• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate

    2019-10-31 07:08:38JlpVrPrgneshDveShliniChturvedi
    Defence Technology 2019年4期

    Jlp A.Vr ,Prgnesh N.Dve ,b,*,Shlini Chturvedi

    a Department of Chemistry,K S K V Kachchh University,Mundra Road,Bhuj,370 001,Gujarat,India

    b Department of Chemistry,Sardar Patel University,Vallabh Vidyangar,388 120,Gujarat,India

    c Samarpan Science and Commerce College Gandhinagar,Gujarat,India

    Keywords:Metal oxide nanoparticles(MONs)Ammonium perchlorate(AP)Catalytic activity Activation energy

    A B S T R A C T The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117°C by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.

    1. Introduction

    The transition metals have important utilization account in vast fields caused by its exceptional characteristics like optical,magnetic,electronic and also the catalytic proficiency[1—3].The catalytic proficiency enhances sharply by nanometer size oxide particles than micrometer size oxide particles[4].Nano-size materials gained attention in extreme research activities, mainly because of size effect,the optical and electronic properties and the role played by surface phenomena.The catalytic applications of transition metal oxides in the composite solid propellants[5,6].The MONs with AP affect on the process of decomposition and the gasphase reaction of the AP reported in literature[7].Among propellants AP is the most vital and main oxidizing agents,it has a deciding and competitive part in the burning process[4,8—11].

    AP is a stable chemical composite that gradually decompose at a low temperature. Therefore, it is important to get better or improved decomposition performance of AP to demand to generate high energy at low temperature.For that reason,the researchers are taking more interest in the thermal behavior and ignition of AP,because of its thermal behavior,AP is especially sensitive to the diminutive quantity existence of additives [4,12,13]. The investigators have described that metal oxides,such as MnO2[14],NiO[15],ZnO[16],CuO[17],Cu2O[18],Co3O4[19],CuFe2O4and MnFe2O4[9]exhibit better catalytic proficiency in the AP thermal decomposition.These minute amount additives are working like a ballistic catalyst to tailor the propellants ballistic properties.Nanosized particles have great catalytic actions due to the small size and vast surface areas.Therefore,researchers more interested in doing better combustion performance of composite solid propellants with these nanomaterials[20—22].

    In the present studies,three types of MONs(CuZnO,CoZnO,and NiZnO) have synthesized through co-precipitation route. The comparison study of three MONs as catalyst was simultaneouly studied on the AP decomposition.The catalytic ability of MONs have been measured on thermal behavior of AP by TG-DSC techniques.The Starink,KAS and FWO techniques have been applied to calculate activation energies of catalyzed AP.

    2. Experimental

    2.1. Reagents and chemicals

    All metal nitrate and NaOH were acquired from Merck.AP was acquired from National Chemicals and used with no additional purification.

    2.2. Synthesis of nanoparticles

    The synthesis of MONs(CuZnO,CoZnO,and NiZnO)were earlier reported through co-precipitation procedure[23].0.2 M solution of metal nitrate(Cu,Co,and Ni)and 0.4 M zinc nitrate solution prepared.Afterward,mixing both solutions and then dropwise adding of 0.5 N NaOH with continued stirring.Keep constant pH 11—12 of the reaction till metal hydroxides precipitates. Wash the precipitates with water to make them free from nitrate ions.The brown precipitation was dried at 60°C in the oven for 5 h and then calcined at 300°C for 5 h.

    2.3. Characterization

    The characterization of all nanoparticles was done by utilizing X-ray Diffraction(powder XRD,Rigaku mini flex 600),with CuKα radiation(λ=1.5418)and FTIR spectra were investigated by utilizing MB 3000 FTIR spectrometer(ABB Pvt.Ltd.,Germany)with ATR(horizontal attenuated total reflection).The morphology of nanoparticles is characterized by utilizing Scanning Electronic Microscopy(SEM,JEOL JSM-6510 LV)with 30 kV voltages.The crystallite size was estimated by Scherrer's equation[24].

