鄭琛,李發(fā)弟,李飛,周巨旺,段鵬偉,劉繪匯,樊海苗,朱威力,劉婷
代乳粉添加單寧酸對7—28日齡湖羊羔羊胃腸道發(fā)育的影響
鄭琛1,李發(fā)弟2,3,李飛2,周巨旺1,段鵬偉1,劉繪匯1,樊海苗1,朱威力1,劉婷1
(1甘肅農業(yè)大學動物科學技術學院,蘭州 730070;2蘭州大學草地農業(yè)生態(tài)系統國家重點實驗室/蘭州大學農業(yè)農村部草牧業(yè)創(chuàng)新重點實驗室/ 蘭州大學草地農業(yè)科技學院,蘭州 730020;3甘肅省肉羊繁育生物技術工程實驗室,甘肅民勤 733300)
【】觀察代乳粉中添加單寧酸對7—28日齡湖羊羔羊胃腸道生長發(fā)育的影響。選擇同質性好的7日齡湖羊公羔(雙羔)30只,隨機分為2組,每組15只,每只1個重復,分別飼喂對照代乳粉或單寧酸含量為0.2%的代乳粉,試驗期21 d。羔羊28日齡時飼養(yǎng)試驗結束,每組隨機選擇8只羔羊進行屠宰,分離胃室和腸段,分別稱量各胃室和各腸段凈質量以及含內容物質量,并量取各腸段的長度,計算各胃室和各腸段的相對質量和相對長度及內容物分布。腸道組織形態(tài)學和上皮細胞凋亡率用皺胃胃底腺區(qū)及十二指腸、空腸和回腸中段的組織樣品測定。腸道屏障功能相關的閉鎖蛋白(occludin)、閉鎖小帶1(zonula occludens-1,ZO-1)和緊密連接蛋白1(claudin 1)mRNA表達量用采集的十二指腸、空腸和回腸黏膜測定。除十二指腸指數(%活體質量,=0.012)和相對質量(%全腸質量,=0.034;%全胃腸質量,=0.017)、空腸和結腸相對長度(%全腸長度,=0.030,=0.004)及結腸內容物分布(%活體質量,=0.039)外,單寧酸對羔羊胃腸指數(%活體質量)、胃腸相對質量(%全胃質量、%全腸質量和%全胃腸質量)、腸道相對長度(%全腸長度)、內容物相對質量(%活體質量)、胃腸內容物相對總胃/腸內容物及總胃腸內容物相對質量(%總胃內容物、總腸內容物、總胃腸內容物)以及小腸claudin 1蛋白mRNA表達量均沒有產生顯著影響(>0.05),但顯著提高羔羊十二指腸肌層厚度并降低絨毛寬度(=0.013,=0.001),顯著上調空腸ZO-1蛋白mRNA表達量(=0.003),此外,單寧酸有上調羔羊空腸occludin蛋白mRNA表達量并降低空腸絨毛寬度和隱窩深度以及空腸和回腸上皮細胞凋亡率的趨勢(=0.077,=0.073,=0.062,=0.097,=0.052)。單寧酸顯著降低7—28日齡湖羊羔羊十二指腸相對質量和空腸相對長度,但可通過提高十二指腸肌層厚度、上調空腸ZO-1蛋白和occludin蛋白mRNA表達量并降低空腸隱窩深度及空腸和回腸上皮細胞凋亡率來改善腸屏障功能。
單寧酸;羔羊;代乳粉;胃腸道;發(fā)育
【研究意義】胃腸道是哺乳動物最重要的消化器官,承擔著為機體供給養(yǎng)分的重任,同時也是機體最大的免疫器官,起到保障機體健康的作用[1]。幼齡哺乳動物出生前,胃腸道的發(fā)育與內部信號分子有關[2],出生后則取決于胃腸道內養(yǎng)分及各種生物活性因子[3]。因此,研究幼齡動物胃腸道的發(fā)育規(guī)律及調控效果,對提高動物養(yǎng)分消化利用率有重要意義。【前人研究進展】單寧酸是一種植物次級代謝物,廣泛存在于豆科植物和高粱、五倍子、石榴等[4],可溶于水和乙醇,化學結構較為復雜[5],而其復雜的多元酚羥基結構,決定了單寧酸具有抗瀉、抗菌、抗氧化和抗病毒等生物學功能[6]。目前,歐盟已批準單寧酸可作為飼料添加劑,在豬、肉雞和奶牛的養(yǎng)殖中已開始使用[7]。REZAR等[8]發(fā)現肉仔雞飼糧中添加0.2%栗木單寧酸能顯著增加糞干物質含量,減少腹瀉的發(fā)生。