• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the friction effects on rigid-body penetration in concrete and aluminium-alloy targets

    2019-10-31 07:08:26ChiPiLiHung
    Defence Technology 2019年4期

    C.G.Chi ,A.G.Pi ,Q.M.Li ,F.L.Hung

    a Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang,Sichuan,621900,China

    b State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing,100081,China

    c School of Mechanical,Aerospace and Civil Engineering,University of Manchester,Manchester,M13 9PL,UK

    Keywords:Penetration Friction Concrete Aluminium

    A B S T R A C T The friction on the projectile shank is usually excluded in the penetration analysis due to the difficulties to measure the pressure and frictional coefficient.In this article,the frictional force on projectile shank is discussed indirectly through the comparison between experimental data and empirical/analytical formulas of the penetration depth for both concrete and aluminium-alloy targets.It is found that the effect of the frictional force along the projectile shank can be further discussed by the afore comparison and discussion and cannot be ignored because of the relatively large effecting area,especially for deep penetration of concrete and aluminium-alloy targets,where the friction will account for more proportion of penetration resistance.

    1. Introduction

    The frictional force on the projectile shank is usually excluded in the penetration analysis due to the difficulties to measure the pressure and frictional coefficient between the projectile shank and target under such extreme conditions.There are limited researches on this issue.Rosenberg and Forrestal[1]conducted a series of perforation tests on 6061-T651 target plate using normal and reduced-shank projectiles with conical head shape.It indicated that about 10%reduction of the ballistic limit can be caused when a reduced-shank projectile was used. Ref. [2] used normal and reduced-shank projectiles with ogival head shape in the penetration into concrete target, and the penetration depth for the reduced-shank projectile increased more than 10%when compared with the penetration depth of normal projectile.However,in a study of deep penetration into 6061-T651 target by normal and reduced-shank projectiles with hemi-spherical head shape in Ref.[3],it was found that the frictional force on the projectile shank has very small influence on the penetration depth.

    Furthermore,a general analytical solution of the penetration depth was derived in Ref.[4]based on non-dimensional impact factor I0(defined later in Eq.(13)),i.e.P/d=2I0/π,where P is the penetration depth,d is the diameter of the projectile.Meanwhile,an empirical equation, P/d= I0/2, was also proposed, which agreed better with wide range of experimental data for deep penetration than the afore analytical equation.However,the reasons why the empirical equation was better than the analytical equation was not explained in Ref.[4].

    In this article,the frictional force on the projectile shank is included in the penetration resistance and the analytical solution for the penetration depth under such situation is obtained,based on which,the analytical predictions of the penetration depth for both concrete and aluminium-alloy targets are compared with a range of experimental data as well as the analytical and empirical equations.

    2. Rigid-body penetration with considering friction on projectile shank

    The normal stress σnon the projectile head perpendicular to projectile surface is commonly given by Ref.[5].

    where Y and ρtare the yield stress and density of target material,respectively;A and B are non-dimensional material constants,related to the effects of strength and inertia of target material;vnis the material particle velocity normal to the surface of the projectile head which can be determined by the penetrating velocity v of a projectile according to vn=vcosθ;The tangential stress on the head is presumably determined by the friction on the interface,σt=μσn,where μ is the sliding friction coefficient on the projectile-target interface.

    When the projectile shank enters into the tunnel which has been opened by the projectile head,the pressure of expansion Bρtv2nin Eq.(1)would decrease to 0,because there is no further expansion and the expanding velocity v on the projectile shank changes to 0.Then the pressure on the shank can be derived as psh=AY,as suggested in Ref.[6].This is valid when cavitation does not occur if the impact speed is not sufficiently high[7].

    Taking the frictional force on the projectile head and shank into account,and using the same derivation procedure as that in Ref.[4],the axial resistance on the projectile can be expressed as

    where N1and N2are integral constants according to projectile shape,shown in Eq.(4)-Eq.(7);ρtis target material density;v is penetrating velocity;L0and h are overall lengths of projectile and height of projectile head,as shown in Fig.1.