    2.4. Thermal analysis

    The catalytic competency of MONs investigated after the addition of MONs in AP by utilizing TG-DSC(PerkinElmer STA-8000 instrument).The virgin AP is carried out in the TG-DSC for the comparative study.All samples were recorded ~10 mg of pure AP and AP with nano-catalyst in the proportion of 99:1 in N2atmosphere(20 ml min-1)at 10°C?min-1heating rate by using platinum crucible.

    2.5. Kinetic studies

    The DSC experiments carried out with three heating rate 5,10 and 15°C?min-1.The activation energy was calculated by three methods including Flynn wall Ozawa(FWO),Starink methods and Kissinger Akahira Sunose(KAS)[25—27].By using FWO,KAS and Starink techniques,activation energy was calculated based on Eqs.(1)—(3),respectively.The activation energy was estimated from the slope of a graph of lnβ for FWO,ln(β/T2)for KAS and ln(β/T1.92)for Starink against 1000/T by different(three)heating rates(β),where Tmis the peak temperature of the DSC thermogram.

    The slope value of the plot gives the activation energy(Ea).The value of the exponential factor(A)can be estimated from the intercept of the respective plots.

    3. Results and discussion

    3.1. Characterization of nanoparticles

    The XRD graphs of three metal incorporated ZnO nanoparticles are unleashed in Fig.1.XRD of MONs shows sharp and high diffracted intensity of peaks,it indicates that all the particles display fine crystalline nature.The XRD diffractogram for three metal doped samples are in concurrence with the JCPDS file no 36—1451[28].It was simply indexed to hexagonal wurtzite phase with P63mc group.Incorporation of the metals in ZnO influences the lattice parameter of peaks and it diffuses to the crystal site,Cu,Co,and Ni are changed zinc site in the ZnO so they are enhanced the size of crystallite[29,30].In the case of CoZnO and NiZnO two additional peaks due to secondary phase formation have been observed in the XRD spectra.Nevertheless,the extra peaks at 59.01°and 64.90°in CoZnO nanoparticles are analyzed to Co3O4(JCPDS file No.42—1467)secondary phase.Whereas,NiZnO nanoparticles confirmed the presence of two extra peaks at 74.96°and 79.07°which are analyzed to be NiO(JCPDS Card 47—1049).These may be attributed due to accomplishment of the saturated state of doping level by Cu,Co and Ni-doped ZnO nanoparticles respectively[31,32].

    Broad nature of diffraction peaks due to the microstrain also indicates the nanosized nature of the prepared MONs.The crystallite size D has been obtained from the highest diffraction peak along the plane by using the Scherrer formula[24]as follows:

    where λ is the wavelength of the employed CuKα radiation(0.15418 nm),β is the full width at half-maximum(FWHM)of the peaks,and θ is the Bragg angle obtained from 2θ value corresponding to maximum intensity peak in XRD pattern.The strain can be calculated by the formula:

    Fig.1.XRD Pattern of metal oxide nanoparticles.

    Fig.2.FTIR graphof Metal oxide nanoparticles.

    The crystallite size and microstrain of the synthesized MONs is reported in Supplementary Material Table 1.The microstrain follows the order:CoZnO >CuZnO >NiZnO.

    The comparative FTIR graph of CuZnO,CoZnO,and NiZnO are shown in Fig.2,which gives complementary nature of metal oxides[33].All the samples show broad band around ~3400 cm-1in spectra which represents the O—H stretch of hydroxyl group attached on surface of metal oxide.It indicates that adsorbed H2O molecules on metal surface during synthesis process[34,35].The less intensive frequency band noticed at ~1640 cm-1explains bending vibration(H—O—H)of hydrated water[36].In all spectra,the intensive peaks of M-O bond of stretching vibration mode below 1000 cm-1frequency region noticed,which confirms the forming of metal oxide[37,38].The summary of all peaks are described in Supplementary Material Table 2.

    The SEM images of CuZnO,CoZnO,and NiZnO nanoparticles are shown in Fig. 3. These images indicate that the shape and morphology of MONs.The images show that oxides are agglomerated.CuZnO was observed spherical in shape,and other two nanoparticles polygonal shape was observed.The image for MONs(Fig.3)manifests the synthesized nanoparticles with reasonably uniform size distribution with some unspecified reason larger than that of the grain size obtained from XRD analysis as depicted in Table 1.This could be indicant for the formation of secondary particles by aggregation of the primary particles.For the Cu,Co and Ni doped ZnO samples,the particles seem to be more and more agglomerated,and consequently it is hard to say with greater degree about the grain size obtained from the less-resolved SEM images(Fig.3)[39].

