鲁丝片午夜精品| 又黄又爽又免费观看的视频| 国产一区二区在线观看日韩| 一个人免费在线观看电影| 一级黄片播放器| av专区在线播放| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 亚洲精品一卡2卡三卡4卡5卡| 大香蕉久久网| 十八禁网站免费在线| 男人舔女人下体高潮全视频| 无遮挡黄片免费观看| 亚洲综合色惰| 长腿黑丝高跟| 一个人免费在线观看电影| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩卡通动漫| 一个人观看的视频www高清免费观看| 国产一区二区三区在线臀色熟女| 99九九线精品视频在线观看视频| 久久6这里有精品| 一本一本综合久久| 免费在线观看成人毛片| 最近最新中文字幕大全电影3| 人人妻人人看人人澡| 亚洲经典国产精华液单| 日韩一本色道免费dvd| 美女免费视频网站| 国产精品人妻久久久影院| 日本免费a在线| 午夜福利视频1000在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 真人做人爱边吃奶动态| 亚洲av五月六月丁香网| 成人特级黄色片久久久久久久| 午夜影院日韩av| 最新中文字幕久久久久| 亚洲av五月六月丁香网| 99久久成人亚洲精品观看| 男女那种视频在线观看| av在线老鸭窝| 伊人久久精品亚洲午夜| 久久久久久九九精品二区国产| 欧美日韩在线观看h| 亚洲成人精品中文字幕电影| 亚洲一级一片aⅴ在线观看| 久久久久久久午夜电影| 亚洲熟妇熟女久久| 床上黄色一级片| 最后的刺客免费高清国语| 国产美女午夜福利| 亚洲精品456在线播放app| 日韩欧美一区二区三区在线观看| 中文亚洲av片在线观看爽| 看十八女毛片水多多多| 99久久九九国产精品国产免费| 亚洲人成网站高清观看| 国产中年淑女户外野战色| 一夜夜www| 久久九九热精品免费| 韩国av在线不卡| 国产色爽女视频免费观看| 内射极品少妇av片p| 成人av一区二区三区在线看| 97人妻精品一区二区三区麻豆| 欧美精品国产亚洲| 亚洲七黄色美女视频| 人妻少妇偷人精品九色| 高清毛片免费看| 亚洲中文日韩欧美视频| h日本视频在线播放| 自拍偷自拍亚洲精品老妇| 十八禁网站免费在线| av视频在线观看入口| 美女 人体艺术 gogo| 在线播放国产精品三级| 熟妇人妻久久中文字幕3abv| 久久热精品热| 国产成年人精品一区二区| а√天堂www在线а√下载| 内地一区二区视频在线| 人妻夜夜爽99麻豆av| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 在线天堂最新版资源| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 日本精品一区二区三区蜜桃| 成年免费大片在线观看| 久久久久国产网址| 亚洲成人久久性| 在线观看av片永久免费下载| 国产91av在线免费观看| 蜜桃亚洲精品一区二区三区| 人妻久久中文字幕网| 午夜久久久久精精品| 人妻丰满熟妇av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 精品熟女少妇av免费看| 18禁黄网站禁片免费观看直播| 色综合站精品国产| 久久久久九九精品影院| 欧美另类亚洲清纯唯美| 亚洲性久久影院| 欧美一区二区国产精品久久精品| av视频在线观看入口| 久久精品国产亚洲网站| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 精品午夜福利在线看| 日韩欧美精品免费久久| 国产麻豆成人av免费视频| 欧美高清性xxxxhd video| 插逼视频在线观看| 国产一区二区在线av高清观看| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 国产男人的电影天堂91| 国产视频内射| 女同久久另类99精品国产91| 最近视频中文字幕2019在线8| 老司机午夜福利在线观看视频| 看十八女毛片水多多多| 亚洲精品国产成人久久av| 晚上一个人看的免费电影| 国产精品亚洲一级av第二区| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片| 精品熟女少妇av免费看| 免费看美女性在线毛片视频| 精品久久久噜噜| 97碰自拍视频| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 国产 一区精品| 国产精品久久视频播放| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 性欧美人与动物交配| 在线观看66精品国产| 床上黄色一级片| 一级av片app| 熟女电影av网| 国产高清有码在线观看视频| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 免费无遮挡裸体视频| 国产精品人妻久久久影院| 在线看三级毛片| 白带黄色成豆腐渣| a级毛片a级免费在线| 中文字幕免费在线视频6| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 搡老岳熟女国产| 麻豆国产97在线/欧美| 免费高清视频大片| 国产三级在线视频| 久久人人爽人人爽人人片va| 噜噜噜噜噜久久久久久91| 在线免费十八禁| 国产91av在线免费观看| 不卡视频在线观看欧美| 国产爱豆传媒在线观看| 五月玫瑰六月丁香| 亚洲四区av| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 国产精品一及| 久久久久国内视频| 九九爱精品视频在线观看| 国产精品99久久久久久久久| 日本五十路高清| or卡值多少钱| 中文字幕精品亚洲无线码一区| a级一级毛片免费在线观看| 三级国产精品欧美在线观看| 国产一区亚洲一区在线观看| 午夜精品在线福利| 99热精品在线国产| 国产乱人视频| 日韩强制内射视频| 秋霞在线观看毛片| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 国产在视频线在精品| av在线观看视频网站免费| 性色avwww在线观看| 中文资源天堂在线| 哪里可以看免费的av片| 午夜精品国产一区二区电影 | av.