• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the friction effects on rigid-body penetration in concrete and aluminium-alloy targets

    2019-10-31 07:08:26ChiPiLiHung
    Defence Technology 2019年4期

    C.G.Chi ,A.G.Pi ,Q.M.Li ,F.L.Hung

    a Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang,Sichuan,621900,China

    b State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing,100081,China

    c School of Mechanical,Aerospace and Civil Engineering,University of Manchester,Manchester,M13 9PL,UK

    Keywords:Penetration Friction Concrete Aluminium

    A B S T R A C T The friction on the projectile shank is usually excluded in the penetration analysis due to the difficulties to measure the pressure and frictional coefficient.In this article,the frictional force on projectile shank is discussed indirectly through the comparison between experimental data and empirical/analytical formulas of the penetration depth for both concrete and aluminium-alloy targets.It is found that the effect of the frictional force along the projectile shank can be further discussed by the afore comparison and discussion and cannot be ignored because of the relatively large effecting area,especially for deep penetration of concrete and aluminium-alloy targets,where the friction will account for more proportion of penetration resistance.

    1. Introduction

    The frictional force on the projectile shank is usually excluded in the penetration analysis due to the difficulties to measure the pressure and frictional coefficient between the projectile shank and target under such extreme conditions.There are limited researches on this issue.Rosenberg and Forrestal[1]conducted a series of perforation tests on 6061-T651 target plate using normal and reduced-shank projectiles with conical head shape.It indicated that about 10%reduction of the ballistic limit can be caused when a reduced-shank projectile was used. Ref. [2] used normal and reduced-shank projectiles with ogival head shape in the penetration into concrete target, and the penetration depth for the reduced-shank projectile increased more than 10%when compared with the penetration depth of normal projectile.However,in a study of deep penetration into 6061-T651 target by normal and reduced-shank projectiles with hemi-spherical head shape in Ref.[3],it was found that the frictional force on the projectile shank has very small influence on the penetration depth.

    Furthermore,a general analytical solution of the penetration depth was derived in Ref.[4]based on non-dimensional impact factor I0(defined later in Eq.(13)),i.e.P/d=2I0/π,where P is the penetration depth,d is the diameter of the projectile.Meanwhile,an empirical equation, P/d= I0/2, was also proposed, which agreed better with wide range of experimental data for deep penetration than the afore analytical equation.However,the reasons why the empirical equation was better than the analytical equation was not explained in Ref.[4].

    In this article,the frictional force on the projectile shank is included in the penetration resistance and the analytical solution for the penetration depth under such situation is obtained,based on which,the analytical predictions of the penetration depth for both concrete and aluminium-alloy targets are compared with a range of experimental data as well as the analytical and empirical equations.

    2. Rigid-body penetration with considering friction on projectile shank

    The normal stress σnon the projectile head perpendicular to projectile surface is commonly given by Ref.[5].

    where Y and ρtare the yield stress and density of target material,respectively;A and B are non-dimensional material constants,related to the effects of strength and inertia of target material;vnis the material particle velocity normal to the surface of the projectile head which can be determined by the penetrating velocity v of a projectile according to vn=vcosθ;The tangential stress on the head is presumably determined by the friction on the interface,σt=μσn,where μ is the sliding friction coefficient on the projectile-target interface.

    When the projectile shank enters into the tunnel which has been opened by the projectile head,the pressure of expansion Bρtv2nin Eq.(1)would decrease to 0,because there is no further expansion and the expanding velocity v on the projectile shank changes to 0.Then the pressure on the shank can be derived as psh=AY,as suggested in Ref.[6].This is valid when cavitation does not occur if the impact speed is not sufficiently high[7].

    Taking the frictional force on the projectile head and shank into account,and using the same derivation procedure as that in Ref.[4],the axial resistance on the projectile can be expressed as

    where N1and N2are integral constants according to projectile shape,shown in Eq.(4)-Eq.(7);ρtis target material density;v is penetrating velocity;L0and h are overall lengths of projectile and height of projectile head,as shown in Fig.1.

    For deep penetration where the effect of the entrance stage can be neglected,the final penetration depth considering projectile shank friction can be integrated from Newton's second law of motion as

    where

    Fig.1.Schematic of a projectile.

    where caliber-radius-head(CRH),v0is the initial impact velocity of projectile.

