• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nuclear radiation shielding effectiveness and corrosion behavior of some steel alloys for nuclear reactor systems

    2019-10-31 07:08:36SadawyElShazly
    Defence Technology 2019年4期

    M.M.Sadawy ,R.M.El Shazly

    a Mining and Petroleum Engineering Department,Al-Azhar University,Nasr City,Cairo,11371,Egypt

    b Physics Department,Faculty of Science,Al-Azhar University,Nasr City,Cairo,11884,Egypt

    Keywords:Steel alloys Macroscopic cross-section Mass attenuation coefficient Passive film Pitting

    A B S T R A C T Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78—1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm-1)and mass attenuation coefficients(σ,cm2?g-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.

    1. Introduction

    Different types of nuclear reactors are considered to be the most probable and ideal solution for the problem of needing growth of electrical energy which the world faces nowadays.Stainless-steel alloys are the most commonly constructive and prospective materials for these types of nuclear reactors because of their excellent mechanical properties,weldability,corrosion resistance,irradiation damage resistance,lower induced radioactivity,availability,and easily fabricated by various methods[1—6].Moreover,these alloys exhibit a promising shielding property as they contain heavy metals such as Cr,Ni,Cu and Fe contributing radiation shielding[7].

    For fusion reactors;materials,which be used,will be exposed to fusion neutrons with energy of 14 MeV.Radiation damage of these materials is characterized by synergistic effect of the cascade damage and nuclear transmutation products such as hydrogen and helium[1].The spectrum of gamma-ray energy,which produced in the fusion reactors,requires long lasting,adequate,cost effective shielding materials to optimize the radiation level and collective dose[8].Stainless steel is the most popular type of steel alloys applied where high corrosion resistance and levels of functionality over longer periods of time are required[9—11].It is well-known that the high corrosion resistance of stainless steels in aqueous environments arises from the existence of a thin oxide film on their surfaces.The stability of the oxide passive film and its susceptibility to breakdown depends on certain parameters such as temperature,pH,applied potentials and environments[12].

    Steel alloys,in inner containment wall of double walled structure dome,were used for leak tightness under normal operation and accident conditions in modern reactor designs.The gamma rays emitted from reactors core are polychromatic, while the available data from the experimental results are little for gamma radiation[13—15].Moreover,the electrochemical properties and the corrosion product composition of the stainless and mild steels depend on the conditions(corrosive ions,temperature,etc.)in the secondary circuit of the nuclear power plant.Actually,it is impossible to determine the corrosion behavior for an actual case from theoretical data only.Therefore,the objective of the present study is to distinguish between three types of steel alloys by their nuclear properties and corrosion behavior to illustrate the possibility of their use in different places in nuclear reactors systems.

    2. Materials

    The present study was carried out by using sheets of carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainlesssteel.The chemical compositions were presented in Table 1.Groups of samples were cut from each sheet and machined to 100 mm×100 mm×5 mm and 30 mm×10 mm×5 mm for nuclear and corrosion measurements respectively.The samples were mechanically polished by using grinding machine with SiC abrasive paper subsequently to 1200 grits and water as a lubricant.

    Table 1 Chemical composition and density of investigated steel Alloys.

    3. Experimental measurements and theoretical calculations

    3.1. Neutron and gamma ray measurements

    The density of the investigated steel alloys was measured by using the standard Archimedes principle[14].The BF3neutron detector was used to detect the slow,total slow neutron,and neutron with energy greater than 10 keV fluxes emitted from241Am-Be neutron source with activity 100 mCi and neutron yield=(1.1—1.4)×107n?sec-1. To deduce the values of macroscopic neutron cross-section, the neutron transmitted fluxes were measured according to Eq.(1)[16,17]:

    In slow neutrons measurements, the collimated beam was slowed down by 7 cm polyethylene block behind the sample,also the neutron of energy below 10 keV was cut off by a block of Born carbide B4C.The Schematic diagram of experimental setup was shown in Fig.1.

    The gamma ray attenuation coefficients of the investigated steel alloys barriers were obtained for nine energy lines(121.78,344.27,661.64,778.9,964,1112.4,1173.23,1332.51,and 1407.92 keV)using collimated beam of gamma rays which emitted from 3.7 μCi Eu-152,9.5 μCi Cs-137,and 4.9 μCi Co-60 radioactive sources.The schematic diagram of experimental setup for gamma ray detection is shown in Fig.2.The 3′′×3′′NaI(Tl)scintillation detector was used to measure the gamma ray intensities for the studied energy lines.The Beer-Lambert's equation was used to evaluate the linear attenuation coefficients[18,19]:

    where,Ioand I are the intensities of gamma rays before and after transmitted the sample respectively,μ(by cm-1)is the linear attenuation coefficient of the sample,and x is the thickness of the sample.Mass attenuation coefficient,σ(by cm2?g-1)is another important nuclear parameter which independent of density of the material,was evaluated from Eq.(3)[20,21]after considering superficial density of thickness.