隋慧等[9]和孫展英等[10]也均發(fā)現,飼糧中添加0.05 %和0.1%單寧酸可降低仔豬腹瀉率。GIRARD等[11]也指出,在產腸毒素大腸桿菌誘發(fā)腹瀉的斷奶仔豬模型中,添加1%栗木單寧提取物(54%水解單寧)可顯著降低腹瀉率。此外,單寧酸也在抑制產氣莢膜梭菌[12]、大腸桿菌[13]和金黃色葡萄球菌[14]等病原菌、提高總抗氧化活力和抑制丙二醛[15-16]、抑制甲型流感病毒受體結合[17]和丙型肝炎病毒進入細胞[18]、以及通過損傷寄生蟲表皮蛋白而抑制寄生蟲[19]等方面發(fā)揮著重要作用?!颈狙芯壳腥朦c】通常情況下,腸黏膜的屏障作用和養(yǎng)分吸收作用與上皮細胞的抗氧化活性密切相關,因此,很多學者認為具有抗氧化活性的植物提取物或次級代謝物,如單寧酸等,可通過改善腸黏膜上皮細胞組織形態(tài)而提高養(yǎng)分消化利用率[20]。JAMROZ等[21]報道,飼糧添加0.025%和0.05% 甜栗水解單寧對肉仔雞腸道無顯著影響,而添加量為0.1%時對空腸上皮細胞有負面作用。但LIU等[22]報道,0.2%栗木單寧可提高熱應激肉雞空腸黏膜絨毛高度,ZHAO等[23]指出,飼糧中添加0.1%單寧可提高湖羊空腸和回腸黏膜絨毛高度和絨毛高度/隱窩深度值(V/C),劉洋等[24]也指出,0.05%栗木水解單寧可修復肉雞腸道損傷。鑒于此,本研究提出假設,適宜劑量的單寧酸可通過改善羔羊胃腸道內環(huán)境而影響胃腸道生長發(fā)育?!緮M解決的關鍵問題】因此,本試驗選擇7日齡湖羊公雙羔作為試驗對象,研究代乳粉中添加單寧酸對胃腸道生長發(fā)育的影響,為羔羊生產提供基礎數據。
試驗選取同質性好的7日齡湖羊公羔(雙羔)30只(甘肅金昌中天羊業(yè)有限公司),采用對照試驗設計,羔羊隨機分入2個處理組(對照組和0.2%單寧酸組),每組15只,每只1個重復,保證羔羊7日齡體重組間無差異(對照組(4.09 ± 0.66)kg,單寧酸組(3.89 ± 0.62)kg)。試驗期21 d,羔羊28日齡結束試驗,并從每組隨機選擇8只羔羊進行屠宰。
羔羊在1—3日齡時吸吮初乳,4日齡時與母羊分離,開始用奶瓶訓飼代乳粉,7日齡晨飼前空腹稱重并分組。8日齡開始,對照組羔羊飼喂羔羊專用代乳粉(北京精準動物營養(yǎng)研究中心,養(yǎng)分濃度見表1),單寧酸組羔羊則飼喂在對照組代乳粉基礎上添加0.2%單寧酸(MACKLIN?,上海麥克林生化科技有限公司,AR,純度98%)的代乳粉。飼喂時,用溫水溶解代乳粉,比例為5﹕1,每天分別在6:00、12:00、18:00和24:00飼喂4次,喂量為羔羊體重的2 %。羔羊單籠飼養(yǎng),自由飲水。
屠宰前羔羊不禁水禁食。羔羊28日齡時,先稱量宰前活重,然后切斷頸靜脈放血致死。迅速打開羔羊腹腔,按馬仲華[25]的方法分出4個胃室和6段腸段,結扎各胃室和腸段的連接處并分離。稱量各胃室和各腸段含內容物的質量后,排空內容物并稱量各胃室和各腸段的凈質量,計算各胃室和各腸段的相對質量及其內容物分布情況。同時量取各腸段的長度以計算相對長度。
確定采樣部位,用手術剪從皺胃胃底腺區(qū)以及十二指腸、空腸和回腸中部采集約1 cm2組織塊,轉移至10 mL帶蓋離心管中,加入10 mL多聚甲醛以固定樣品。然后將樣品送至成都里來生物科技有限公司,用蘇木精-伊紅染色法進行形態(tài)學測定,用TUNEL法測定上皮細胞凋亡率。