    For deep penetration where the effect of the entrance stage can be neglected,the final penetration depth considering projectile shank friction can be integrated from Newton's second law of motion as

    where

    Fig.1.Schematic of a projectile.

    where caliber-radius-head(CRH),v0is the initial impact velocity of projectile.

    Taking

    while I*<1,Taylor series expression of Eq.(3)gives

    Let

    Then,the 1st-order approximation of Taylor series expression of Eq.(3)is Although Eq.(12)has the same appearance as the corresponding Eq.(20)in Ref.[4],in Eq.(4)contains an extra term of friction contribution from the projectile shank in comparison with N1in Eq.(8)in Ref.[4].

    For the penetration of concrete target,where the unconfined compressive strengthis measured in MPa.For the penetration of aluminium-alloy target,as suggested in Ref.[8],where E and Y are the elastic modulus and yield stress of aluminium-alloy target,respectively.

    According to Eq.(11),the 1st-order approximation of Taylor series expression of Eq.(3),where μ=0,is

    It was shown in Ref.[4]that empirical formula

    has better agreement with deep penetration testing data than Eq[14].

    Fig.2.The comparison between non-dimensional penetration depth P/d of experiments and formulas of P/d=2I0/π and P/d=I0/2[5,9,10]

    3. Rigid-body penetration of concrete

    The comparison of Eq.(14)and Eq.(15)with experimental data of penetration of concrete target is shown in Fig.2.It is shown that empirical formula P/d=I0/2 fits much better than the analytical formula P/d=2I0/π in full-range experimental data, and the deeper the penetration is,the better the empirical formula is.In order to measure the predictability of Eq.(14)and Eq.(15),the difference ratio between experimental penetration depth Pexpand that from predicting formula Ppreis defined as

    Fig.3 shows the dependence of R on I0for Eq.(14)and Eq.(15).Fig.3(a)shows the variation of the difference ratio R with I0for the analytical formula P/d=2I0/π.Fig.3(b)shows the variation of the difference ratio R with I0for the empirical formula P/d=I0/2.When I0≥30,it is evident that the difference ratio for P/d=2I0/π has different trend from that for P/d=I0/2.The former increases with I0while the latter decreases with I0,reflecting the importance of frictional force on the projectile shank increases with the increase of penetration depth.When I0<30,which corresponds to P <15d,the entrance effects become important,which is not the focus of this study.

    Taking friction into account,would no longer equal to unity,and Eq.(12)can be transformed into

    The complexity of friction makes the calculation of frictional coefficient from first principles impractical and necessitates the use of empirical methods. Lim et al. analysed a large number of experimental data on the variations of frictional coefficient in sliding of steel on steel in a wide range of sliding conditions and presented the results of the analysis in the form of a friction regime map,and showed that at very high loads and velocities,a layer of molten metal forms between the sliding surfaces,reducing frictional coefficient to very low values[11].Balakin took frictional coefficient as the product of pressure and sliding velocity and showed that the frictional coefficient would decrease with the increase of this product.It is shown that frictional coefficient would decrease to lower than 0.02 when the product of pressure and sliding velocity was higher than 7GPa·m?s-1,and a declining trend was shown with the increase of this product[12],though being out of the experimental data limits,where the penetrating pressure and velocity can up to GPa and hundreds of meters per second,respectively.To the best of our knowledge,the precise frictional coefficient under high velocity penetration was not found,considering all the afore facts,an approximative coefficient lower than 0.02 was preferred in this article.

    Fig. 3.Difference ratio of experimental and predicting penetration depths from formulas.

    Fig.4.Schematics of friction experimental projectiles.

    In order to investigate the effects of friction on projectile shank,Ref.[2]conducted a series of penetration experiments with normal ogival head and normal shank and ogival head but reduced-shank projectiles.All projectiles have the same mass and head geometry,with a caliber-radius-head(CRH)of 3 and head radius s of 45 mm.Projectiles are shown in Fig.4.Concrete targets are 550 mm in diameter while the compressive strength is 45 MPa using 150 mm cubic samples.Experimental results are shown in Table 1.