    The comparison between experimental and calculated data using the WinXCom computer program(Version 3.1)according to Eq.(4)was carried out[11,18,19]:

    The maximum errors in ∑,σ,and half value layer(HVL)were evaluated using the following propagation of error formulas[19,22]:

    3.2. Corrosion measurements

    Fig.1.Schematic diagram of experimental setup for neutron detection.

    Fig.2.Schematic diagram of experimental setup for gamma ray detection.

    The electrochemical corrosion tests were carried out using a three-electrode system.Ag/AgCl electrode was used as reference electrode,a platinum foil as counter-electrode and the investigated alloys with a surface area of 1.0 cm2as working electrode.The open-circuit potential(OCP)was recorded after immersion of the samples in the test solution for 15 min.The polarization tests were carried out at a scan rate of 0.5 mV?s-1.The PAR Calc Tafel Analysis software was used to fit the experimental data to the Stern-Geary model for a corroding system.Potentiostatic measurements were carried out at+500 mV(vs Ag/AgCl)for 120 s,where the anodic current was recorded as a function of time.All corrosion experiments were carried out in 3.5 wt%NaCl solution as electrolyte at different temperatures from 25 to 90°C.The solution was prepared from analytical grade and deionized water.The morphology of the surface after polarization was investigated by using optical microscope.

    4. Results and discussions

    4.1. Nuclear attenuation parameters

    The values of cross-sections of slow,total slow neutrons(primary slow as well as slowdown in the studied steel alloys),and neutron with energy greater than 10 keV were deduced from the attenuation curves and presented in Fig. 3 and Table 2. It is observed that,the values of macroscopic cross-sections of slow neutrons in all types of steel alloys were the biggest values among the other neutron energies.This behavior of slow neutron may be attributed to radiative capture,(n,γ)reaction by Mn nuclei in all types of steel alloys and(n,n)reaction between slow neutrons and Fe nuclei.Moreover,the results show that the values of ∑for total slow neutron in duplex stainless-steel alloy are greater than that in other two types of steel alloys owing to(n,n)and(n,γ)reactions in slow down region by W nuclei.On the other hand,the results presented in Fig.3 and Table 2 show that there is insignificant change in macroscopic cross-section values of neutron with energy>10 keV for all alloys.This is due to(n,n)reactions,in this neutron energy range,with Fe,Mn,and Ni which are found in all types of samples.Also,this insignificant change may be attributed to the presence of W nuclei in duplex stainless steel which substitute the effect of low wt%of Fe in this type of alloy.

    Fig.3.Macroscopic cross-sections of different types of steel alloys with different types of neutron energies.

    Table 2 Macroscopic cross-sections of different types of steel alloys with different types of neutron energies.

    Table 3 Half value layer(HVL)of all investigated samples at different neutron energies.

    The comparison of half value layers of the investigated alloys for different neutron energies is shown in Table 3.

    The attenuation relations for the intensity of gamma rays,(in the energy range of 121—1407 keV)measured behind the investigated steel alloy barriers,are used to deduce the total linear attenuation coefficients(μ,cm-1)as a slope of these curves.

    Fig.4.Mass attenuation coefficients of Duplex Stainless steel(2507 SS)samples as a function of gamma ray energy.

    Fig.5.Mass attenuation coefficients of austenitic stainless steel(304 SS)samples as a function of gamma ray energy.

    Fig.6.Mass attenuation coefficients of carbon steel(AISI 1018)samples as a function of gamma ray energy.

    Fig.4-Fig.6 and Table 4 show the behavior of experimental and calculated mass attenuation coefficient(σ,cm2?g-1).On one side,the results show an excellent agreement between the experimental values of mass attenuation coefficients and that calculated by winXCom computer program(Version 3.1).On the other side,the behavior of all these curves can be divided into two regions.The first region from 121 to 400 keV was characterized by a sharp decrease in the values of mass attenuation coefficients with the increase of gamma ray energies.This behavior is due to the photoelectric reaction which predominates between the investigated alloy barriers and gamma rays.The second region from 400 to 1407 keV characterizes by a slight decrease in the values of mass attenuation coefficients with the increase of gamma ray energies.This is attributed to Compton scattering reaction which predominates in this stage.