    Table 1 Thermal analysis data of AP and AP with MONs(heating rate 10°C min-1).

    3.2. Catalytic activity of MONs

    The thermal performance of AP in the presence of 1%MONs was investigated with 10°C?min-1heating rates by utilizing PerkinElmer STA 8000 instrument.The weight loss in the TG thermograms presented in Fig.4 which has been coordinated with the derivative thermogravimetry(DTG)data revealed in Fig.5.Fig.4 offers the two-step weight loss of virgin AP at 285-425°C temperature range[40—42].In the initial step,16%weight loss of pure AP occurred within the temperature range 285—350°C coincides with the conversation of AP into intermediate products such as NH3and HClO4.In another step,80%of weight loss noticed to complete decomposition of AP with the formation of volatile products at higher temperature in range 350—425°C.While adding MONs in AP,the temperature of decomposition shifted at 285-330°C.Fig.4 clearly depicts that the MONs has a catalytic competency over the AP decomposition.Fig.4 is thermogram of AP with three MONs(CuZnO,CoZnO,and NiZnO)demonstrated weight loss of 98.96%,98.55%,and 98.19%in one-step respectively.The catalytic competency of MONs on the quick oxidation of the AP gives the first step decomposition at a lower temperature.

    Fig.6 displays the DSC graph of virgin AP with three distinct peaks.The one endothermic peak is recognized at 243.12°C that expressed the crystal structural transition from orthorhombic to cubic[43]and another two exothermic peaks demonstrated at 310.30°C and 395.12°C respectively.The peak noticed at 310.30°C denotes the fractional decomposition of AP at lower temperature and another peak appeared at 395.12°C denotes the complete decay of AP at high temperature.The incorporation of MONs with AP leads to change in the thermal decay pattern of the AP as revealed in Fig.6.The DSC graph of MONs with AP have no variation in the endothermic peak but the exothermic peak appeared with one intense peak at 278,290,and 306°C for three different MONs at lower temperature and reported in Table 2.The DTA data also support to DSC data shown in Fig.7.After incorporation of MONs with AP that lower the decomposition temperature around 90-120°C as compared to pure AP.The rapid decomposition of AP occurred at lower temperature in the presence of MONs.CuZnO that exhibits good thermal catalytic competency on AP decomposition, which reduced the decomposition temperature around 117°C.

    Fig.3.SEM images.

    Fig.4.TG thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.5.DTG thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.6.DSC thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.7.DTA thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    DTA curve of virgin AP observes three main events and presented in Fig.7.The endothermic peak is appeared at 244°C for AP and two exothermic peaks around 309 and 394°C.AP with MONs has obvious variation in the exothermic peak listed in Table 1 that also concord DSC results. Furthermore, our results also demonstrate that the effect of CuZnO, CoZnO and NiZnO nanoparticles on thermal decomposition of AP leads high temperature decomposition(HTD)shifts to low temperature decomposition(LTD).Also,it can be concluded that AP with CuZnO,CoZnO,and NiZnO nanoparticles have better catalytic proficiency on the reduction of temperature and enhancement in releasing heat than single MONs in the order of CuZnO ?CoZnO ?NiZnO illuminating the advantage of using MONs as catalyst in reaction process.

    According to data of thermal analysis,these MONs catalysts have competency to reduce decomposition temperature of AP,presented in Table 1,CuZnO was found more proficient catalyst than the others and the decomposition temperature of AP sliding to 117°C.

    3.3. Kinetic studies

    The kinetic studies of catalytic proficiency of MONs onto AP have been scrutinized by three different methods viz FWO,KAS,and Starink methods with different heating rate (5, 10, and 15°C?min-1)[25—27].The plots of lnβ,ln(β/T-2)and ln(β/T-1.92)against 1000/T of all samples-virgin AP and AP with MONs are presented in Fig.8.From Table 2,the calculated values of activation energies of virgin AP are 277.58,276.23,and 276.47 kJ mol-1by FWO,KAS,and Starink respectively.After addition of MONs,activation energy reduces significantly.The results point out that CuZnO has excellent catalytic proficiency in order to increase AP decomposition rate.Table 2 displays the lower in activation energy for AP in compare to MONs.The correlation coefficient(r)is close to one.The activation energy decreases with decreasing the exponential factor inturn the catalytic proficiency increases.