    It is shown that the experimental penetration depths of normal shank projectile are consistently between 630 and 640 mm,which implies that experimental results are reliable.On the other hand,the penetration depths of reduced-shank projectiles are larger than those for normal shank projectiles. The penetration depth of reduced-shank projectiles under normal penetration should be larger than the experimental results since the trajectory deviation occurred in experiments,which increased the penetration resistance due to the unsymmetrical pressure distribution.Since their head geometries are same,it was suggested that the increase of the penetration depth was due to the disappearance of the friction resistance on the projectile shank.The ratio of the penetration depth increase,compared with normal shank projectiles,were 7.1%and 14.3%,respectively,with an average value of 10.7%.This increase was caused only by the elimination of shank friction while the head friction was still effective,and was in accordance with the simulation research,which stated that ignoring friction of projectile shank for deep penetration into concrete target would deduce at least an error of 10%[13].

    In fact,this results from experiments can further supported from some evaluations about Eq. (9). The meaning ofis comprehensive and complex,for it consists of penetrator head shape ψ,friction,nominal penetrator length L0,initial impact velocity v0,etc.For most concerned velocities(v0<1200m?s-1)and penetrator head shapes(0.5 <CRH <6),I*can be calculated in advance and only ranges from 0 to 1 and the corresponding

    Fig.5.The relations between and I*within concerned velocities and penetrator shapes.

    ranges from 1 to 0.7,as shown in Fig.5.If the median is taken rashly as 0.85 to represent the concernedvalues(0.95—0.75),the error rate would be just around 10%.In other words,even simply taking a certain value to represent all the concernedvalues,the largest error rate is around 10%,which would be immersed in the engineering experimental error and is acceptable in engineering.Together with the friction resistance contribution,the implicit effects of parameters included inand friction would account for a resistance portion as much as 0.235=1-0.9×0.85,and this portion is just around the resistance difference between penetration resistance considering and not considering friction(≈0.215)(The comprehensive effects ofwas crossed out by the division,depicted by coefficients 2/π and 1/2 in Eq.(14)and Eq.(15)).Even though the detailed distribution of dynamic frictional coefficient is unclear,it is more likely that the overall friction resistance accounts for a proportion of around 10%in total penetration resistance,and the detail needs further supports from experimental or theoretical study.

    4. Rigid body penetration of aluminium target

    Forrestal et al.[14]proposed a formula to predict the penetration depth of aluminium-alloy target,i.e.,

    where

    Table 1 Penetration results with and without shank friction.The experiments labeled with asterisk*deviated from initial projectile axis with a‘J’shaped trajectory in the end part.Their penetration depths were measured alongside the curved trajectories.

    According to Eq.(19),Lsh+ka is the effective length of projectile Leff,and Eq.(18)is actually the same as Eq.[3].when shank friction is ignored.The shank friction was neglected due to the experimental observation of a 5—15μm melting layer normal to the tunnel surface[3,15].The penetration depth into aluminium-alloy target without and with considering friction can be determined by Eq.(14).and Eq.(15)[4].

    A series of penetration experiments on aluminium-alloy targets,6061-T651 and 7075-T651,using projectiles with CRH of 0.5 and 3 and materials of C300,T200,VAR4340,AerMet100 were reported[3,14,16—18].Fig.6 shows the variations of P/d with I0,where experimental data with excessive head erosion(more than 10%)was ignored.It is shown that the higher the strength of projectile is,the better the prediction of P/d=I0/2 will be.This is because high strength projectile can meet rigid-body projectile assumption.It is shown that the relations between P/d and I0for various projectile head geometries and materials are still in good agreement with P/d=I0/2,even though they are different remarkably in head geometry,diameter and mass.It is worth noting that experimental data fits better with P/d=I0/2 than P/d=2I0/π,which indicates that the friction on projectile shank cannot be ignored.However,P/d=I0/2 slightly underpredicts the experimental results,especially at higher impact speeds.Since P/d=I0/2 is derived empirically with an overall shank friction coefficient assumption of μ=0.01,this suggests that the friction coefficient on the interface of steel projectile and aluminium alloy is less than 0.01 for high speed penetration.Even this frictional coefficient is relatively small,the friction is not negligible because of the relative large effecting area on the shank,which would account for more obvious proportion of penetration resistance in deep penetration cases.Since the shank pressure distributes unevenly,this coefficient decrease is more likely caused by the melting layer in the former part of the shank.