    Fig.7 shows the comparison between the average experimental values of mass attenuation coefficients of the investigated steel alloys at different gamma ray energies.The basic feature of this Figure is that,there is insignificant difference in the values of mass attenuation coefficients for all investigated alloys.This behavior is attributed to the values of densities of investigated steel alloys nearly the same.However,the duplex stainless-steel alloy has the highest value of mass attenuation coefficients for all used gamma ray energies owing to the presence of heavy nuclei such as Cr,Ni,Mo,and W nuclei as well as Fe nuclei.The comparison of half value layers of different types of investigated steel alloys for different investigated gamma ray energies is shown in Table 5.

    Fig.7.Comparison between mass attenuation coefficients of steel alloys samples with different gamma ray energies.

    4.2. Corrosion behavior

    4.2.1. Open circuit potential(OCP)

    The variation of the free open circuit potential(OCP)with time for the investigated alloys in 3.5 wt%.NaCl solution at 25 and 90°C is shown in Fig.8 and Fig.9 respectively.It can be noted that the OCP as shown in Fig.8 tends from the moment of immersion towards more negative potentials for all alloys.This behavior represents the dissolution of steel alloys[4].After passing short time of immersion,the potentials of duplex and austenitic stainless steel shift towards more positive direction and stabilize while carbon steel shifts towards more negative potential with potential fluctuation.The positive shift in potential might be associated with thickening of the oxide film formed on the surface while the negative shift is attributed to the thinning and dissolution of the film.The OCP of the investigated alloy at 90°C is shown in Fig.9.It can be seen that increasing temperature to 90°C the OCP of all alloys shifts to more negative potentials with great potential fluctuation.However,duplex stainless steel still has more positive potentials comparing to the other alloys.This means that the protective ability of the passive film on duplex stainless steel is greater than the passive film of both austenitic stainless steel and carbon steel.

    4.2.2. Potentiodynamic polarization

    Potentiodynamic polarization curves of investigated alloys in 3.5 wt%.NaCl solution at different temperatures are shown in Fig.10-Fig.12.It can be observed from potentiodynamic polarization curves that the cathodic and anodic curves show a regularpattern for all alloys.The anodic current density continuously increases with increasing corrosion potential(Ecorr).This behavior shows that all investigated alloys have active dissolution behavior in 3.5 wt%.NaCl solution at different temperatures.Additionally,Fig.10-Fig.12 reveal that with increasing temperature,the Ecorrshifts to less noble potential and the corrosion current density(icorr)increases.The carbon steel has the highest current density while the duplex stainless steel has the lowest.On the other hand,the potentiodynamic polarization curves show that by increasing temperature the passive potential regions of duplex and austenitic stainless steel decreases.This behavior is attributed to the decrease in concentration of the dissolved oxygen and reduction of the pH values in some localized micro-regions,which prevent the formation of Cr6+[9—11].

    Table 4 Mass attenuation coefficients of the investigated alloys.

    Table 5 Half value layer(HVL)of all investigated samples at different gamma ray energies.

    Fig.8.Potential-time curves of investigated steel alloys at 25°C in 3.5 wt%NaCl solution.

    Fig.9.Potential-time curves of investigated steel alloys at 90°C in 3.5 wt%NaCl solution.

    Fig.10.Potentiodynamic polarization curves of carbon steel(AISI 1018)in 3.5 wt%NaCl solution at different temperatures.

    Fig.11.Potentiodynamic polarization curves of austenitic stainless steel(304 SS)in 3.5 wt%NaCl solution at different temperatures.

    Fig.12.Potentiodynamic polarization curves of duplex stainless steel(2507 SS)in 3.5 wt%NaCl solution at different temperatures.

    The electrochemical parameters extracted from potentiodynamic polarization curves are summarized in Table 6.It can be seen that the Ecorrfor duplex stainless steel is higher when compared with austenitic stainless steel and carbon steel at all different temperatures.In this case the rise in potential in noble direction with lower(icorr)for duplex stainless steel is due to thick protective film on the surface[5].

    Fig.13 shows the breakdown potential(Eb)of the investigatedsteel alloys as a function of temperature.The Ebvalue decreases with increasing temperature due to the high mobility of aggressive chloride ions[11].However,the Ebof duplex stainless steel is higher when compared with the other steel alloys at different temperatures.This owes to the presence of molybdenum which promotes the passivation process and improves the pitting resistance.When molybdenum is incorporated into the passive film of stainless steel,it produces oxides with different oxidation states.However,the most common corrosion product incorporated into the passive layer is MoO42-,which is extremely stable and fixes this film[23,24].