    In the DSC based thermokinetics,activation energy of KAS and Starink techniques are similar to each other and lesser than the FWO method.The equations used in the KAS and Starink techniques have almost same activation energy that is pointed out from the results.These parameters are achieved from the dependence of exothermic peak temperatures established in a role of heating velocity.The Kissinger correlation can be used to define the relationship concerning the decomposition temperature and heating rate[44].The MONs have broad surface area caused by their verysmall size and there are many reactive sites over the surface.The promotions of reactions endorsed by MONs with involvement absorbing the gaseous reactive molecules on their surface in the exothermic decomposition.

    Table 2 Thermokinetics data of AP,AP with MONs by using Ozawa,Kissinger and Starink methods.

    Fig.8.Plot of AP and APwith threeMONs by using FWO,KAS and Starink methods.

    The results stated that the decomposition of AP from intermediate products to gaseous products in presence of CuZnO nanoparticle has a superior catalytic activity in comparison to CoZnO,and NiZnO.The activation energy of decomposition AP with CuZnO nanoparticles reduced,exhibiting distinguishable kinetic parameters of a self-increasing reaction.

    3.4. Mechanism of thermal decomposition of AP

    The thermal decomposition of AP studies by two most significant mechanisms.The first electron shift from perchlorate ion to ammonium ion and second proton shift from ammonium ion to perchlorate ion,but proton transfer is more acceptable as follows[7,45—50]:

    The AP decomposition gives two most important products NH3and HClO4identified in the experiments by the researcher[7,47—49].This postulates that the primary point of AP decomposition process is proton shift. This mechanism includes three important steps:The step-1,includes a pair of ions in AP lattice.The step-2,includes decay or sublimation step that begins with proton movement starting from the cationto the anionthen the molecular complex is formed and decomposes into NH3and HClO4in step-3.The molecules of NH3and HClO4also react in the adsorbed layer on the surface of perchlorate or desorbs and inspiring relating in the gas phase[45]:

    The absorption of gaseous reactive molecules on the surface MONs which enhances reaction rate by the proton transfer mechanism.The increment observed in the thermal decay rate of AP is by virtue of increasing the development of more holes within the ptype semiconducting area.The mechanism of catalytic efficiency of catalyst is in the interest of theion on the exterior part of the catalyst.Theformed throughout decomposition of AP and the surfaceof catalysts are likely the proton traps through the following reaction[50,51]:

    The involvement of catalyst information and gas absorption on its surface are main reasons in the completion of AP thermal decay.The CuZnO nanoparticles surface is able to produce morein comparison with other CoZnO and NiZnO NPs.Therefore,CuZnO nanoparticles are increasing in quick progression of AP thermal decay than others.

    The perfect mechanism of thermal decay of AP has not understood totally yet.The mechanism of AP thermal decay through chain reaction has been proposed by YU Zongxue's[52].The NH3,H2O and a minor quantity of N2O and O2are forming during the low-temperature thermal decay of AP.The HCl,H2O,N2O,NH3,Cl2,NO,O2,NO2and a minor quantity of ClO2have been formed in the high-temperature point of AP decay.

    At low temperature:

    At high temperature:

    The mechanism of AP combustion has been investigated by many research workers and role of condensed phase reaction at a pressure around 10—14 MPa is critical in many types of studies.The decomposition of AP occurs more than 70%in the condensed phase[53—55].

    4. Conclusion

    The three different types of CuZnO2, CoZnO2, and NiZnO2nanoparticles were synthesized via co-precipitation procedure.The study presents a new way to get better thermal decomposition of AP through synthesized MONs. Thermal analysis techniques including TGA-DSC,DTA and DTG were applied to study thermal responses. The CuZnO showed superior catalytic action than CoZnO2,and NiZnO2and shifting decomposition temperature at 117°C in downhill for AP.