截取十二指腸、空腸和回腸中段組織樣品,用載玻片刮取黏膜后轉入2 mL凍存管并迅速轉入液氮罐冷凍,帶回實驗室后轉入-80℃冰箱冷凍保存,用于測定小腸黏膜閉鎖蛋白(occludin)、閉鎖小帶1(zonula occludens-1,ZO-1)和緊密連接蛋白1(claudin 1)mRNA表達量。提取十二指腸、空腸和回腸黏膜中的總RNA,然后將各樣品RNA反轉錄為cDNA。Oligo 7.0設計引物(occludin引物長度93 bp,GenBank號NC_040267;ZO-1和claudin 1引物長度分別為163 bp和216 bp,參考LIU等[26]),以β-Actin為內參基因(長度97 bp,GenBank號NC_040362)。RT-PCR使用20 μL擴增體系:10 μL 2×Biogold qPCR SuperMix(2×Biogold qPCR Mixture,浙江博而金科技股份有限公司),0.4 μL上下游引物,1 μL cDNA,8.2 μL ddH2O。反應條件為:95℃預變性3 min,95℃變性10 s,60℃退火20 s,72℃延伸10 s,40個循環(huán),72℃延伸10 min。目的基因的相對表達量用2-ΔΔCt法計算。
表1 羔羊代乳粉養(yǎng)分濃度(風干基礎,%)
營養(yǎng)水平均為實測值 The nutrient levels are measured values
試驗數據用SPSS 22.0統計分析軟件對數據進行獨立樣本t檢驗,以≤0.05表示為差異顯著,以0.05<≤0.10表示差異具有顯著趨勢。
從表2可以看出,單寧酸顯著降低羔羊十二指腸相對質量(%活體質量,=0.012;全腸質量,=0.034;%全胃腸質量,=0.017),并有降低羔羊盲腸相對質量的趨勢(%活體質量,=0.072),對羔羊胃室和其他腸段指數沒有產生顯著影響(>0.05)。
從表3可以看出,單寧酸顯著降低羔羊空腸相對長度并顯著增加結腸相對長度(%全腸長度,=0.030,=0.004),對羔羊其他腸段相對長度無顯著影響(>0.05)。
從表4可以看出,單寧酸顯著降低羔羊結腸內容物相對活體質量(%活體質量,=0.039),并有降低皺胃內容物相對活體質量的趨勢(%活體質量,=0.053),對羔羊胃室及其他腸段內容物相對質量(%總胃內容物、%總腸內容物和%總胃腸內容物)沒有產生顯著影響(>0.05)。
表2 單寧酸對羔羊胃腸相對質量的影響
同行數據后所標字母相異表示差異顯著(<0.05),所標字母相同表示差異不顯著(>0.05)。下同
Different letters in the same row means significant difference between the treatments (<0.05), same letter in the same row means not significant difference between treatments (>0.05). The same as below
表3 單寧酸對羔羊腸道相對長度的影響
表4 單寧酸對羔羊胃腸內容物相對質量的影響
從表5可以看出,單寧酸顯著提高羔羊十二指腸肌層厚度并顯著降低絨毛寬度(=0.013,=0.001),此外,單寧酸有降低空腸絨毛寬度和隱窩深度的趨勢(=0.073,=0.062)。單寧酸對羔羊皺胃和小腸其他形態(tài)學指標未產生顯著影響(>0.05)。
從表6可以看出,單寧酸顯著上調羔羊空腸ZO-1蛋白mRNA表達量(=0.003),且有上調空腸occludin蛋白mRNA表達量及降低空腸和回腸上皮細胞凋亡率的趨勢(=0.077,=0.097,=0.052)。單寧酸對羔羊十二指腸ZO-1蛋白和claudin 1蛋白mRNA表達量及上皮細胞凋亡率、空腸claudin 1蛋白mRNA表達量以及回腸occludin蛋白、ZO-1蛋白和claudin 1蛋白mRNA表達量均沒有產生顯著影響(>0.05)。