    Table 6 Electrochemical parameters obtained from potentiodynamic polarization measurements of the investigated steel alloys at different temperatures in 3.5 wt%NaCl solution.

    The activation energy(Ea)of the corrosion process of investigated steel alloys in 3.5 wt%.NaCl solution was calculated by using Arrhenius-equation:

    where,A is the Arrhenius constant,R is the universal gas constant and T is temperature.By plotting ln(K)versus(1/T),as shown in Fig.14 a straight line with a slope equals—Ea/R was obtained.The values of Eawere 25.79,27.32.and 32.06 kJ?mol-1for AISI 1018,304 SS and 2507 SS respectively.The Eavalue of duplex stainless steel >austenitic stainless steel >carbon steel.This means that the protective passive film of duplex stainless steel >austenitic stainless steel >carbon steel.

    Fig.13.The breakdown potential(Eb)of the investigated steel alloys as a function of temperature in 3.5 wt%NaCl solution.

    Fig.14.Arrhenius plots ln icorr vs.1/T for investigated steel alloys in 3.5%wt.NaCl solution.

    On the other hand,Fig.15 and Fig.16 show the optical micrographs of the investigated steel alloys after potentiodynamic polarization tests at 25 and 90°C respectively.As shown in Fig.15(a)carbon steel alloy exhibits uniform dissolution due to absence of a protective oxide layer.While Fig.15(b)and Fig.15(c)indicate that the passive films of both austenitic and duplex stainless steels were dissolved in some selective sites due to defects in the passive layer and accompanied with some small pits.Increasing temperature to 90°C,the carbon steel alloy shows severely dissolution as shown in Fig.16(a)and size of pits increase obviously for both duplex and austenitic stainless steels (Fig.16(b) and Fig.15(c)). However,numbers and sizes of pits for duplex stainless are lower comparing with austenitic stainless steel.This means that the protective barrier layer of duplex stainless steel against corrosion attacks is stronger than the passive layer of austenitic stainless steel.

    4.2.3. Potentiostatic current—time measurements

    Potentiostatic measurements were carried out at 25 and 90°C to gain more information on the passivity of investigated steel alloys in 3.5 wt%NaCl solution.Fig.17 displays the current density variation with time at 25°C and+500 mV vs.(Ag/AgCl).The electrochemical behavior of carbon steel can be classified into two stages.In the first stage the current density increases in few seconds about 24 s and this represent the dissolution of alloy.In the second stage the current density fluctuates until the end of the test.This trend represented the accumulation of corrosion products of a porous γ-Fe2O3/Fe3O4film[25]and initiation of pits.On the other hand,Fig.17 shows that the current densities of austenitic stainless steel and duplex stainless steel keep constant.This behavior represents the dynamic equilibrium between the dissolution and growth of the passive film[10,11].Additionally,Fig.17 reveals that the passive current density of duplex stainless steel is lower than that of austenitic stainless steel.This means that the passive film of duplex stainless steel has low defects compared to austenitic stainless steel.Fig.18 shows the current density variation with time at 90°C and+500 mV vs.(Ag/AgCl).The results indicate that the current density of carbon steel fluctuated from the moment of immersion till the end of the experiment.This behavior was attributed to aggressive dissolution of surface and the corrosion product is very porous at 90°C which dose not have ability to passivate the surface.Furthermore,the current density of austenitic stainless steel and duplex stainless steel accompanied with the fluctuation of current density.This represents the formation of metastable pits on the surface[26].Presence of molybdenum in duplex stainless steel increases the incubation time of pits on the surface and decreases the current density compared with the other alloys.

    Fig.15.Micrographs of surface morphology of investigated steel alloys after potentiodynamic measurements at 25°C.

    Fig.16.Micrographs of surface morphology of investigated steel alloys after potentiodynamic measurements at 90°C.

    Fig.17.Potentiostatic current—time curves of investigated steel alloys at 25 °C and+500 mV in 3.5 wt%NaCl solution.

    Fig.18.Potentiostatic current—time curves of investigated steel alloys at 90 °C and+500 mV in 3.5 wt%NaCl solution.