    The thermal decomposition temperature was found in the order CuZnO ?CoZnO ?NiZnO nanoparticles and all three MONs have good catalytic activity.The results prove that activation energies of AP with MONs are lower than virgin AP.So,AP with MONs can be promising candidates for solid propellants for energetic materials.

    Acknowledgement

    The authors are grateful to the Department of Chemistry,KSKV Kachch University,Bhuj for laboratory facility and for XRD,SEM and TGA-DSC analysis and also thankful to Chemistry Department,Sardar Patel University,Vallabh Vidyanagar for providing ATR-FTIR instrument facility.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2019.04.002.

    亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 最好的美女福利视频网| 91麻豆精品激情在线观看国产| a级毛片a级免费在线| 久久性视频一级片| 亚洲天堂国产精品一区在线| 777久久人妻少妇嫩草av网站| 亚洲国产精品999在线| 欧美黑人欧美精品刺激| 国产精品久久视频播放| 欧美黑人巨大hd| 特大巨黑吊av在线直播| 麻豆一二三区av精品| 日本成人三级电影网站| 黄色女人牲交| 久久久久久久精品吃奶| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 欧美黑人欧美精品刺激| tocl精华| 亚洲av成人精品一区久久| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| cao死你这个sao货| 少妇的丰满在线观看| 国产亚洲精品av在线| 亚洲电影在线观看av| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 后天国语完整版免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲色图av天堂| 日本五十路高清| 天堂动漫精品| 最近在线观看免费完整版| 国产精品 欧美亚洲| 麻豆成人av在线观看| 精品国产超薄肉色丝袜足j| АⅤ资源中文在线天堂| 男人的好看免费观看在线视频 | 日韩成人在线观看一区二区三区| 国产精品一区二区三区四区久久| 亚洲五月天丁香| 亚洲av电影在线进入| 国产精品一区二区精品视频观看| 亚洲欧美日韩东京热| 一区二区三区国产精品乱码| 国产久久久一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美激情综合另类| 在线播放国产精品三级| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 人妻久久中文字幕网| 成人三级做爰电影| 久久久久久亚洲精品国产蜜桃av| 最近在线观看免费完整版| 视频区欧美日本亚洲| 亚洲欧美日韩无卡精品| 日韩三级视频一区二区三区| or卡值多少钱| 1024手机看黄色片| 日本三级黄在线观看| www.精华液| 桃色一区二区三区在线观看| 最近最新免费中文字幕在线| 久久中文字幕人妻熟女| 免费高清视频大片| 亚洲精品在线观看二区| 国产精品乱码一区二三区的特点| 国产免费男女视频| 黄色成人免费大全| 国产精品久久久久久亚洲av鲁大| 99re在线观看精品视频| 男女下面进入的视频免费午夜| 久久久久久大精品| 亚洲国产精品成人综合色| 亚洲人成电影免费在线| 一本一本综合久久| 久久这里只有精品19| 国内久久婷婷六月综合欲色啪| 夜夜夜夜夜久久久久| 午夜成年电影在线免费观看| 在线观看免费日韩欧美大片| 一本一本综合久久| 99riav亚洲国产免费| 一边摸一边抽搐一进一小说| 香蕉久久夜色| 精品高清国产在线一区| 女人爽到高潮嗷嗷叫在线视频| 久热爱精品视频在线9| 两个人的视频大全免费| 日本免费一区二区三区高清不卡| 日韩精品青青久久久久久| 麻豆久久精品国产亚洲av| 18禁国产床啪视频网站| 又大又爽又粗| 一本精品99久久精品77| 妹子高潮喷水视频| 久久中文字幕人妻熟女| 婷婷丁香在线五月| 成年版毛片免费区| 天堂动漫精品| 一进一出抽搐动态| 啦啦啦韩国在线观看视频| 亚洲熟女毛片儿| 男女做爰动态图高潮gif福利片| 日本a在线网址| 性欧美人与动物交配| 欧美绝顶高潮抽搐喷水| 久久这里只有精品中国| www.www免费av| 精品久久蜜臀av无| 久热爱精品视频在线9| av欧美777| 