反芻動物出生時皺胃占總容積的60%,瘤網胃占35%,而隨著生長發(fā)育,前胃迅速發(fā)育,成年時瘤胃占整個胃重的80%,皺胃僅占8%[27];同樣,新生反芻動物腸管占消化道的70%—80%,而隨日齡增長和飼糧變化,腸道比例逐漸下降,胃的比例大大上升,成年時腸管占消化道的比例降為30%—50%[28]。初乳、乳源性促生長因子、營養(yǎng)水平、斷奶等均會影響幼齡反芻動物胃腸道發(fā)育,飼糧也是影響胃腸道發(fā)育的重要因子[29]。本次試驗中,單寧酸顯著降低羔羊十二指腸相對質量,對其他胃室和腸段均未產生顯著影響,這是因為單寧酸與蛋白質可結合為緊密的絡合物[30],雖然皺胃中的強酸可分解該絡合物,但羔羊皺胃功能發(fā)育不完善,pH較高,不能有效分解單寧酸和蛋白質的絡合物,導致流入十二指腸的可消化蛋白質數量減少,對十二指腸的刺激作用減弱[1]。此外,在試驗全期,羔羊均飼喂液態(tài)代乳粉,胃腸道缺乏有效的物理刺激,導致羔羊胃腸道發(fā)育延滯,尤其是瘤胃[28-29,31]。
本次試驗中,除結腸內容物相對活體質量(%活體質量)外,單寧酸對羔羊胃室和腸道各段的內容物分布并未產生顯著的影響,這是因為,胃腸道內容物的分布主要由飼糧的物理形態(tài)及胃腸道的蠕動所決定[28]。本試驗全期均給羔羊飼喂液態(tài)代乳粉,會縮短胃腸道中食糜的停留時間,而添加量為0.2%的單寧酸不足以改變飼糧物理特性,導致羔羊胃腸道內容物分布無顯著差異[28]。此外,胃腸道的節(jié)律運動由機體神經系統、內分泌系統、食糜壓力差和物理化學性質等多種因素調控[32],單寧酸作為外源添加的少量植物次級代謝物,不能對羔羊胃腸道蠕動和內容物分布產生顯著影響。
幼齡反芻動物由于瘤胃功能發(fā)育不完善,大量養(yǎng)分會進入皺胃和小腸,皺胃和小腸也成為了養(yǎng)分最主要的消化吸收部位[33-35],而養(yǎng)分的吸收取決于皺胃和小腸的組織形態(tài)。腸道肌層主要參與蠕動,以及通過緊張性收縮維持腸道正常形態(tài)[36];腸道絨毛與養(yǎng)分吸收有關,絨毛越高表明吸收表面積越大[37];腸道隱窩內的未分化細胞與腸絨毛形態(tài)和功能正常有關[38];V/C值與腸黏膜上皮的成熟有關,比值越高表明成熟細胞所占比例越大,腸道吸收功能越強[36]。本次試驗中,單寧酸顯著提高羔羊十二指腸肌層厚度并顯著降低絨毛寬度,且有提高羔羊回腸絨毛寬度和降低空腸絨毛寬度和隱窩深度的趨勢,這是因為十二指腸可消化蛋白質數量降低,腸絨毛的脫落減緩,導致絨毛高度較高而降低絨毛寬度,并使肌層厚度增加[23]。而食糜快速通過十二指腸后,較多的蛋白質刺激空腸段絨毛脫落,導致空腸絨毛高度變低,寬度變窄,且由于空腸上皮細胞成熟度升高而使隱窩深度變淺[39]。但本試驗中,采食含單寧酸代乳粉羔羊的十二指腸和空腸V/C值均高于對照組羔羊,表明單寧酸有助于提高羔羊十二指腸和空腸的養(yǎng)分吸收能力[23]。本試驗中單寧酸顯著上調羔羊空腸ZO-1蛋白mRNA表達量且有上調十二指腸和空腸occludin蛋白mRNA蛋白表達量的趨勢,小腸上皮細胞凋亡率均低于對照組羔羊,也與羔羊小腸形態(tài)學結果相符合。腸道緊密連接蛋白是腸黏膜屏障中機械屏障的組成成分,對保障屏障正常功能、阻止病原微生物入侵、養(yǎng)分的選擇性通透等起重要作用[40]。幼齡哺乳動物出生后,腸道開始逐漸發(fā)育,上皮細胞凋亡和有絲分裂共同作用,使功能逐漸完善,而母乳或胃腸道中的胰高血糖素樣肽(glucagon-like peptide)、胰島素(insulin)、胰島素樣生長因子(insulin- like growth factors,IGFs)、瘦素(leptin)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、表皮生長因子(epidermal growth factor,EGF)等,都會對上皮細胞的增殖、分化和凋亡產生重要作用[39]。