在线天堂| 免费观看人在逋| 日本一本二区三区精品| 最新中文字幕久久久久| 欧美中文日本在线观看视频| 日韩av不卡免费在线播放| videossex国产| 日韩成人伦理影院| 国产成年人精品一区二区| 国产精品久久久久久久久免| av天堂在线播放| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站| 一本精品99久久精品77| 男女下面进入的视频免费午夜| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 91久久精品国产一区二区成人| 又粗又爽又猛毛片免费看| 草草在线视频免费看| 丝袜美腿在线中文| 日韩欧美国产在线观看| 成年女人看的毛片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 网址你懂的国产日韩在线| 丝袜喷水一区| 精品一区二区三区视频在线观看免费| 高清日韩中文字幕在线| 日本欧美国产在线视频| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区 | 色视频www国产| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 亚洲性久久影院| 免费高清视频大片| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 美女免费视频网站| 性欧美人与动物交配| 久久久久久九九精品二区国产| 欧美成人一区二区免费高清观看| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 淫妇啪啪啪对白视频| 最新中文字幕久久久久| 亚洲精品456在线播放app| 日韩av不卡免费在线播放| 春色校园在线视频观看| 在线a可以看的网站| 超碰av人人做人人爽久久| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 亚洲在线观看片| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 老司机福利观看| 俺也久久电影网| 国产精品不卡视频一区二区| 国产蜜桃级精品一区二区三区| 热99re8久久精品国产| 天天一区二区日本电影三级| av免费在线看不卡| 非洲黑人性xxxx精品又粗又长| 欧美人与善性xxx| 国产精品av视频在线免费观看| 午夜爱爱视频在线播放| 熟妇人妻久久中文字幕3abv| 欧美精品国产亚洲| 如何舔出高潮| 在线天堂最新版资源| 成人漫画全彩无遮挡| 午夜久久久久精精品| 中文字幕av成人在线电影| 国产高清有码在线观看视频| 久久久久性生活片| 欧美高清成人免费视频www| 91av网一区二区| 有码 亚洲区| 99热全是精品| 在线天堂最新版资源| 久久久精品欧美日韩精品| 校园春色视频在线观看| 精品一区二区三区视频在线观看免费| 久久久久久国产a免费观看| 国产91av在线免费观看| ponron亚洲| 久久久精品94久久精品| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 日本黄色视频三级网站网址| 色综合站精品国产| 校园春色视频在线观看| 你懂的网址亚洲精品在线观看 | av在线老鸭窝| 91午夜精品亚洲一区二区三区| 两个人视频免费观看高清| 尤物成人国产欧美一区二区三区| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 精品久久久久久久久久久久久| 国产乱人视频| 日韩av在线大香蕉| 久久久久久久亚洲中文字幕| 亚洲精品一区av在线观看| 69av精品久久久久久| 成人综合一区亚洲| 成人三级黄色视频| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放 | 色噜噜av男人的天堂激情| 亚洲,欧美,日韩| av福利片在线观看| 国产欧美日韩精品亚洲av| 干丝袜人妻中文字幕| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| av黄色大香蕉| 此物有八面人人有两片| 久久韩国三级中文字幕| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 日本一二三区视频观看| 亚洲无线观看免费| 91麻豆精品激情在线观看国产| 久久精品国产亚洲网站| av福利片在线观看| a级毛片a级免费在线| 午夜久久久久精精品| 深夜a级毛片| 干丝袜人妻中文字幕| 嫩草影视91久久| 能在线免费观看的黄片| 午夜福利在线在线| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 成人鲁丝片一二三区免费| 自拍偷自拍亚洲精品老妇| 国产亚洲欧美98| 色在线成人网| 欧美另类亚洲清纯唯美| 免费av毛片视频| 老女人水多毛片| 色吧在线观看| 国产精品电影一区二区三区| or卡值多少钱| 伊人久久精品亚洲午夜| 六月丁香七月| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 能在线免费观看的黄片| 自拍偷自拍亚洲精品老妇| 成人鲁丝片一二三区免费| 91av网一区二区| 欧美极品一区二区三区四区| 久久久成人免费电影| 一本精品99久久精品77| 亚洲熟妇熟女久久| 国产精品不卡视频一区二区| а√天堂www在线а√下载| 国产精品国产高清国产av| av视频在线观看入口| 免费无遮挡裸体视频| videossex国产| 欧美日韩一区二区视频在线观看视频在线 | 美女cb高潮喷水在线观看| 国产久久久一区二区三区| 国内精品美女久久久久久| av在线播放精品| 可以在线观看毛片的网站| 日本色播在线视频| 亚洲四区av| 国内精品一区二区在线观看| 99在线人妻在线中文字幕| 久久精品国产亚洲av天美| 亚洲精品在线观看二区| 国产精品嫩草影院av在线观看| 久久久久国产网址| a级毛片免费高清观看在线播放| 久久人妻av系列| 国产不卡一卡二| aaaaa片日本免费| 国产一级毛片七仙女欲春2| 亚洲av第一区精品v没综合| 