    Taking

    while I*<1,Taylor series expression of Eq.(3)gives

    Let

    Then,the 1st-order approximation of Taylor series expression of Eq.(3)is Although Eq.(12)has the same appearance as the corresponding Eq.(20)in Ref.[4],in Eq.(4)contains an extra term of friction contribution from the projectile shank in comparison with N1in Eq.(8)in Ref.[4].

    For the penetration of concrete target,where the unconfined compressive strengthis measured in MPa.For the penetration of aluminium-alloy target,as suggested in Ref.[8],where E and Y are the elastic modulus and yield stress of aluminium-alloy target,respectively.

    According to Eq.(11),the 1st-order approximation of Taylor series expression of Eq.(3),where μ=0,is

    It was shown in Ref.[4]that empirical formula

    has better agreement with deep penetration testing data than Eq[14].

    Fig.2.The comparison between non-dimensional penetration depth P/d of experiments and formulas of P/d=2I0/π and P/d=I0/2[5,9,10]

    3. Rigid-body penetration of concrete

    The comparison of Eq.(14)and Eq.(15)with experimental data of penetration of concrete target is shown in Fig.2.It is shown that empirical formula P/d=I0/2 fits much better than the analytical formula P/d=2I0/π in full-range experimental data, and the deeper the penetration is,the better the empirical formula is.In order to measure the predictability of Eq.(14)and Eq.(15),the difference ratio between experimental penetration depth Pexpand that from predicting formula Ppreis defined as

    Fig.3 shows the dependence of R on I0for Eq.(14)and Eq.(15).Fig.3(a)shows the variation of the difference ratio R with I0for the analytical formula P/d=2I0/π.Fig.3(b)shows the variation of the difference ratio R with I0for the empirical formula P/d=I0/2.When I0≥30,it is evident that the difference ratio for P/d=2I0/π has different trend from that for P/d=I0/2.The former increases with I0while the latter decreases with I0,reflecting the importance of frictional force on the projectile shank increases with the increase of penetration depth.When I0<30,which corresponds to P <15d,the entrance effects become important,which is not the focus of this study.

    Taking friction into account,would no longer equal to unity,and Eq.(12)can be transformed into

    The complexity of friction makes the calculation of frictional coefficient from first principles impractical and necessitates the use of empirical methods. Lim et al. analysed a large number of experimental data on the variations of frictional coefficient in sliding of steel on steel in a wide range of sliding conditions and presented the results of the analysis in the form of a friction regime map,and showed that at very high loads and velocities,a layer of molten metal forms between the sliding surfaces,reducing frictional coefficient to very low values[11].Balakin took frictional coefficient as the product of pressure and sliding velocity and showed that the frictional coefficient would decrease with the increase of this product.It is shown that frictional coefficient would decrease to lower than 0.02 when the product of pressure and sliding velocity was higher than 7GPa·m?s-1,and a declining trend was shown with the increase of this product[12],though being out of the experimental data limits,where the penetrating pressure and velocity can up to GPa and hundreds of meters per second,respectively.To the best of our knowledge,the precise frictional coefficient under high velocity penetration was not found,considering all the afore facts,an approximative coefficient lower than 0.02 was preferred in this article.

    Fig. 3.Difference ratio of experimental and predicting penetration depths from formulas.

    Fig.4.Schematics of friction experimental projectiles.

    In order to investigate the effects of friction on projectile shank,Ref.[2]conducted a series of penetration experiments with normal ogival head and normal shank and ogival head but reduced-shank projectiles.All projectiles have the same mass and head geometry,with a caliber-radius-head(CRH)of 3 and head radius s of 45 mm.Projectiles are shown in Fig.4.Concrete targets are 550 mm in diameter while the compressive strength is 45 MPa using 150 mm cubic samples.Experimental results are shown in Table 1.

    It is shown that the experimental penetration depths of normal shank projectile are consistently between 630 and 640 mm,which implies that experimental results are reliable.On the other hand,the penetration depths of reduced-shank projectiles are larger than those for normal shank projectiles. The penetration depth of reduced-shank projectiles under normal penetration should be larger than the experimental results since the trajectory deviation occurred in experiments,which increased the penetration resistance due to the unsymmetrical pressure distribution.Since their head geometries are same,it was suggested that the increase of the penetration depth was due to the disappearance of the friction resistance on the projectile shank.The ratio of the penetration depth increase,compared with normal shank projectiles,were 7.1%and 14.3%,respectively,with an average value of 10.7%.This increase was caused only by the elimination of shank friction while the head friction was still effective,and was in accordance with the simulation research,which stated that ignoring friction of projectile shank for deep penetration into concrete target would deduce at least an error of 10%[13].