    5. Conclusion

    A comparison between three types of steel alloys was carried out from the point of view of nuclear and corrosion studies.From the obtained results,it can be conclude that,stainless steel alloys especially duplex 2507 SS,are a good candidate to be used in different position in nuclear reactor systems as reactor fuel cladding,pressure vessel,and piping inner layer,…etc.due to the following:

    1)Duplex 2507 SS has better HVL than that of 304 SS and AISI 1018 for total slow neutron and neutron energy >10 keV.

    2)Duplex stainless steel has the best values of mass attenuation coefficient of gamma ray energies and HVL.

    3)The passive current density of duplex stainless steel is lower than that of austenitic stainless steel and carbon steel.

    4)Pitting corrosion potential of investigated alloys decreased with increasing temperature.However,duplex stainless steel has more pitting resistance compared with other alloys at all different temperatures.

    Acknowledgement

    Authors appreciate their deeply thanks for Al Azhar University,Faculty of Science & Faculty of Engineering, Cairo, Egypt for providing us the necessary materials and measurements.

    av专区在线播放| 五月玫瑰六月丁香| 亚洲欧美精品专区久久| 亚洲电影在线观看av| 亚洲国产精品999| 久久精品熟女亚洲av麻豆精品| 美女视频免费永久观看网站| 日韩 亚洲 欧美在线| 久久99热这里只频精品6学生| 精品国产三级普通话版| av国产免费在线观看| 成人毛片60女人毛片免费| 国产探花极品一区二区| 成人美女网站在线观看视频| 干丝袜人妻中文字幕| 丝袜脚勾引网站| 国产免费一区二区三区四区乱码| 欧美性猛交╳xxx乱大交人| 777米奇影视久久| 又大又黄又爽视频免费| 91aial.com中文字幕在线观看| 欧美xxⅹ黑人| 高清午夜精品一区二区三区| 国产成人精品福利久久| 欧美人与善性xxx| 免费av观看视频| 国产色婷婷99| 尤物成人国产欧美一区二区三区| 高清毛片免费看| 国产美女午夜福利| 亚洲av免费高清在线观看| 日韩欧美精品免费久久| 欧美激情在线99| 一级二级三级毛片免费看| 日本wwww免费看| 亚洲一级一片aⅴ在线观看| 亚洲av免费在线观看| 亚洲av福利一区| 久久久精品94久久精品| 欧美性感艳星| 91在线精品国自产拍蜜月| 一区二区三区四区激情视频| 黄色怎么调成土黄色| 女人十人毛片免费观看3o分钟| 亚洲婷婷狠狠爱综合网| 午夜福利视频精品| 一区二区三区乱码不卡18| 99久久精品国产国产毛片| 亚洲精品国产av成人精品| 男人和女人高潮做爰伦理| 色播亚洲综合网| 亚洲欧美日韩卡通动漫| 亚洲aⅴ乱码一区二区在线播放| 王馨瑶露胸无遮挡在线观看| 欧美成人一区二区免费高清观看| 日韩免费高清中文字幕av| 好男人在线观看高清免费视频| 精品一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 亚洲人与动物交配视频| 秋霞在线观看毛片| 免费黄色在线免费观看| 狂野欧美白嫩少妇大欣赏| 一级av片app| 18禁动态无遮挡网站| 丝瓜视频免费看黄片| 国产亚洲av片在线观看秒播厂| 一级爰片在线观看| 亚洲三级黄色毛片| 80岁老熟妇乱子伦牲交| 美女被艹到高潮喷水动态| a级一级毛片免费在线观看| 日韩国内少妇激情av| 色综合色国产| 欧美老熟妇乱子伦牲交| 欧美变态另类bdsm刘玥| 国产欧美日韩精品一区二区| 夜夜爽夜夜爽视频| 日韩欧美一区视频在线观看 | 亚洲精品乱码久久久久久按摩| 亚洲精品亚洲一区二区| 国产精品国产三级专区第一集| 国产亚洲5aaaaa淫片| 91久久精品电影网| 久久99精品国语久久久| 久久精品国产自在天天线| 日韩伦理黄色片| 久久久久久伊人网av| 777米奇影视久久| av国产精品久久久久影院| 激情五月婷婷亚洲| 大片电影免费在线观看免费| 午夜亚洲福利在线播放| av卡一久久| 午夜福利视频1000在线观看| 国产精品久久久久久av不卡| 