    According to the model for metal perforation without plug formation proposed by Recht and Ipson[19]that all kinetic energy loss is through plastic deformation of the target Wt:

    Fig.6.Variations of non-dimensional penetration depth with I0 according to experimental data and analytical and empirical formulas of P/d=2I0/π and P/d=I0/2 for aluminium-alloy targets.

    Table 2 Perforation data summary of 25.4 mm thick 6061-T6 aluminium plates for projectiles with normal and reduced shanks.

    where vris the residual velocity of projectile.

    A series of perforation experiments of aluminium-alloy target using conical head projectiles with normal shank and reduced shank projectiles were reported in Ref.[1],where the reducedshank projectiles were introduced to avoid shank drag.The results are shown in Table 2,in which shot numbers 849 and 945 with T-200 projectiles showed blunting of the conical head tips according to post-perforation shadowgraphs;whereas,shot number 848,with a slightly lower impact velocity,and shot number 963 with a C-300 maraging steel projectile showed no permanent head tip deformation.

    As shown in Table 2, in the same velocity range(v0<0.886km?s-1), where v0<0.886km?s-1for normal shank projectiles and v0<0.532km?s-1for reduced shank projectiles,the plastic deformation energy Wtof projectiles with reduced shanks are less than those with normal shanks in the same perforation process,which is obviously caused by the elimination of shank friction.This again supports the conclusion that the shank friction influence should be considered in the penetration and perforation analysis.

    Furthermore,Wtdecreases slightly with the increase of impact velocities for normal-shank and reduced-shank projectiles,respectively.This phenomenon is attributed to the reduction of frictional coefficient on projectile caused by the melting layer on the interface,proposed by Forreastal et al.[3],and the little varying effect of inertia term in resistance when the velocity under a threshold,proposed by Rosenberg and Dekel[8].However,as shown in Table 2,when the impact velocity is greater than the threshold,the effect of inertia term or blunting would become obvious.

    5. Conclusions

    This article studies the friction effect on rigid-body penetration.Based on the penetration resistance considering shank friction and available experimental results,the friction effect on rigid-body penetration into concrete and aluminium-alloy targets are discussed.Main conclusions are.

    1.For deep penetration of concrete target,the friction on the shank cannot be ignored,and the overall friction resistance accounts for a proportion of around 10%in total penetration resistance.The experimental fitting of empirical formula P/d=I0/2 is better than the 1st-order approximation of analytical formula,P/d=2I0/π,shown in Ref.[4],is clarified by the inclusion of shank friction and the effects of comprehensive quantity I*lnin the former formula.

    2.For penetration of aluminium-alloy target,the friction on the shank has a similar effect as that for penetration in concrete,and cannot be ignored either.The difference between penetration in concrete and aluminium-alloy targets is that with the increase of penetration depth or impact velocity,the friction coefficient on the projectile into aluminium-alloy target would decrease because of the formation of melting layer on the interface between the projectile and aluminium-alloy target. In other words,the penetration friction resistance would decrease with the increase of penetration depth or impact velocity for aluminium-alloy targets.

    Acknowledgments

    The first author would like to acknowledge the scholarship granted by the China Scholarship Council and the support from the Institute of Chemical Materials,CAEP.