欧美在线一区亚洲| 成人一区二区视频在线观看| 大型黄色视频在线免费观看| 亚洲狠狠婷婷综合久久图片| xxxwww97欧美| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 露出奶头的视频| 在线观看日韩欧美| 人妻丰满熟妇av一区二区三区| 999久久久精品免费观看国产| 欧美午夜高清在线| 1024手机看黄色片| 麻豆一二三区av精品| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 国产乱人伦免费视频| 国产不卡一卡二| 日日干狠狠操夜夜爽| 日韩有码中文字幕| 熟妇人妻久久中文字幕3abv| 精品久久久久久,| 少妇裸体淫交视频免费看高清 | 法律面前人人平等表现在哪些方面| 欧美激情久久久久久爽电影| 久久精品国产亚洲av香蕉五月| 啪啪无遮挡十八禁网站| 欧美最黄视频在线播放免费| 国产爱豆传媒在线观看 | 蜜桃久久精品国产亚洲av| 在线国产一区二区在线| 国产一区在线观看成人免费| 叶爱在线成人免费视频播放| 婷婷丁香在线五月| ponron亚洲| 亚洲熟妇熟女久久| bbb黄色大片| 少妇熟女aⅴ在线视频| 欧美在线黄色| 丝袜人妻中文字幕| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 成年免费大片在线观看| 国产视频一区二区在线看| 宅男免费午夜| 国产成人av教育| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 十八禁人妻一区二区| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看 | 三级国产精品欧美在线观看 | 欧美日韩亚洲综合一区二区三区_| 免费在线观看成人毛片| 亚洲专区国产一区二区| 亚洲av成人av| 老司机午夜十八禁免费视频| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区| 97碰自拍视频| 男插女下体视频免费在线播放| 色综合婷婷激情| 日韩 欧美 亚洲 中文字幕| 午夜精品在线福利| 色老头精品视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 免费在线观看视频国产中文字幕亚洲| 精品电影一区二区在线| 日本五十路高清| 中文字幕人妻丝袜一区二区| 精品欧美国产一区二区三| 一本精品99久久精品77| 香蕉久久夜色| 国产精品乱码一区二三区的特点| 99久久久亚洲精品蜜臀av| 亚洲国产精品999在线| 亚洲美女视频黄频| 国产一区二区在线av高清观看| 免费观看人在逋| 亚洲黑人精品在线| 一级片免费观看大全| 九九热线精品视视频播放| 日韩高清综合在线| aaaaa片日本免费| 精品午夜福利视频在线观看一区| 欧美一级毛片孕妇| 99精品久久久久人妻精品| 国产精品永久免费网站| 日本黄大片高清| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻 | 99国产综合亚洲精品| 国产激情久久老熟女| 一级黄色大片毛片| 亚洲熟妇熟女久久| 99久久国产精品久久久| 一本综合久久免费| 国产男靠女视频免费网站| 岛国在线免费视频观看| 亚洲avbb在线观看| 午夜影院日韩av| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免费看| 久久久国产成人免费| 韩国av一区二区三区四区| 国产免费av片在线观看野外av| 成人手机av| 中文字幕av在线有码专区| 午夜影院日韩av| 香蕉国产在线看| netflix在线观看网站| 国产不卡一卡二| 午夜免费激情av| 久久伊人香网站| 老司机靠b影院| 亚洲人成77777在线视频| 国产成人欧美在线观看| 久久久久亚洲av毛片大全| 久久久久久久精品吃奶| 99国产精品99久久久久| 久久久久久久久久黄片| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| 舔av片在线| 日本三级黄在线观看| 老司机靠b影院| av在线天堂中文字幕| 亚洲人成网站高清观看| 成人三级黄色视频| 午夜精品在线福利| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 舔av片在线| √禁漫天堂资源中文www| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品久久成人aⅴ小说| 男人的好看免费观看在线视频 | 国产高清视频在线播放一区| 琪琪午夜伦伦电影理论片6080| 国产av一区在线观看免费| 伊人久久大香线蕉亚洲五| 免费人成视频x8x8入口观看| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 日本在线视频免费播放| 午夜影院日韩av| 在线观看免费午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 午夜影院日韩av| 久久精品91蜜桃| 亚洲在线自拍视频| 国产亚洲精品一区二区www| 亚洲国产精品合色在线| 老汉色∧v一级毛片| 99re在线观看精品视频| 