欧美日韩国产mv在线观看视频 | 美女xxoo啪啪120秒动态图| 观看美女的网站| 亚洲精品久久午夜乱码| 国模一区二区三区四区视频| 午夜福利视频1000在线观看| 少妇 在线观看| 91精品国产九色| av在线app专区| 国产午夜精品一二区理论片| 人人妻人人爽人人添夜夜欢视频 | 免费播放大片免费观看视频在线观看| 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区| 亚洲av成人精品一二三区| 五月玫瑰六月丁香| 久久影院123| 亚洲婷婷狠狠爱综合网| 99久国产av精品国产电影| 久久99热6这里只有精品| 国产精品久久久久久精品古装| 日本三级黄在线观看| 免费少妇av软件| 亚洲欧美日韩东京热| 亚洲第一区二区三区不卡| 亚洲精品日韩在线中文字幕| 26uuu在线亚洲综合色| 国产精品人妻久久久影院| 夫妻午夜视频| 免费观看性生交大片5| 好男人视频免费观看在线| 18禁裸乳无遮挡免费网站照片| 久久久久网色| 日本黄色片子视频| 如何舔出高潮| 国产日韩欧美在线精品| 熟女av电影| 99久久九九国产精品国产免费| 亚洲第一区二区三区不卡| 国产女主播在线喷水免费视频网站| 亚洲真实伦在线观看| 欧美日韩视频精品一区| 久久99热这里只有精品18| 成人国产av品久久久| 免费av毛片视频| 久久久久久伊人网av| 激情五月婷婷亚洲| 久久97久久精品| 国产精品熟女久久久久浪| 久久久久网色| 极品教师在线视频| 丝袜喷水一区| 男人添女人高潮全过程视频| 国产又色又爽无遮挡免| 三级经典国产精品| 日韩一本色道免费dvd| 亚洲自拍偷在线| av又黄又爽大尺度在线免费看| 国产亚洲午夜精品一区二区久久 | 亚洲人成网站高清观看| 国产探花在线观看一区二区| 日韩国内少妇激情av| 亚洲欧美精品自产自拍| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91 | 老师上课跳d突然被开到最大视频| 日韩一区二区视频免费看| 久久鲁丝午夜福利片| 久久久久久九九精品二区国产| 亚洲欧美精品专区久久| 中国三级夫妇交换| 偷拍熟女少妇极品色| 一区二区三区乱码不卡18| 秋霞在线观看毛片| 亚洲在线观看片| 亚洲色图av天堂| 日韩一本色道免费dvd| 国产精品秋霞免费鲁丝片| 国产成年人精品一区二区| 校园人妻丝袜中文字幕| 久久久久网色| 亚洲av在线观看美女高潮| 91精品一卡2卡3卡4卡| 在线天堂最新版资源| 黄片无遮挡物在线观看| 国产精品一及| 一边亲一边摸免费视频| 午夜免费鲁丝| 一级毛片我不卡| 极品教师在线视频| 欧美一级a爱片免费观看看| 成人亚洲欧美一区二区av| 美女脱内裤让男人舔精品视频| 日韩国内少妇激情av| 纵有疾风起免费观看全集完整版| 一区二区av电影网| 国产综合精华液| 亚洲欧美清纯卡通| 热re99久久精品国产66热6| 大又大粗又爽又黄少妇毛片口| 欧美人与善性xxx| 女人久久www免费人成看片| 午夜福利在线观看免费完整高清在| 亚洲精品,欧美精品| 亚洲av免费在线观看| 丝袜美腿在线中文| 日韩 亚洲 欧美在线| 亚洲精品国产av蜜桃| 尾随美女入室| 午夜福利在线在线| 精品一区二区免费观看| av国产精品久久久久影院| 免费看日本二区| 久久久欧美国产精品| 国产成人精品久久久久久| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 男人爽女人下面视频在线观看| 老女人水多毛片| 成年版毛片免费区| 汤姆久久久久久久影院中文字幕| 有码 亚洲区| 亚洲精品国产av成人精品| 亚洲人成网站在线播| 亚洲精华国产精华液的使用体验| 制服丝袜香蕉在线| 亚洲国产精品专区欧美| 国产综合精华液| 午夜激情福利司机影院| 尤物成人国产欧美一区二区三区| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 久久影院123| 午夜爱爱视频在线播放| 丝袜喷水一区| 久久久久久久久久久免费av| 国产精品无大码| 久久久精品94久久精品| 美女cb高潮喷水在线观看| 狠狠精品人妻久久久久久综合| 看黄色毛片网站| 国产午夜福利久久久久久| 26uuu在线亚洲综合色| 一级二级三级毛片免费看| 乱系列少妇在线播放| 亚洲三级黄色毛片| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 中文精品一卡2卡3卡4更新| 亚洲婷婷狠狠爱综合网| 国产精品蜜桃在线观看| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 最近最新中文字幕免费大全7| 欧美zozozo另类| 一级av片app| 高清视频免费观看一区二区| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 亚洲国产精品成人久久小说| 99热这里只有是精品50| 老司机影院毛片| 亚洲综合色惰| 亚洲婷婷狠狠爱综合网| 中文字幕免费在线视频6| 麻豆成人av视频| 亚洲av中文av极速乱| 国产一区二区亚洲精品在线观看| 五月天丁香电影| 国产高清三级在线| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 99re6热这里在线精品视频| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站| 最近2019中文字幕mv第一页| 可以在线观看毛片的网站| 国产午夜福利久久久久久| 亚洲av免费在线观看| 一本一本综合久久| 中文在线观看免费www的网站| .