    久久97久久精品| 亚洲精品日本国产第一区| 婷婷色综合www| 秋霞在线观看毛片| 亚洲国产精品国产精品| 亚洲精品国产av蜜桃| 日韩一区二区视频免费看| 久久av网站| 狠狠婷婷综合久久久久久88av| 男女下面插进去视频免费观看 | 啦啦啦啦在线视频资源| 国产在线一区二区三区精| 如何舔出高潮| 国产精品.久久久| 美女大奶头黄色视频| 久久精品久久久久久噜噜老黄| 精品久久国产蜜桃| 最近手机中文字幕大全| 欧美亚洲日本最大视频资源| 午夜免费观看性视频| 成人免费观看视频高清| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 欧美国产精品一级二级三级| 成年人午夜在线观看视频| 另类精品久久| 少妇被粗大的猛进出69影院 | 搡老乐熟女国产| 成人无遮挡网站| 三级国产精品片| 老女人水多毛片| 亚洲国产精品国产精品| 国产av码专区亚洲av| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 亚洲国产色片| 国产高清三级在线| 最近中文字幕2019免费版| 久久99蜜桃精品久久| 黑人高潮一二区| 精品久久久精品久久久| 美女视频免费永久观看网站| 亚洲国产精品999| 久久人妻熟女aⅴ| 国产极品粉嫩免费观看在线| 黄片播放在线免费| 九色亚洲精品在线播放| 天天影视国产精品| 最近最新中文字幕大全免费视频 | 久久久久网色| 三上悠亚av全集在线观看| 精品人妻在线不人妻| 日韩熟女老妇一区二区性免费视频| 午夜福利在线观看免费完整高清在| 亚洲天堂av无毛| 国产精品欧美亚洲77777| 18禁在线无遮挡免费观看视频| 欧美日韩国产mv在线观看视频| 欧美成人精品欧美一级黄| 精品人妻在线不人妻| 在线天堂最新版资源| 日本vs欧美在线观看视频| 亚洲情色 制服丝袜| www日本在线高清视频| 国产爽快片一区二区三区| 人妻一区二区av| 欧美精品一区二区大全| 亚洲av福利一区| 高清不卡的av网站| 纯流量卡能插随身wifi吗| 久久久欧美国产精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| 久久久久视频综合| 久久精品人人爽人人爽视色| 国产在线免费精品| 十八禁网站网址无遮挡| 亚洲中文av在线| 女性生殖器流出的白浆| 免费高清在线观看日韩| 免费女性裸体啪啪无遮挡网站| 久久精品国产亚洲av涩爱| 欧美人与善性xxx| 少妇高潮的动态图| 国产成人精品在线电影| 中文字幕另类日韩欧美亚洲嫩草| 插逼视频在线观看| 成年美女黄网站色视频大全免费| 午夜福利在线观看免费完整高清在| 永久免费av网站大全| 这个男人来自地球电影免费观看 | 人人妻人人添人人爽欧美一区卜| 久久99热这里只频精品6学生| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产av蜜桃| 亚洲性久久影院| 美女大奶头黄色视频| 最近最新中文字幕免费大全7| 热re99久久国产66热| a级毛色黄片| 亚洲丝袜综合中文字幕| 一级片免费观看大全| 搡女人真爽免费视频火全软件| 久久午夜福利片| 另类精品久久| 日本黄色日本黄色录像| 一区二区三区精品91| 午夜免费鲁丝| 久热久热在线精品观看| www.av在线官网国产| 汤姆久久久久久久影院中文字幕| av在线播放精品| 久久精品久久久久久久性| 日韩欧美一区视频在线观看| 制服丝袜香蕉在线| 久久午夜综合久久蜜桃| 成人二区视频| 免费看光身美女| 日韩不卡一区二区三区视频在线| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 国产白丝娇喘喷水9色精品| 日本av免费视频播放| 一级毛片电影观看| 99热全是精品| 在线精品无人区一区二区三| 亚洲精品乱久久久久久| 精品一区二区三区视频在线| 考比视频在线观看| 国产熟女欧美一区二区| 国产福利在线免费观看视频| 丝袜人妻中文字幕| av播播在线观看一区| 又大又黄又爽视频免费| 亚洲国产精品一区三区| 日日爽夜夜爽网站| 色婷婷久久久亚洲欧美| 成人无遮挡网站| 精品一区二区三区视频在线| 老司机影院成人| 亚洲美女搞黄在线观看| 色5月婷婷丁香| 十八禁网站网址无遮挡| a级片在线免费高清观看视频| 成人综合一区亚洲| 大陆偷拍与自拍| 中国美白少妇内射xxxbb| 纯流量卡能插随身wifi吗| av在线app专区| 国产精品人妻久久久久久| 精品人妻熟女毛片av久久网站| 精品熟女少妇av免费看| 日韩av在线免费看完整版不卡| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 一级片'在线观看视频| 久久人人爽av亚洲精品天堂| 在现免费观看毛片| 久久精品久久久久久久性| 成人二区视频| 亚洲av综合色区一区| 十八禁高潮呻吟视频| 