我要搜黄色片| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 熟女电影av网| 国产91精品成人一区二区三区| 亚洲av熟女| 麻豆国产av国片精品| 九色国产91popny在线| 国产精品久久久久久久电影 | 精品久久久久久久末码| 国产视频内射| 99热这里只有是精品50| 精品不卡国产一区二区三区| 男人舔女人下体高潮全视频| 一个人免费在线观看电影 | 亚洲七黄色美女视频| 99热这里只有是精品50| 久久久久久九九精品二区国产 | 久久亚洲真实| 午夜老司机福利片| 日韩欧美在线二视频| 亚洲在线自拍视频| 黄色成人免费大全| 国产一区二区三区视频了| 99re在线观看精品视频| 叶爱在线成人免费视频播放| xxxwww97欧美| 看黄色毛片网站| 日本黄大片高清| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 久久人妻av系列| 免费无遮挡裸体视频| 国产午夜福利久久久久久| 男女做爰动态图高潮gif福利片| 丝袜美腿诱惑在线| 成年免费大片在线观看| 成人手机av| 国产69精品久久久久777片 | 18禁美女被吸乳视频| 久久精品91无色码中文字幕| 后天国语完整版免费观看| 日韩欧美国产在线观看| 久久国产精品影院| 国产成人av激情在线播放| 亚洲 欧美一区二区三区| 91在线观看av| 老熟妇仑乱视频hdxx| 亚洲国产欧美人成| 欧美乱妇无乱码| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 男女午夜视频在线观看| 中文字幕人妻丝袜一区二区| 免费看十八禁软件| 成人亚洲精品av一区二区| 熟妇人妻久久中文字幕3abv| 日韩欧美 国产精品| 五月玫瑰六月丁香| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 熟女电影av网| 在线永久观看黄色视频| 久久性视频一级片| 一级毛片精品| 国产三级中文精品| 免费观看人在逋| 怎么达到女性高潮| 男女做爰动态图高潮gif福利片| 老司机午夜十八禁免费视频| 国产一级毛片七仙女欲春2| 丝袜人妻中文字幕| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 一本综合久久免费| 国产精品九九99| 精品第一国产精品| 欧美在线黄色| 精品久久蜜臀av无| 欧美又色又爽又黄视频| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 岛国在线免费视频观看| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 91老司机精品| 麻豆国产97在线/欧美 | 欧美 亚洲 国产 日韩一| 欧美日韩亚洲综合一区二区三区_| 精品国内亚洲2022精品成人| 中文字幕人妻丝袜一区二区| 国产av一区在线观看免费| 在线永久观看黄色视频| 美女扒开内裤让男人捅视频| 99re在线观看精品视频| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 久久午夜亚洲精品久久| 国产免费男女视频| 免费高清视频大片| 欧美一级a爱片免费观看看 | 九色国产91popny在线| 在线观看一区二区三区| www国产在线视频色| 18禁观看日本| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 亚洲中文av在线| 国产久久久一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看 | 在线a可以看的网站| 人成视频在线观看免费观看| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 国产成人av激情在线播放| 18禁国产床啪视频网站| 国产片内射在线| 男女下面进入的视频免费午夜| www国产在线视频色| av中文乱码字幕在线| www.www免费av| 久久久久国产精品人妻aⅴ院| 久久人妻福利社区极品人妻图片| 麻豆一二三区av精品| 久久精品影院6| 国产1区2区3区精品| 久久精品影院6| 久久国产精品人妻蜜桃| 国产一区二区在线观看日韩 | 亚洲熟女毛片儿| 欧美性猛交╳xxx乱大交人| 一区二区三区国产精品乱码| 床上黄色一级片| 黄色a级毛片大全视频| 日韩欧美一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 熟女电影av网| 狠狠狠狠99中文字幕| √禁漫天堂资源中文www| 黄片小视频在线播放| 脱女人内裤的视频| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 国产黄片美女视频| 丰满的人妻完整版| 久久精品夜夜夜夜夜久久蜜豆 | 1024视频免费在线观看| 国产激情欧美一区二区| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 999精品在线视频| 一个人观看的视频www高清免费观看 | 久久这里只有精品中国| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清| 大型黄色视频在线免费观看| 