国产精品久久| 视频区图区小说| 亚洲婷婷狠狠爱综合网| 日本三级黄在线观看| 久久久久久久久久人人人人人人| 男女下面进入的视频免费午夜| 久久99热这里只频精品6学生| 亚洲精品第二区| 国产伦精品一区二区三区四那| 边亲边吃奶的免费视频| 亚洲内射少妇av| 国产黄色视频一区二区在线观看| 美女被艹到高潮喷水动态| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 嫩草影院精品99| 国产成人aa在线观看| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| 欧美3d第一页| 一个人看视频在线观看www免费| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 老司机影院毛片| 最近最新中文字幕免费大全7| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 欧美精品国产亚洲| 男插女下体视频免费在线播放| 午夜视频国产福利| 亚洲成人av在线免费| 国产熟女欧美一区二区| 亚洲精品乱久久久久久| 亚洲综合精品二区| 精品人妻一区二区三区麻豆| 在线看a的网站| 国产亚洲最大av| 香蕉精品网在线| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 一级片'在线观看视频| 国产精品人妻久久久影院| 99精国产麻豆久久婷婷| 国产乱人偷精品视频| 狂野欧美激情性bbbbbb| 国模一区二区三区四区视频| 九色成人免费人妻av| 亚洲欧洲日产国产| 欧美xxxx黑人xx丫x性爽| 老女人水多毛片| 蜜臀久久99精品久久宅男| 午夜亚洲福利在线播放| 在线亚洲精品国产二区图片欧美 | 色网站视频免费| 高清av免费在线| 婷婷色av中文字幕| 波野结衣二区三区在线| 午夜激情久久久久久久| 成年免费大片在线观看| 女人久久www免费人成看片| 亚洲av男天堂| 老司机影院成人| 成人欧美大片| 亚洲激情五月婷婷啪啪| av在线天堂中文字幕| 亚洲av不卡在线观看| 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| 毛片女人毛片| 免费看不卡的av| av国产免费在线观看| 国产免费一区二区三区四区乱码| 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人 | 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 亚洲色图av天堂| 大码成人一级视频| 午夜激情福利司机影院| 少妇高潮的动态图| 日韩欧美精品v在线| 国产精品国产三级国产av玫瑰| 国产人妻一区二区三区在| 亚洲精品一区蜜桃| 五月开心婷婷网| 色吧在线观看| 久久久久性生活片| 看十八女毛片水多多多| 五月玫瑰六月丁香| 99热全是精品| 少妇高潮的动态图| 有码 亚洲区| 特大巨黑吊av在线直播| 寂寞人妻少妇视频99o| 偷拍熟女少妇极品色| 中文在线观看免费www的网站| 日韩一本色道免费dvd| 亚洲aⅴ乱码一区二区在线播放| 青春草视频在线免费观看| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 搞女人的毛片| 日韩三级伦理在线观看| 国产精品一区www在线观看| 国产片特级美女逼逼视频| 久久久久久久国产电影| 精品熟女少妇av免费看| 久久久久久久午夜电影| 91精品国产九色| 在线看a的网站| 中国国产av一级| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 国内少妇人妻偷人精品xxx网站| 在线观看免费高清a一片| 亚洲丝袜综合中文字幕| 亚洲天堂av无毛| 99久久精品国产国产毛片| 国产成人一区二区在线| 亚洲美女视频黄频| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| xxx大片免费视频| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 午夜亚洲福利在线播放| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 男男h啪啪无遮挡| 午夜精品一区二区三区免费看| 久久99蜜桃精品久久| 亚洲av免费高清在线观看| 在线精品无人区一区二区三 | 一级毛片 在线播放| 国产69精品久久久久777片| 在线天堂最新版资源| 嫩草影院新地址| 男女那种视频在线观看| 久久99蜜桃精品久久| 99久国产av精品国产电影| 亚洲色图av天堂| 日本爱情动作片www.