男女无遮挡免费网站观看| 国产午夜精品一二区理论片| 国产有黄有色有爽视频| 国产永久视频网站| 精品国产露脸久久av麻豆| 女人久久www免费人成看片| 亚洲天堂av无毛| 亚洲综合色网址| 激情五月婷婷亚洲| 美女内射精品一级片tv| 国产69精品久久久久777片| 男人添女人高潮全过程视频| 一级爰片在线观看| 日韩精品免费视频一区二区三区 | 自线自在国产av| 妹子高潮喷水视频| 高清在线视频一区二区三区| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花| 欧美精品一区二区大全| 日韩伦理黄色片| 爱豆传媒免费全集在线观看| 嫩草影院入口| 99国产综合亚洲精品| 欧美xxxx性猛交bbbb| 一边摸一边做爽爽视频免费| 国产日韩欧美亚洲二区| 欧美变态另类bdsm刘玥| 在线天堂中文资源库| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 丰满少妇做爰视频| 国产精品一区www在线观看| 在线亚洲精品国产二区图片欧美| 亚洲欧美色中文字幕在线| 国产免费现黄频在线看| 18在线观看网站| 日本vs欧美在线观看视频| 最近中文字幕高清免费大全6| 搡老乐熟女国产| 老司机影院成人| 蜜桃国产av成人99| 欧美激情国产日韩精品一区| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| 有码 亚洲区| 国产激情久久老熟女| 国产精品欧美亚洲77777| 久久这里只有精品19| 波多野结衣一区麻豆| 日本与韩国留学比较| 菩萨蛮人人尽说江南好唐韦庄| 美女xxoo啪啪120秒动态图| 中文乱码字字幕精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 日韩在线高清观看一区二区三区| 18+在线观看网站| 男女免费视频国产| 亚洲av日韩在线播放| 午夜久久久在线观看| 久久韩国三级中文字幕| 欧美成人午夜精品| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 亚洲内射少妇av| 99热6这里只有精品| 午夜激情av网站| 18禁国产床啪视频网站| 国产免费现黄频在线看| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 午夜免费观看性视频| 久久久亚洲精品成人影院| 婷婷色麻豆天堂久久| 亚洲国产av影院在线观看| 视频中文字幕在线观看| 精品一区二区三区视频在线| 赤兔流量卡办理| 中文天堂在线官网| 亚洲国产精品专区欧美| 天美传媒精品一区二区| 毛片一级片免费看久久久久| 男人舔女人的私密视频| 自线自在国产av| 夫妻性生交免费视频一级片| 又大又黄又爽视频免费| 99久久综合免费| 97在线人人人人妻| 精品人妻熟女毛片av久久网站| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| 亚洲精品第二区| 亚洲欧美成人精品一区二区| 亚洲精品视频女| 男女边吃奶边做爰视频| 丝袜脚勾引网站| 国产日韩欧美在线精品| 国产av码专区亚洲av| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 内地一区二区视频在线| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av涩爱| 久久亚洲国产成人精品v| 女性生殖器流出的白浆| 日韩一本色道免费dvd| 国产精品 国内视频| 美女大奶头黄色视频| 午夜激情久久久久久久| 免费观看性生交大片5| 久久精品国产综合久久久 | 秋霞在线观看毛片| 精品亚洲乱码少妇综合久久| 18禁国产床啪视频网站| 天堂中文最新版在线下载| 制服丝袜香蕉在线| 久久99精品国语久久久| 日韩大片免费观看网站| 啦啦啦中文免费视频观看日本| 一区二区三区乱码不卡18| 中文精品一卡2卡3卡4更新| xxxhd国产人妻xxx| 一区二区三区乱码不卡18| 香蕉精品网在线| 内地一区二区视频在线| 伦精品一区二区三区| 成年人免费黄色播放视频| 寂寞人妻少妇视频99o| 亚洲天堂av无毛| 亚洲内射少妇av| 咕卡用的链子| 国产69精品久久久久777片| 日韩制服丝袜自拍偷拍| 日韩欧美一区视频在线观看| 性高湖久久久久久久久免费观看| 人成视频在线观看免费观看| 日韩中文字幕视频在线看片| 99久久综合免费| 建设人人有责人人尽责人人享有的| 精品一区二区三卡| 亚洲国产日韩一区二区| 日产精品乱码卡一卡2卡三| 欧美bdsm另类| 伦理电影免费视频| 亚洲欧美中文字幕日韩二区| 久久久久国产精品人妻一区二区| 亚洲国产看品久久| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费| 国产黄色免费在线视频| 国产高清国产精品国产三级| 亚洲av免费高清在线观看| 亚洲精品一区蜜桃| 国产白丝娇喘喷水9色精品| 只有这里有精品99| 丰满乱子伦码专区| 日本爱情动作片www.