通常情況下,腸道炎癥出現時,會使TNF-α等細胞因子的分泌量增加,而TNF-α也是誘導腸道上皮細胞凋亡的重要信號之一[39]。但單寧酸有多種抗炎活性[41-42],可以抑制炎癥因子,從而保障腸道屏障功能并降低上皮細胞凋亡率,這也是本次試驗中,采食含單寧酸代乳粉羔羊小腸緊密連接蛋白mRNA表達量上調且上皮細胞凋亡率降低的主要原因。Liu等[43]研究發(fā)現,炎癥小鼠注射從水柏枝()中提取的水解單寧后,抗炎作用明顯。Hoffmann等[44]也報道,委陵菜()提取物富含單寧,表現出很強的抗炎作用。此外,Liu[43]等研究發(fā)現,飼糧添加0.2%栗木單寧可上調熱應激肉雞空腸黏膜ZO-1蛋白mRNA表達量,也與本試驗中單寧酸改善羔羊腸道屏障功能的結果相似。
7—28日齡湖羊羔羊代乳粉中添加0.2%單寧酸顯著降低十二指腸相對質量和空腸相對長度,顯著提高結腸相對長度,對胃腸道其他部位的相對質量和長度無顯著影響。單寧酸顯著提高羔羊十二指腸肌層厚度、降低絨毛寬度并上調空腸ZO-1蛋白mRNA表達量,且有上調羔羊空腸occludin蛋白mRNA表達量并降低空腸絨毛寬度和隱窩深度以及空腸和回腸上皮細胞凋亡率的趨勢。表明單寧酸對7—28日齡湖羊羔羊胃腸道生長的影響較為微弱,但在調節(jié)小腸組織形態(tài)并維持正常屏障功能方面發(fā)揮一定的作用。
[1] 張慶麗, 孫志洪, 張恩平, 賀志雄, 譚支良. 哺乳動物胃腸道發(fā)育特征和早期營養(yǎng)調控研究進展. 基因組學與應用生物學, 2009, 28(3): 594-600.
ZHANG Q L, SUN Z H, ZHANG E P, HE Z X, TAN Z L. The development features and early nutritional regulation of mammalian gastrointestinal tracts., 2009, 28(3): 594-600. (in Chinese)
[2] SANGILD P T, SCHMIDT M, ELNIF J, BJORNVAD C R, WESTROM B R, BUDINGTON R K. Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction., 2002, 52(3): 416-424.
[3] JENSEN A R, ELNIF J, BURRIN D G, SANGILD P T. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet-dependent., 2001, 131: 3259-3265.
[4] DARVIN P, JOUNG Y H, KANG D Y, SP N, BYUN H J, HWANG T S, SASIDHARAKURUP H, LEE C H, CHO K H, PARK K D, LEE H K, YANG Y M. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells., 2017, 21(4): 720-734.
[5] 宋妍妍, 陳代文, 余冰, 虞潔. 單寧酸的營養(yǎng)生理功能及其在單胃動物生產中的應用研究進展. 動物營養(yǎng)學報, 2019, 31(6): 2544-2551.