在线观看| 日本一本二区三区精品| 美女主播在线视频| 精品人妻熟女av久视频| 国产成人freesex在线| 五月玫瑰六月丁香| 婷婷色av中文字幕| 国产老妇女一区| 亚洲av一区综合| 少妇的逼水好多| 26uuu在线亚洲综合色| 97精品久久久久久久久久精品| 白带黄色成豆腐渣| 色哟哟·www| 高清在线视频一区二区三区| 在线观看av片永久免费下载| 综合色丁香网| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 丝袜脚勾引网站| 高清午夜精品一区二区三区| 国产精品一区www在线观看| 午夜免费观看性视频| 精品国产乱码久久久久久小说| 韩国av在线不卡| 欧美三级亚洲精品| 舔av片在线| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 精品久久久久久久人妻蜜臀av| 视频区图区小说| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| 六月丁香七月| 黄色配什么色好看| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 久久久久久久久大av| 婷婷色av中文字幕| 边亲边吃奶的免费视频| 欧美成人a在线观看| 国产毛片在线视频| 大片电影免费在线观看免费| 伊人久久国产一区二区| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 国产欧美亚洲国产| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 99久久精品热视频| 欧美日韩亚洲高清精品| 只有这里有精品99| 欧美成人一区二区免费高清观看| 波多野结衣巨乳人妻| 自拍欧美九色日韩亚洲蝌蚪91 | 99热国产这里只有精品6| 久久久久性生活片| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 色网站视频免费| 少妇裸体淫交视频免费看高清| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 一本一本综合久久| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡 | 大香蕉久久网| 中国国产av一级| 免费av观看视频| 夫妻午夜视频| 国产淫语在线视频| 国产精品人妻久久久影院| 又爽又黄a免费视频| 久久精品国产自在天天线| 成年免费大片在线观看| 久久久亚洲精品成人影院| 一本一本综合久久| 在线天堂最新版资源| 一二三四中文在线观看免费高清| 麻豆成人av视频| 美女xxoo啪啪120秒动态图| 看黄色毛片网站| 国产黄a三级三级三级人| av在线app专区| 2022亚洲国产成人精品| 51国产日韩欧美| 22中文网久久字幕| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 国模一区二区三区四区视频| 精品酒店卫生间| 校园人妻丝袜中文字幕| kizo精华| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| www.色视频.com| 欧美丝袜亚洲另类| 亚洲激情五月婷婷啪啪| 国产人妻一区二区三区在| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 男插女下体视频免费在线播放| 人体艺术视频欧美日本| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久人妻蜜臀av| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 亚洲伊人久久精品综合| 日本三级黄在线观看| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| eeuss影院久久| 在线亚洲精品国产二区图片欧美 | 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 成人国产麻豆网| 亚洲av在线观看美女高潮| 美女国产视频在线观看| 极品少妇高潮喷水抽搐| 日日撸夜夜添| 国产综合懂色| 大片电影免费在线观看免费| 小蜜桃在线观看免费完整版高清| a级毛片免费高清观看在线播放| 久久久精品免费免费高清| 男女国产视频网站| 特级一级黄色大片| 91久久精品国产一区二区成人| 国产精品一区二区在线观看99| 成人无遮挡网站| 亚洲第一区二区三区不卡| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 男女边摸边吃奶| 丝袜脚勾引网站| 神马国产精品三级电影在线观看| 国产精品一二三区在线看| 日韩欧美精品v在线| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 日本一本二区三区精品| 高清av免费在线| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 亚洲精品一二三| 亚洲欧美日韩卡通动漫| 精品国产一区二区三区久久久樱花 | 免费看日本二区| 少妇人妻久久综合中文| 成人美女网站在线观看视频| 一级a做视频免费观看| 亚洲欧美成人精品一区二区| 国产高清有码在线观看视频| 亚洲国产日韩一区二区| 性色avwww在线观看| av网站免费在线观看视频| 性色av一级| 亚洲av成人精品一二三区| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 国产淫语在线视频| 99九九线精品视频在线观看视频| 搞女人的毛片| 午夜福利视频精品| 免费av不卡在线播放| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 亚洲精品第二区| eeuss影院久久| av在线app专区| 2018国产大陆天天弄谢| 在线播放无遮挡| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 国产亚洲av嫩草精品影院| 国产欧美亚洲国产| 国产亚洲精品久久久com|