    In fact,this results from experiments can further supported from some evaluations about Eq. (9). The meaning ofis comprehensive and complex,for it consists of penetrator head shape ψ,friction,nominal penetrator length L0,initial impact velocity v0,etc.For most concerned velocities(v0<1200m?s-1)and penetrator head shapes(0.5 <CRH <6),I*can be calculated in advance and only ranges from 0 to 1 and the corresponding

    Fig.5.The relations between and I*within concerned velocities and penetrator shapes.

    ranges from 1 to 0.7,as shown in Fig.5.If the median is taken rashly as 0.85 to represent the concernedvalues(0.95—0.75),the error rate would be just around 10%.In other words,even simply taking a certain value to represent all the concernedvalues,the largest error rate is around 10%,which would be immersed in the engineering experimental error and is acceptable in engineering.Together with the friction resistance contribution,the implicit effects of parameters included inand friction would account for a resistance portion as much as 0.235=1-0.9×0.85,and this portion is just around the resistance difference between penetration resistance considering and not considering friction(≈0.215)(The comprehensive effects ofwas crossed out by the division,depicted by coefficients 2/π and 1/2 in Eq.(14)and Eq.(15)).Even though the detailed distribution of dynamic frictional coefficient is unclear,it is more likely that the overall friction resistance accounts for a proportion of around 10%in total penetration resistance,and the detail needs further supports from experimental or theoretical study.

    4. Rigid body penetration of aluminium target

    Forrestal et al.[14]proposed a formula to predict the penetration depth of aluminium-alloy target,i.e.,

    where

    Table 1 Penetration results with and without shank friction.The experiments labeled with asterisk*deviated from initial projectile axis with a‘J’shaped trajectory in the end part.Their penetration depths were measured alongside the curved trajectories.

    According to Eq.(19),Lsh+ka is the effective length of projectile Leff,and Eq.(18)is actually the same as Eq.[3].when shank friction is ignored.The shank friction was neglected due to the experimental observation of a 5—15μm melting layer normal to the tunnel surface[3,15].The penetration depth into aluminium-alloy target without and with considering friction can be determined by Eq.(14).and Eq.(15)[4].

    A series of penetration experiments on aluminium-alloy targets,6061-T651 and 7075-T651,using projectiles with CRH of 0.5 and 3 and materials of C300,T200,VAR4340,AerMet100 were reported[3,14,16—18].Fig.6 shows the variations of P/d with I0,where experimental data with excessive head erosion(more than 10%)was ignored.It is shown that the higher the strength of projectile is,the better the prediction of P/d=I0/2 will be.This is because high strength projectile can meet rigid-body projectile assumption.It is shown that the relations between P/d and I0for various projectile head geometries and materials are still in good agreement with P/d=I0/2,even though they are different remarkably in head geometry,diameter and mass.It is worth noting that experimental data fits better with P/d=I0/2 than P/d=2I0/π,which indicates that the friction on projectile shank cannot be ignored.However,P/d=I0/2 slightly underpredicts the experimental results,especially at higher impact speeds.Since P/d=I0/2 is derived empirically with an overall shank friction coefficient assumption of μ=0.01,this suggests that the friction coefficient on the interface of steel projectile and aluminium alloy is less than 0.01 for high speed penetration.Even this frictional coefficient is relatively small,the friction is not negligible because of the relative large effecting area on the shank,which would account for more obvious proportion of penetration resistance in deep penetration cases.Since the shank pressure distributes unevenly,this coefficient decrease is more likely caused by the melting layer in the former part of the shank.

    According to the model for metal perforation without plug formation proposed by Recht and Ipson[19]that all kinetic energy loss is through plastic deformation of the target Wt:

    Fig.6.Variations of non-dimensional penetration depth with I0 according to experimental data and analytical and empirical formulas of P/d=2I0/π and P/d=I0/2 for aluminium-alloy targets.