在线观看| a级毛片黄视频| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 九草在线视频观看| 亚洲经典国产精华液单| 国产精品偷伦视频观看了| 人人妻人人澡人人看| 日韩制服骚丝袜av| 多毛熟女@视频| 搡老乐熟女国产| 久久午夜综合久久蜜桃| 麻豆精品久久久久久蜜桃| 国产日韩欧美亚洲二区| 国产av一区二区精品久久| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 精品久久国产蜜桃| 国语对白做爰xxxⅹ性视频网站| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| 免费av不卡在线播放| 美女主播在线视频| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 日韩欧美精品免费久久| 伊人久久国产一区二区| 99精国产麻豆久久婷婷| 99久久中文字幕三级久久日本| 国产精品久久久久久av不卡| 亚洲欧美日韩另类电影网站| 精品一区二区三卡| 满18在线观看网站| 久久青草综合色| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 最近2019中文字幕mv第一页| 免费观看在线日韩| 精品久久久精品久久久| av有码第一页| 黑人欧美特级aaaaaa片| 国产成人精品一,二区| 日韩三级伦理在线观看| 老熟女久久久| 观看av在线不卡| 女的被弄到高潮叫床怎么办| 日本wwww免费看| av线在线观看网站| 亚洲综合色惰| 天天影视国产精品| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 十八禁高潮呻吟视频| 亚洲av.av天堂| 亚洲美女搞黄在线观看| 久久这里只有精品19| 自线自在国产av| 草草在线视频免费看| 乱人伦中国视频| 看非洲黑人一级黄片| 少妇熟女欧美另类| 亚洲一码二码三码区别大吗| 午夜福利影视在线免费观看| 国产在线免费精品| 观看美女的网站| 巨乳人妻的诱惑在线观看| 草草在线视频免费看| 亚洲成人一二三区av| 人成视频在线观看免费观看| www日本在线高清视频| 国产白丝娇喘喷水9色精品| 精品第一国产精品| 亚洲人成网站在线观看播放| 亚洲成国产人片在线观看| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 老司机亚洲免费影院| 国产白丝娇喘喷水9色精品| 成人18禁高潮啪啪吃奶动态图| 少妇精品久久久久久久| 七月丁香在线播放| 久久久久久人人人人人| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院 | 99久久综合免费| 国产在线视频一区二区| 欧美少妇被猛烈插入视频| 日日啪夜夜爽| 少妇人妻 视频| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 久久综合国产亚洲精品| a级片在线免费高清观看视频| av福利片在线| 亚洲精品av麻豆狂野| videos熟女内射| 日韩av不卡免费在线播放| 欧美性感艳星| 亚洲少妇的诱惑av| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | a级毛片黄视频| 中文字幕人妻丝袜制服| 日韩免费高清中文字幕av| videosex国产| 欧美性感艳星| 成人午夜精彩视频在线观看| 在线观看三级黄色| 少妇精品久久久久久久| 日日撸夜夜添| 国产爽快片一区二区三区| 中文欧美无线码| 九色亚洲精品在线播放| 国产免费一级a男人的天堂| 一本久久精品| 免费高清在线观看日韩| 丝袜美足系列| 尾随美女入室| 亚洲精品国产色婷婷电影| 亚洲丝袜综合中文字幕| 亚洲av福利一区| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 久久久国产一区二区| 丁香六月天网| 中国三级夫妇交换| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 国产欧美另类精品又又久久亚洲欧美| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 一级爰片在线观看| 亚洲成国产人片在线观看| 秋霞伦理黄片| 男女高潮啪啪啪动态图| 亚洲色图综合在线观看| 国产深夜福利视频在线观看| 精品人妻偷拍中文字幕| 黄色毛片三级朝国网站| 少妇精品久久久久久久| 日产精品乱码卡一卡2卡三| videossex国产| 少妇被粗大的猛进出69影院 | 男女下面插进去视频免费观看 | 999精品在线视频| 国产av精品麻豆| 欧美国产精品一级二级三级| 国产爽快片一区二区三区| 亚洲av欧美aⅴ国产| 国产免费视频播放在线视频| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 亚洲av成人精品一二三区| 国产69精品久久久久777片| 免费观看在线日韩| 日本爱情动作片www.