SONG Y Y, CHEN D W, YU B, YU J. Physiological functions of tannic acid and its application in monogastric animal production.2019, 31(6): 2544-2551. (in Chinese)
[6] FRASCA G, CARDILE V, PUGLIA C, BONINA C, BONINA F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells.2012, 5: 61-67.
[7] 侯海鋒, 劉彥慈, 馬可為, 李茜. 水解單寧酸對肉仔雞生產性能、屠宰性能及肉品質的影響. 今日畜牧獸醫(yī), 2016(2): 51-53.
HOU H F, LIU Y C, MA K W, LI Q. Effects of hydrolyzed tannic acid on production performance, slaughter performance and meat quality of broiler chicken.2016(2): 51-53. (in Chinese)
[8] REZAR V, SALOBIR J. Effects of tannin-rich sweet chestnut () wood extract supplementation on nutrient utilisation and excreta dry matter content in broiler chickens., 2014, 78. DOI: 10. 1399/eps. 2014. 42.
[9] 隋慧, 付莉, 史麗華, 莊天中. 單寧酸對斷奶仔豬腹瀉率和生長性能的影響. 飼料研究, 2013(7): 50-53.
SUI H, FU L, SHI L H, ZHUANG T Z. Effects of tannic acid on diarrhea rate and growth performance of weaned piglets., 2013(7): 50-53. (in Chinese)
[10] 孫展英, 李建濤, 陳寶江. 單寧酸對仔豬生長性能、營養(yǎng)物質利用率及相關消化酶活性的影響. 飼料研究, 2014(1): 46-49.
SUN Z Y, LI J T, CHEN B J. Effects of tannic acid on growth performance, nutrients utilization, and related digestive enzyme activity of piglets., 2014(1): 46-49. (in Chinese)
[11] GIRARD M, THANNER S, PRADERVAND N, HU D, OLLAGNIER C, BEE G. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model., 2018, 13(5): e0197878.
[12] TOSI G, MASSI P, ANTONGIOVANNI M, BUCCIONI A, MINIERI S, MARENCHINO L, MELE M. Efficacy test of a hydrolysable tannin extract against necrotic enteritis in challenged broiler chickens., 2013, 12(3): e62.
[13] JAMROZ D, WILICZKIEWICZ A, SKORUPI?SKA J, ORDA J, KURYSZKO J, TSCHIRCH H. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens., 2009, 50(6): 687-699.
[14] TINTINO S R, OLIVEIRA-TINTINO C D M, CAMPINA F F, SILVA R L P, COSTA M D, MENEZES I R A, CALIXTO-JúNIOR J T, SIQUEIRA-JUNIOR J P, COUTINHO H D M, LEAL-BALBINO T C, BALBINO V Q. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of., 2016, 97: 9-13.
[15] YE M H, NAN Y L, DING M M, HU J B, LIU Q, WEI W H, YANG S M. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt’s voles ()., 2016, 196-197: 19-26.
[16] LIU H W, DONG X F, TONG J M, ZHENG Q. A comparative study of growth performance and antioxidant status of rabbits when fed with or without chestnut tannins under high ambient temperature., 2011, 164(1/2): 89-95.
[17] THEISEN L L, ERDELMEIER C A J, SPODEN G A, BOUKHALLOUK F, SAUSY A, FLORIN L, MULLER C P. Tannins frombark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus., 2014, 9(1): e88062.
[18] LIU S H, CHEN R, HAGEDORN C H. Tannic acid inhibits hepatitis C virus entry into Huh 7. 5 cells., 2015, 10(7): e0131358.
[19] HOSTE H, JACKSON F, ATHANASIADOU S, THAMSBORG S M, HOSKIN S O. The effects of tannin-rich plants on parasitic nematodes in ruminants., 2006, 22(6): 253-261.
[20] RHODES M J C. Physiologically active compounds in plant foods: An overview., 1996, 55: 371-384.
[21] JAMROZ D, WILICZKIEWICZ A, SKORUPI?SKA J, ORDA J, KURYSZKO J, TSCHIRCH H. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens., 2009, 50(6): 687-699.
[22] LIU H W, LI K, ZHAO J S, DENG W. Effects of chestnut tannins on intestinal morphology, barrier function, pro-inflammatory cytokine expression, microflora and antioxidant capacity in heat-stressed broilers., 2018, 102: 717-726.