    Table 2 Perforation data summary of 25.4 mm thick 6061-T6 aluminium plates for projectiles with normal and reduced shanks.

    where vris the residual velocity of projectile.

    A series of perforation experiments of aluminium-alloy target using conical head projectiles with normal shank and reduced shank projectiles were reported in Ref.[1],where the reducedshank projectiles were introduced to avoid shank drag.The results are shown in Table 2,in which shot numbers 849 and 945 with T-200 projectiles showed blunting of the conical head tips according to post-perforation shadowgraphs;whereas,shot number 848,with a slightly lower impact velocity,and shot number 963 with a C-300 maraging steel projectile showed no permanent head tip deformation.

    As shown in Table 2, in the same velocity range(v0<0.886km?s-1), where v0<0.886km?s-1for normal shank projectiles and v0<0.532km?s-1for reduced shank projectiles,the plastic deformation energy Wtof projectiles with reduced shanks are less than those with normal shanks in the same perforation process,which is obviously caused by the elimination of shank friction.This again supports the conclusion that the shank friction influence should be considered in the penetration and perforation analysis.

    Furthermore,Wtdecreases slightly with the increase of impact velocities for normal-shank and reduced-shank projectiles,respectively.This phenomenon is attributed to the reduction of frictional coefficient on projectile caused by the melting layer on the interface,proposed by Forreastal et al.[3],and the little varying effect of inertia term in resistance when the velocity under a threshold,proposed by Rosenberg and Dekel[8].However,as shown in Table 2,when the impact velocity is greater than the threshold,the effect of inertia term or blunting would become obvious.

    5. Conclusions

    This article studies the friction effect on rigid-body penetration.Based on the penetration resistance considering shank friction and available experimental results,the friction effect on rigid-body penetration into concrete and aluminium-alloy targets are discussed.Main conclusions are.

    1.For deep penetration of concrete target,the friction on the shank cannot be ignored,and the overall friction resistance accounts for a proportion of around 10%in total penetration resistance.The experimental fitting of empirical formula P/d=I0/2 is better than the 1st-order approximation of analytical formula,P/d=2I0/π,shown in Ref.[4],is clarified by the inclusion of shank friction and the effects of comprehensive quantity I*lnin the former formula.

    2.For penetration of aluminium-alloy target,the friction on the shank has a similar effect as that for penetration in concrete,and cannot be ignored either.The difference between penetration in concrete and aluminium-alloy targets is that with the increase of penetration depth or impact velocity,the friction coefficient on the projectile into aluminium-alloy target would decrease because of the formation of melting layer on the interface between the projectile and aluminium-alloy target. In other words,the penetration friction resistance would decrease with the increase of penetration depth or impact velocity for aluminium-alloy targets.

    Acknowledgments

    The first author would like to acknowledge the scholarship granted by the China Scholarship Council and the support from the Institute of Chemical Materials,CAEP.