在线观看| 一区二区日韩欧美中文字幕 | 成人国产麻豆网| 在线 av 中文字幕| 夜夜爽夜夜爽视频| 中文欧美无线码| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 国产成人精品婷婷| 男人舔女人的私密视频| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级| 久久精品久久久久久久性| av电影中文网址| 国产在线视频一区二区| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡 | av国产久精品久网站免费入址| 18+在线观看网站| av免费观看日本| 在线 av 中文字幕| 亚洲,欧美,日韩| 777米奇影视久久| av线在线观看网站| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| videosex国产| 最近中文字幕高清免费大全6| av视频免费观看在线观看| 22中文网久久字幕| 亚洲av中文av极速乱| 大片免费播放器 马上看| 午夜影院在线不卡| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 18禁国产床啪视频网站| 午夜老司机福利片| 国产精品1区2区在线观看. | 俄罗斯特黄特色一大片| 色播在线永久视频| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 十八禁网站免费在线| 午夜免费鲁丝| 国产91精品成人一区二区三区| 成人影院久久| 天天操日日干夜夜撸| 国产高清videossex| 欧美午夜高清在线| 欧美大码av| 久久香蕉国产精品| 97人妻天天添夜夜摸| 在线观看日韩欧美| 午夜福利乱码中文字幕| 热re99久久国产66热| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av在线 | 热99国产精品久久久久久7| 制服诱惑二区| 亚洲国产看品久久| 真人做人爱边吃奶动态| 1024视频免费在线观看| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| av在线播放免费不卡| 一级毛片女人18水好多| 人成视频在线观看免费观看| 激情视频va一区二区三区| 久久久久视频综合| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www | 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 91av网站免费观看| 亚洲精品国产色婷婷电影| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 国产男女内射视频| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 久久久久视频综合| 啦啦啦 在线观看视频| 曰老女人黄片| 精品一区二区三区四区五区乱码| 18禁国产床啪视频网站| 欧美人与性动交α欧美软件| 亚洲熟女精品中文字幕| 一区福利在线观看| 精品国产国语对白av| 国产精华一区二区三区| 欧美在线黄色| 99国产精品99久久久久| 18在线观看网站| 波多野结衣av一区二区av| 免费在线观看日本一区| 日韩人妻精品一区2区三区| av天堂在线播放| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 伦理电影免费视频| 狠狠婷婷综合久久久久久88av| 999久久久精品免费观看国产| 大片电影免费在线观看免费| 国产免费现黄频在线看| 建设人人有责人人尽责人人享有的| 老司机午夜福利在线观看视频| 成年人免费黄色播放视频| 国产精品免费视频内射| 在线av久久热| 国产午夜精品久久久久久| 麻豆成人av在线观看| 国产成人欧美在线观看 | 中文字幕av电影在线播放| 久久天躁狠狠躁夜夜2o2o| 色在线成人网| 怎么达到女性高潮| 一级,二级,三级黄色视频| 精品人妻1区二区| 人人妻人人添人人爽欧美一区卜| 欧美精品人与动牲交sv欧美| 婷婷精品国产亚洲av在线 | 国产伦人伦偷精品视频| 999久久久国产精品视频| 久久午夜综合久久蜜桃| 狠狠狠狠99中文字幕| 丝瓜视频免费看黄片| 精品一区二区三区av网在线观看| 夜夜爽天天搞| 免费黄频网站在线观看国产| 日日夜夜操网爽|