黄频高清免费视频| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| 欧美极品一区二区三区四区| 久久久国产欧美日韩av| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| av在线天堂中文字幕| 日日夜夜操网爽| 国产成年人精品一区二区| 最近最新中文字幕大全电影3| 两个人免费观看高清视频| 亚洲avbb在线观看| 久久久国产欧美日韩av| 后天国语完整版免费观看| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 国产1区2区3区精品| 久久天堂一区二区三区四区| bbb黄色大片| 亚洲av电影在线进入| 精品久久久久久久人妻蜜臀av| 天堂动漫精品| 午夜成年电影在线免费观看| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 国产主播在线观看一区二区| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 成年免费大片在线观看| 成人三级黄色视频| 亚洲精品国产一区二区精华液| 欧美在线黄色| 成年女人毛片免费观看观看9| 国产又色又爽无遮挡免费看| 日本一二三区视频观看| 亚洲电影在线观看av| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 成人国语在线视频| 午夜影院日韩av| 婷婷丁香在线五月| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 亚洲中文av在线| 国产伦一二天堂av在线观看| 国产亚洲精品久久久久5区| 日韩精品中文字幕看吧| 免费看十八禁软件| 久久精品91蜜桃| 欧美乱妇无乱码| 国产伦在线观看视频一区| 国产精品av久久久久免费| 中文字幕高清在线视频| 国产av不卡久久| 中文字幕高清在线视频| 91成年电影在线观看| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 国产高清videossex| av国产免费在线观看| 欧美黄色淫秽网站| 亚洲自拍偷在线| 老司机午夜福利在线观看视频| 97人妻精品一区二区三区麻豆| 久久草成人影院| 一a级毛片在线观看| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 国产精品一区二区免费欧美| 亚洲精品色激情综合| 亚洲精品av麻豆狂野| 欧美性猛交黑人性爽| 中文资源天堂在线| 欧美日韩乱码在线| 天天一区二区日本电影三级| cao死你这个sao货| 777久久人妻少妇嫩草av网站| 亚洲精品久久国产高清桃花| 精品国产超薄肉色丝袜足j| 禁无遮挡网站| 少妇粗大呻吟视频| 久久这里只有精品19| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| avwww免费| 91大片在线观看| 久久久久久久午夜电影| 在线a可以看的网站| av片东京热男人的天堂| 精品乱码久久久久久99久播| 国产免费男女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲精品不卡| 亚洲午夜理论影院| 青草久久国产| 巨乳人妻的诱惑在线观看| 成人一区二区视频在线观看| 51午夜福利影视在线观看| 99久久久亚洲精品蜜臀av| 老司机福利观看| 免费在线观看完整版高清| 国产1区2区3区精品| 99国产综合亚洲精品| 日韩国内少妇激情av| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| 亚洲欧美日韩高清专用| 亚洲精品中文字幕在线视频| 成人av在线播放网站| 此物有八面人人有两片| 免费看日本二区| 日韩欧美一区二区三区在线观看| 精品一区二区三区av网在线观看| 久久香蕉国产精品| 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| 三级男女做爰猛烈吃奶摸视频| 桃红色精品国产亚洲av| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 国产又色又爽无遮挡免费看| 91大片在线观看| 国产精品日韩av在线免费观看| 一本综合久久免费| 一级片免费观看大全| 亚洲精品中文字幕在线视频| 亚洲人成伊人成综合网2020| 精华霜和精华液先用哪个| 正在播放国产对白刺激| 日韩三级视频一区二区三区| 好看av亚洲va欧美ⅴa在| 给我免费播放毛片高清在线观看| 中文字幕人成人乱码亚洲影| 一级毛片高清免费大全| 18禁裸乳无遮挡免费网站照片| 18禁黄网站禁片免费观看直播| 亚洲av中文字字幕乱码综合| 男人的好看免费观看在线视频 | 成年免费大片在线观看| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女| 少妇的丰满在线观看| 国产精品日韩av在线免费观看| 午夜两性在线视频| 亚洲一区高清亚洲精品| 九色成人免费人妻av| 久久国产精品影院| 久久久久国产一级毛片高清牌| 久久香蕉国产精品| 日韩中文字幕欧美一区二区| 老司机福利观看|