    精品久久久噜噜| 毛片女人毛片| 国产伦理片在线播放av一区 | a级毛色黄片| АⅤ资源中文在线天堂| 亚洲精品自拍成人| 在线天堂最新版资源| 简卡轻食公司| 最好的美女福利视频网| 日韩,欧美,国产一区二区三区 | 日韩强制内射视频| 亚洲第一电影网av| av女优亚洲男人天堂| 国产av麻豆久久久久久久| 日本爱情动作片www.在线观看| 26uuu在线亚洲综合色| 国产高清不卡午夜福利| 国产 一区 欧美 日韩| 韩国av在线不卡| 免费av观看视频| 99热这里只有是精品50| 精品日产1卡2卡| 久久久久九九精品影院| 国产成人精品婷婷| 久久99精品国语久久久| 人体艺术视频欧美日本| 少妇的逼水好多| 极品教师在线视频| 亚洲成人久久爱视频| 一区二区三区四区激情视频 | 亚洲av免费高清在线观看| 有码 亚洲区| 久久99热这里只有精品18| 国产三级在线视频| 天堂中文最新版在线下载 | 91久久精品电影网| 日韩在线高清观看一区二区三区| 十八禁国产超污无遮挡网站| 性欧美人与动物交配| 午夜爱爱视频在线播放| 免费观看的影片在线观看| 一级毛片我不卡| 欧美性感艳星| 国产男人的电影天堂91| 亚洲av.av天堂| eeuss影院久久| 午夜福利在线观看免费完整高清在 | 蜜桃久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 小蜜桃在线观看免费完整版高清| 一本久久精品| 99久久无色码亚洲精品果冻| 欧美xxxx黑人xx丫x性爽| 听说在线观看完整版免费高清| 99热网站在线观看| 欧美日韩精品成人综合77777| 欧美日韩在线观看h| 成年免费大片在线观看| 日本欧美国产在线视频| 欧美性猛交黑人性爽| 婷婷六月久久综合丁香| 伦精品一区二区三区| 国产精品久久久久久精品电影小说 | 麻豆精品久久久久久蜜桃| 免费人成视频x8x8入口观看| 国产精品精品国产色婷婷| 深夜精品福利| 久久热精品热| 国产熟女欧美一区二区| 少妇熟女aⅴ在线视频| 九九爱精品视频在线观看| 麻豆成人午夜福利视频| 亚洲最大成人手机在线| 亚洲最大成人av| 国产伦在线观看视频一区| 国产色婷婷99| 亚洲第一电影网av| 女人被狂操c到高潮| 可以在线观看的亚洲视频| av卡一久久| 亚洲婷婷狠狠爱综合网| a级毛片a级免费在线| 国产精品精品国产色婷婷| 在线观看午夜福利视频| 中国国产av一级| 男人舔女人下体高潮全视频| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久影院| 91aial.com中文字幕在线观看| 全区人妻精品视频| 国语自产精品视频在线第100页| 黄色欧美视频在线观看| 九九爱精品视频在线观看| 国产一级毛片在线| 免费在线观看成人毛片| 男人和女人高潮做爰伦理| videossex国产| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| .国产精品久久| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久久久毛片| 亚洲成人精品中文字幕电影| 精华霜和精华液先用哪个| 人体艺术视频欧美日本| 99久久久亚洲精品蜜臀av| 亚洲精品日韩av片在线观看| 欧美日本亚洲视频在线播放| 国产真实伦视频高清在线观看| 亚洲激情五月婷婷啪啪| 全区人妻精品视频| 亚洲自拍偷在线| 亚洲色图av天堂| 老女人水多毛片| 日韩一区二区三区影片| 亚洲人与动物交配视频| 我要搜黄色片| 日本av手机在线免费观看| 国产精品av视频在线免费观看| 久久这里有精品视频免费| 美女高潮的动态| 亚洲欧美日韩高清专用| 亚洲国产欧美人成| 波多野结衣高清无吗| 国内揄拍国产精品人妻在线| 日本黄色视频三级网站网址| 一级黄色大片毛片| 亚洲av中文字字幕乱码综合| 亚洲国产色片| 夜夜爽天天搞| 六月丁香七月| 国产亚洲91精品色在线| 国产精品精品国产色婷婷| 亚洲欧洲国产日韩| 亚洲精品亚洲一区二区| 日本免费一区二区三区高清不卡| 中文字幕av在线有码专区| 日韩,欧美,国产一区二区三区 | 99九九线精品视频在线观看视频| 午夜亚洲福利在线播放| 中国美女看黄片| 嘟嘟电影网在线观看| 亚洲自偷自拍三级| 99久久精品热视频| 丰满乱子伦码专区| 禁无遮挡网站| 日本撒尿小便嘘嘘汇集6| 欧洲精品卡2卡3卡4卡5卡区| 人妻久久中文字幕网| АⅤ资源中文在线天堂| 国产av在哪里看| 久久精品久久久久久噜噜老黄 | 国语自产精品视频在线第100页| 亚洲av二区三区四区| 国产精品一区二区三区四区免费观看| 国产精品99久久久久久久久| 亚洲,欧美,日韩| 伊人久久精品亚洲午夜| 亚洲成人av在线免费| 亚洲人成网站在线播放欧美日韩| 三级男女做爰猛烈吃奶摸视频| 亚洲国产高清在线一区二区三| 