国产av麻豆久久久久久久| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 精品人妻偷拍中文字幕| 国产成人影院久久av| 婷婷亚洲欧美| 一个人免费在线观看电影| 少妇的逼水好多| 色吧在线观看| 国内久久婷婷六月综合欲色啪| 日韩精品青青久久久久久| 国产精品综合久久久久久久免费| 一级毛片久久久久久久久女| 久久久精品大字幕| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 精品无人区乱码1区二区| 寂寞人妻少妇视频99o| 岛国在线免费视频观看| 久久久久久久久中文| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 亚洲国产色片| 中文亚洲av片在线观看爽| 欧美成人a在线观看| 免费看光身美女| 偷拍熟女少妇极品色| 成人精品一区二区免费| 国产男人的电影天堂91| 男女那种视频在线观看| 免费av毛片视频| 国产久久久一区二区三区| 日韩中字成人| 欧美成人免费av一区二区三区| 欧美日韩精品成人综合77777| 欧美色欧美亚洲另类二区| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 可以在线观看毛片的网站| 日韩欧美免费精品| 欧美最新免费一区二区三区| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 亚洲人成网站在线播| 日韩三级伦理在线观看| 亚洲国产日韩欧美精品在线观看| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 能在线免费观看的黄片| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 毛片女人毛片| 此物有八面人人有两片| 51国产日韩欧美| 亚洲激情五月婷婷啪啪| 精品免费久久久久久久清纯| 在线观看午夜福利视频| 在线播放无遮挡| 国产一区亚洲一区在线观看| 日本三级黄在线观看| 日韩中字成人| 欧美3d第一页| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 日韩欧美精品免费久久| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 日韩精品中文字幕看吧| 一区二区三区四区激情视频 | 日韩一区二区视频免费看| 哪里可以看免费的av片| 人妻丰满熟妇av一区二区三区| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看 | 成人亚洲精品av一区二区| 亚洲精品成人久久久久久| 91精品国产九色| 少妇被粗大猛烈的视频| 成熟少妇高潮喷水视频| 久久精品久久久久久噜噜老黄 | 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 日本免费一区二区三区高清不卡| 99在线视频只有这里精品首页| 亚洲第一区二区三区不卡| 日本一二三区视频观看| 熟女电影av网| 插阴视频在线观看视频| 九九在线视频观看精品| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| 我要搜黄色片| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 成人av在线播放网站| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 久久6这里有精品| 内射极品少妇av片p| 最近中文字幕高清免费大全6| 亚洲无线观看免费| 一级毛片久久久久久久久女| 内射极品少妇av片p| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| av在线播放精品| 亚洲av五月六月丁香网| 亚洲精品影视一区二区三区av| 变态另类成人亚洲欧美熟女| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 国产淫片久久久久久久久| 久久精品人妻少妇| 欧美丝袜亚洲另类| 此物有八面人人有两片| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 亚洲av不卡在线观看| 久久精品久久久久久噜噜老黄 | 热99在线观看视频| 精品久久久久久久久久久久久| a级毛片a级免费在线| 精品不卡国产一区二区三区| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 搞女人的毛片| 国产淫片久久久久久久久| 久久精品久久久久久噜噜老黄 | 99热这里只有是精品50| 免费观看人在逋| 色哟哟哟哟哟哟| 老司机福利观看| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区 | 亚洲va在线va天堂va国产| 国产三级在线视频| 国内精品久久久久精免费| 欧美在线一区亚洲| 亚洲av中文av极速乱| 国产 一区 欧美 日韩| 一夜夜www| 22中文网久久字幕| 日本在线视频免费播放| 成人漫画全彩无遮挡| 国产一级毛片七仙女欲春2| 亚洲av不卡在线观看| 成人特级av手机在线观看| 九九在线视频观看精品| 亚洲精品456在线播放app| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 啦啦啦啦在线视频资源| 少妇的逼好多水| 欧美最新免费一区二区三区| 夜夜夜夜夜久久久久| 国产av不卡久久| 国产黄片美女视频| 99热这里只有是精品在线观看| 五月玫瑰六月丁香| 免费无遮挡裸体视频| 日本撒尿小便嘘嘘汇集6| 精品午夜福利在线看| 欧美不卡视频在线免费观看| 99热全是精品| 亚洲熟妇中文字幕五十中出| 一个人看的www免费观看视频| 97超级碰碰碰精品色视频在线观看| 国产男人的电影天堂91| 波野结衣二区三区在线| 啦啦啦啦在线视频资源| 精品久久国产蜜桃| 亚洲人成网站在线播放欧美日韩| 91精品国产九色| 久久久久久大精品| av.在线天堂| 欧美另类亚洲清纯唯美| av在线天堂中文字幕| 人妻夜夜爽99麻豆av|