[23] ZHAO M D, DI L F, TANG Z Y, JIANG W, LI C Y. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep., 2019, 32. DOI: 10. 5713/ ajas. 18. 0901.
[24] 劉洋, 張亞峰, 張宇. 栗木水解單寧對產氣莢膜梭菌的抑菌作用及對壞死性腸炎腸道損傷的影響. 飼料工業(yè), 2017, 38(4): 61-64.
LIU Y, ZHANG Y F, ZHANG Y. Effects of chestnut tannin on the intestinal lesions of necrotizing enterocolitis and its restraining function on clostridium perfringens., 2017, 38(4): 61-64. (in Chinese)
[25] 馬仲華. 家畜解剖學及組織胚胎學. 3版. 北京: 中國農業(yè)出版社, 2001.
MA Z H.. 3rded. Beijing: China Agriculture Press, 2001. (in Chinese)
[26] LIU J H, XU T T, LIU Y J, ZHU W Y, MAO S Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats., 2013, 305: R232-R241.
[27] WARNER R G, FLATT W P, LOOSLI J K. Dietary factors influencing the development of the ruminant stomach., 1956, 4: 788-801.
[28] 劉敏雄. 反芻動物消化生理學. 北京: 北京農業(yè)大學出版社, 1991.
LIU M X.. Beijing: Beijing Agricultural University Press, 1991. (in Chinese)
[29] 李輝, 刁其玉, 張乃鋒, 屠焰. 不同蛋白質來源對早期斷奶犢牛胃腸道形態(tài)發(fā)育的影響(二). 動物營養(yǎng)學報, 2009, 21(2): 186-191.
LI H, DIAO Q Y, ZHANG N F, TU Y. Effects of different protein sources on gastrointestinal characteristics in early-weaning calve (Ⅱ)., 2009, 21(2): 186-191. (in Chinese)
[30] ZHOU K, BAO Y, ZHAO G Y. Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle., 2019, 73(1): 30-43.
[31] KHAN M A, LEE H, LEE W, KIM H, KIM S, PARK S B, BAEK K S, HA J K, CHOI Y. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves., 2008, 91(3): 1140-1149.
[32] 趙如茜. 動物生理學. 五版. 北京: 中國農業(yè)出版社, 2011.
ZHAO R Q.. 5th ed. Beijing: China Agricultural Press, 2011. (in Chinese)
[33] SUN D M, LI H W, MAO S Y, ZHU W Y, LIU J H. Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in preweaned lambs., 2018, 96: 306-317.
[34] BALDWIN R, MCLEOD K, KLOTZ J, HEITMANN R. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant., 2004, 87: E55-E65.
[35] WOOD I S, DYER J, HOFMANN R R, SHIRAZI-BEECHEY S P. Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants., 2000, 441: 155-162.
[36] 馬致遠. 早期斷奶對湖羊羔羊生產性能及胃腸道發(fā)育的影響[D]. 蘭州: 蘭州大學, 2015.
MA Z Y. Effect of early weaning on performance and gastrointestinal tract development of Hu lambs [D]. Lanzhou: Lanzhou University, 2015. (in Chinese)
[37] 歐陽五慶. 動物生理學. 北京: 科學出版社, 2010.
OUYANG W Q.. Beijing: Science Press, 2010. (in Chinese)
[38] 祁敏麗. 日糧能量和蛋白質水平對羔羊生長性能和胃腸道發(fā)育的影響[D]. 北京: 中國農業(yè)科學院, 2016.
QI M L. Effects of dietary energy and protein level on growth performance and gastrointestinal development of lambs [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[39] 王遠孝. IUGR豬的生長與腸道發(fā)育及L-精氨酸和大豆卵磷脂的營養(yǎng)調控研究[D]. 南京: 南京農業(yè)大學, 2011.
WANG Y X. Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutrition regulation by L-arginine and soya lecithine [D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[40] GONZáLEZ-MARISCAL L, LECHUGA S, GARAY E. Role of tight junctions in cell proliferation and cancer., 2007, 42(1): 1-57.
[41] 魏晨, 游偉, 張相倫, 萬發(fā)春. 單寧的生物活性及其在反芻動物生產中的應用. 中國飼料, 2019(3): 10-13.