波野结衣二区三区在线| 小说图片视频综合网站| 你懂的网址亚洲精品在线观看 | 岛国毛片在线播放| 天天一区二区日本电影三级| 久久久久国产网址| 久久亚洲国产成人精品v| 日韩视频在线欧美| 成人毛片60女人毛片免费| 嫩草影院入口| 亚洲精品日韩av片在线观看| 日本黄色视频三级网站网址| 日韩一区二区三区影片| 日本欧美国产在线视频| 插阴视频在线观看视频| 欧美精品国产亚洲| av免费在线看不卡| 91麻豆精品激情在线观看国产| 99久久中文字幕三级久久日本| 免费看美女性在线毛片视频| 99久久精品国产国产毛片| 最近2019中文字幕mv第一页| 国产精品久久久久久久久免| av黄色大香蕉| 青春草视频在线免费观看| 不卡视频在线观看欧美| h日本视频在线播放| 日本黄大片高清| 神马国产精品三级电影在线观看| 蜜臀久久99精品久久宅男| 99久久中文字幕三级久久日本| 在线观看一区二区三区| 美女大奶头视频| 欧美日韩一区二区视频在线观看视频在线 | 尤物成人国产欧美一区二区三区| 成人av在线播放网站| 99热全是精品| 最近2019中文字幕mv第一页| 91精品国产九色| 国内久久婷婷六月综合欲色啪| 大又大粗又爽又黄少妇毛片口| 色5月婷婷丁香| 美女脱内裤让男人舔精品视频 | 搡女人真爽免费视频火全软件| 99热只有精品国产| 成人漫画全彩无遮挡| 99国产精品一区二区蜜桃av| 午夜老司机福利剧场| 99久国产av精品国产电影| 99热全是精品| 欧美潮喷喷水| 国产午夜精品一二区理论片| 久久久欧美国产精品| 国产精品久久电影中文字幕| 国产视频内射| 欧美色欧美亚洲另类二区| 人妻少妇偷人精品九色| 老司机影院成人| 三级毛片av免费| 国产中年淑女户外野战色| 国产淫片久久久久久久久| 熟女人妻精品中文字幕| 国模一区二区三区四区视频| ponron亚洲| 国内精品美女久久久久久| 国语自产精品视频在线第100页| 身体一侧抽搐| 久久精品人妻少妇| 日日啪夜夜撸| 99热只有精品国产| 欧美激情在线99| 热99re8久久精品国产| 99久国产av精品| 午夜精品国产一区二区电影 | 一级二级三级毛片免费看| 欧美色视频一区免费| 女人被狂操c到高潮| 亚洲美女搞黄在线观看| 十八禁国产超污无遮挡网站| 色综合亚洲欧美另类图片| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说 | 国产乱人视频| 国内揄拍国产精品人妻在线| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 国产亚洲av片在线观看秒播厂 | 日韩精品有码人妻一区| 一级二级三级毛片免费看| 午夜激情欧美在线| 日韩大尺度精品在线看网址| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色av中文字幕| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 中文欧美无线码| 国产精品日韩av在线免费观看| 国产成人福利小说| 午夜免费激情av| 给我免费播放毛片高清在线观看| av在线播放精品| 亚洲精品影视一区二区三区av| 久久6这里有精品| 男人的好看免费观看在线视频| 午夜免费激情av| 久久久色成人| 一级毛片aaaaaa免费看小| av天堂中文字幕网| 亚洲中文字幕一区二区三区有码在线看| 菩萨蛮人人尽说江南好唐韦庄 | 国产v大片淫在线免费观看| 99热这里只有是精品在线观看| 99久国产av精品| 国内久久婷婷六月综合欲色啪| 国产亚洲欧美98| 国内精品久久久久精免费| 一本精品99久久精品77| 亚洲人成网站在线播| 亚洲精品456在线播放app| 麻豆av噜噜一区二区三区| 美女 人体艺术 gogo| 99视频精品全部免费 在线| 亚洲精品乱码久久久v下载方式| 晚上一个人看的免费电影| 亚洲高清免费不卡视频| 有码 亚洲区| 亚洲自拍偷在线| 欧美精品一区二区大全| 九草在线视频观看| 搞女人的毛片| 国产成人午夜福利电影在线观看| 小说图片视频综合网站| 国产高清不卡午夜福利| 两个人的视频大全免费| 国产精品人妻久久久久久| 伦精品一区二区三区| 欧美日本亚洲视频在线播放| 亚洲自偷自拍三级| 成人特级av手机在线观看| 久久久国产成人免费| 欧美3d第一页| 国产 一区 欧美 日韩| 亚洲无线观看免费| 国产精品福利在线免费观看| 色综合亚洲欧美另类图片| 97超视频在线观看视频| 欧美又色又爽又黄视频| 久久精品国产自在天天线| 黑人高潮一二区| 一个人免费在线观看电影| 久久久色成人| 国产精品久久久久久精品电影小说 | 一个人看的www免费观看视频| 日韩欧美 国产精品| 最新中文字幕久久久久| 久久久久久久久久黄片| 国产亚洲精品久久久com| 国产黄色视频一区二区在线观看 | 九九热线精品视视频播放| 爱豆传媒免费全集在线观看| 哪个播放器可以免费观看大片| 免费看a级黄色片| 夫妻性生交免费视频一级片| 午夜久久久久精精品| 波多野结衣巨乳人妻| 色尼玛亚洲综合影院| 亚洲国产精品国产精品| 免费人成在线观看视频色| 亚洲欧美成人精品一区二区| 三级经典国产精品| 国产精品1区2区在线观看.| 久久精品人妻少妇| 美女国产视频在线观看| 青青草视频在线视频观看| 日韩亚洲欧美综合| 国产精品久久久久久久久免| 亚洲在线自拍视频| 99久久精品一区二区三区| 九九在线视频观看精品| 村上凉子中文字幕在线| АⅤ资源中文在线天堂| 一本久久中文字幕| 51国产日韩欧美| 欧美另类亚洲清纯唯美| 男人狂女人下面高潮的视频| 国产日本99.免费观看| 国产麻豆成人av免费视频| 一级黄片播放器| 亚洲久久久久久中文字幕| 联通29元200g的流量卡| 日本熟妇午夜| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片免费观看直播| 国产成人91sexporn| 欧美一区二区国产精品久久精品| 校园人妻丝袜中文字幕| 美女内射精品一级片tv| 午夜激情欧美在线| 国产视频内射| 一个人看视频在线观看www免费| 日本免费一区二区三区高清不卡| www.色视频.com| 观看美女的网站| 麻豆国产av国片精品| 乱码一卡2卡4卡精品| 在线天堂最新版资源| 亚洲成人久久性| 国产 一区精品| 亚洲精品色激情综合| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| av黄色大香蕉| 欧美高清成人免费视频www| 日韩一区二区视频免费看| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| 国产精品国产三级国产av玫瑰| 少妇猛男粗大的猛烈进出视频 | 伊人久久精品亚洲午夜| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 六月丁香七月| 级片在线观看| 床上黄色一级片| 久久综合国产亚洲精品| 欧美性猛交╳xxx乱大交人| av女优亚洲男人天堂| 国产色婷婷99| 97超碰精品成人国产| 亚洲成人av在线免费| 欧美日韩精品成人综合77777| 久久精品久久久久久噜噜老黄 | 大又大粗又爽又黄少妇毛片口| 亚洲av二区三区四区| av国产免费在线观看| 亚洲一级一片aⅴ在线观看| 国产高清有码在线观看视频| 久久99热6这里只有精品| 国产午夜精品一二区理论片| 精品熟女少妇av免费看| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| 午夜爱爱视频在线播放| 色尼玛亚洲综合影院| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 乱人视频在线观看| 国产亚洲av嫩草精品影院| 欧美成人精品欧美一级黄| 中文字幕久久专区| 日韩一本色道免费dvd| 久久亚洲精品不卡| 一区二区三区四区激情视频 | 国产精品一二三区在线看| 麻豆成人av视频| 国产精品久久久久久亚洲av鲁大| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 老司机福利观看| 日韩一区二区视频免费看| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 国产午夜精品论理片| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 亚洲四区av| 校园春色视频在线观看| 大香蕉久久网| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 国产女主播在线喷水免费视频网站 | 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| av在线亚洲专区| а√天堂www在线а√下载| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| 午夜福利高清视频| 亚洲美女视频黄频| 欧美日本视频| 中国美白少妇内射xxxbb| 2022亚洲国产成人精品| 亚洲国产欧美人成| 国产精品久久电影中文字幕| 国产精品一区二区在线观看99 | 国产精品蜜桃在线观看 | 亚洲中文字幕日韩| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 亚洲精品成人久久久久久| 99久久中文字幕三级久久日本| 免费大片18禁| 99热6这里只有精品| 高清在线视频一区二区三区 | av在线天堂中文字幕| 最近的中文字幕免费完整| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| АⅤ资源中文在线天堂| 