WEI C, YOU W, ZHANG X L, WAN F C. Bioactivity and application in ruminant of tannins., 2019(3): 10-13. (in Chinese)
[42] HUANG Q Q, LIU X L, ZHAO G Q, HU T M, WANG Y X. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production., 2018, 4: 137-150.
[43] LIU J B, DING Y S, ZHANG Y, CHEN J B, CUI B S, BAI J Y, LIN M B, HOU Q, ZHANG P C, LI S. Anti-inflammatory hydrolyzable tannins from., 2015, 78(5): 1015-1025.
[44] HOFFMANN J, CASETTI F, BULLERKOTTE U, HAARHAUS B, VAGEDES J, SCHEMPP C M, WOLFLE U. Anti-inflammatory effects of agrimoniin-enriched fractions of., 2016, 21(6): 792.
Effects of Tannic Acid Addition in Milk Replacer on Development of Gastrointestinal Tract of 7 to 28 Days Old Hu Lambs
ZHENG Chen1, LI FaDi2,3, LI Fei2, ZHOU JuWang1, DUAN PengWei1, LIU HuiHui1, FAN HaiMiao1, ZHU WeiLi1, LIU Ting1
(1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070;2State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University/Key laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020;3Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, Gansu)
【】This study was conducted to investigate the effects of tannic acid supplementation to milk replacer on the development of gastrointestinal tract of 7 to 28 day-old Hu lambs. 【】Thirty 7 day-old Hu male lambs were chosen and divided into 2 groups, fifteen lambs in each group and each lamb as a duplication. Lambs were fed milk replacer with or without 0.2% tannic acid, respectively. The test lasted 21 days. Eight lambs were selected from each group randomly and slaughtered at 28 day-old. The weights of the compound stomach and the intestinal tract with and without content, and lengths of the intestinal tract were measured, then the relative quality and length were calculated. While the tissue samples from fundus gland region of the abomasum, the middle part of duodenum, jejunum and ileum were fixed in paraformaldehyde to analyse the histomorphology, and the apoptotic rate of intestinal epithelial cells as well. And the mRNA expression of occludin, ZO-1 and claudin 1 protein of duodenum, jejunum and ileum mucosa were measured.【】The results showed that except relative weights of duodenum (% body weight,=0.012; % intestinal tract weight,=0.034; % gastrointestinal tract weight,=0.017), relative length of jejunum and colon (% intestinal tract length,=0.030, P=0.004), and content of colon (% body weight,=0.039), the relative weights (% body weight, % stomach weight, % intestinal tract weight, and % gastrointestinal tract weight), relative lengths (% intestinal tract length), content of stomach and intestinal tract (% body weight, % stomach content weight, % intestinal tract content weight, and % gastrointestinal tract content weight), and mRNA expression of claudin 1 protein in intestinal tract of lambs were not affected by tannic acid (>0.05). However, tannic acid elongated the muscular thickness of duodenum and decreased the villus width of lamb duodenum significantly (=0.013=0.001), and up-regulated mRNA expression of ZO-1 protein of jejunum (=0.003). And there was a tendency that tannic acid up-regulated mRNA expression of occludin protein of jejunum (=0.077), and decreased villus width and crypt depth of jejunum and the apoptotic rate of jejunum and ileum cells (=0.073,=0.062,=0.097,=0.052). 【】In conclusion, tannic acid decreased the relative weights of duodenum and relative length of jejunum of 7-28 day-old Hu lambs, but improved the barrier function of intestinal tract via elongating the muscular thickness of duodenum, up-regulating the mRNA expression of ZO-1 and occludin protein of jejunum, and decreasing the crypt depth of jejunum and the apoptotic rate of jejunum and ileum cells.
tannic acid; lamb; milk replacer; gastrointestinal tract; development
10.3864/j.issn.0578-1752.2019.21.019
2019-06-24;
甘肅農業(yè)大學青年研究生指導教師扶持基金項目(GAU-QNDS-201603)
鄭琛,E-mail:zhengc@gsau.edu.cn。通信作者劉婷,E-mail:liuting@gsau.edu.cn
(責任編輯 林鑒非)