欧美色视频一区免费| 桃色一区二区三区在线观看| 国产精品不卡视频一区二区| 婷婷六月久久综合丁香| 一本久久中文字幕| 国产在线精品亚洲第一网站| 国产毛片a区久久久久| 久久欧美精品欧美久久欧美| 麻豆国产97在线/欧美| 给我免费播放毛片高清在线观看| 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 日韩欧美 国产精品| 午夜a级毛片| 国产成人影院久久av| 99热这里只有是精品50| 黄片无遮挡物在线观看| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 久久99热6这里只有精品| 两个人的视频大全免费| 日韩强制内射视频| 精品无人区乱码1区二区| 联通29元200g的流量卡| 国产熟女欧美一区二区| 亚洲熟妇中文字幕五十中出| 久久久久网色| 99热精品在线国产| 欧美bdsm另类| 亚洲高清免费不卡视频| 蜜桃久久精品国产亚洲av| 此物有八面人人有两片| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| 中文字幕av在线有码专区| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 国产成人aa在线观看| 久久久a久久爽久久v久久| 中文亚洲av片在线观看爽| 国产国拍精品亚洲av在线观看| 女人十人毛片免费观看3o分钟| 欧美丝袜亚洲另类| 人人妻人人看人人澡| 深夜精品福利| 国产真实乱freesex| 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 有码 亚洲区| 亚洲欧美精品综合久久99| 色5月婷婷丁香| 99国产极品粉嫩在线观看| 日日撸夜夜添| 亚洲欧美精品综合久久99| 久久久久久久亚洲中文字幕| 国产女主播在线喷水免费视频网站 | 哪里可以看免费的av片| 麻豆成人午夜福利视频| 日韩欧美三级三区| 欧美色视频一区免费| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 国产精品伦人一区二区| 欧美+亚洲+日韩+国产| 69人妻影院| 99热这里只有是精品50| 草草在线视频免费看| 久久久国产成人免费| 亚洲国产精品国产精品| 在线观看一区二区三区| 一本久久中文字幕| av专区在线播放| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 亚洲三级黄色毛片| www.色视频.com| 嫩草影院新地址| 精品日产1卡2卡| 一个人看的www免费观看视频| 99热只有精品国产| 国产精品美女特级片免费视频播放器| 丝袜喷水一区| 夫妻性生交免费视频一级片| 亚洲美女视频黄频| 久久久色成人| 欧美日韩国产亚洲二区| 搡女人真爽免费视频火全软件| 麻豆成人午夜福利视频| 日本熟妇午夜| 99热网站在线观看| 中文字幕免费在线视频6| 你懂的网址亚洲精品在线观看 | 国产精品野战在线观看| 日产精品乱码卡一卡2卡三| 99riav亚洲国产免费| av在线天堂中文字幕| 秋霞在线观看毛片| 国产白丝娇喘喷水9色精品| 搡老妇女老女人老熟妇| 国产 一区 欧美 日韩| 亚洲av中文av极速乱| 简卡轻食公司| 亚洲精华国产精华液的使用体验 | 日韩欧美一区二区三区在线观看| 国产精品久久久久久久久免| 悠悠久久av| 老司机影院成人| 亚洲av中文字字幕乱码综合| 床上黄色一级片| 99热6这里只有精品| 婷婷精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 国产在视频线在精品| 免费观看在线日韩| 亚洲av成人av| 国产老妇伦熟女老妇高清| 欧美日本视频| 91av网一区二区| 又爽又黄无遮挡网站| 国产伦理片在线播放av一区 | 少妇被粗大猛烈的视频| 成人性生交大片免费视频hd| 国产成人精品久久久久久| 嫩草影院精品99| 国产在线精品亚洲第一网站| 免费电影在线观看免费观看| 三级毛片av免费| 亚洲电影在线观看av| 久久久国产成人免费| 欧美高清成人免费视频www| 深夜精品福利| 国产精品野战在线观看| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 伦精品一区二区三区| 亚洲精品成人久久久久久| 午夜爱爱视频在线播放| 一区二区三区高清视频在线| 欧美日韩乱码在线| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 国产高潮美女av| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 国产成人a区在线观看|