• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Normality Criteria of Zero-free Meromorphic Functions

    2019-10-30 10:11:02XIEJiaDENGBingmao

    XIE Jia, DENG Bing-mao

    (1School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong,510006, P.R. China; 2School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou, Guangdong, 510521, P.R. China)

    Abstract: Let k be a positive integer, let h(z)0 be a holomorphic functions in a domain D, and let F be a family of zero-free meromorphic functions in D, all of whose poles have order at least l. If, for each f ∈F, P(f)(z)?h(z) has at most k +l ?1 distinct zeros(ignoring multiplicity) in D, where P(f)(z)=f(k)(z)+a1(z)f(k?1)(z)+···+ak(z)f(z) is a differential polynomial of f and aj(z)(j =1,2,··· ,k) are holomorphic functions in D, then F is normal in D.

    Key words: Meromorphic Function; Normality; Zero-free

    §1. Introduction and Main Result

    Let D be a domain in C and F a family of meromorphic functions in D. F is said to be normal in D (in the sense of Montel) if each sequence {fn} ?F has a subsequence {fnj}which converges locally uniformly in D with respect to the spherical metric, to a meromorphic function or ∞.

    We define that P(f)(z) is a differential polynomial of f, where P(f)(z) = f(k)(z) +a1(z)f(k?1)(z)+···+ak(z)f(z) and aj(z)(j =1,2,··· ,k) are holomorphic functions in D.

    In 1959, Hayman[4]proved the following result.

    Theorem ALet f be a nonconstant meromorphic function in C and k be a positive integer. Then f or f(k)?1 has at least a zero. Moreover, if f is transcendental, then f or f(k)?1 has infinitely many zeros.

    The normality corresponding to Theorem A was conjectured by Hayman[5]and confirmed by Gu[3]in 1979.

    Theorem BLet F be a family of zero-free meromorphic functions in a domain D and k be a positive integer. If f(k)1 for each f ∈F, then F is normal in D.

    In 1986, Yang[9]extended Theorem B as follows.

    Theorem CLet F be a family of zero-free meromorphic functions in a domain D and h(0) be a holomorphic function in D. If, for each f ∈F, f0 and f(k)h for z ∈D, then F is normal in D.

    Chang[1]improved Theorem B and proved the following result.

    Theorem DLet F be a family of zero-free meromorphic functions in a domain D and k be a positive integer. If, for each f ∈F, the function f(k)?1 has at most k distinct zeros(ignoring multiplicity) in D, then F is normal in D.

    Deng, Fang and Liu[2]extended Theorem C and proved the following result.

    Theorem ELet F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic function in D, and let k be a positive integer. If, for each f ∈F,f(k)?h has at most k distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    In 2013, Liu, Deng and Yang[6]replaced f(k)(z)?h(z) by P(f)(z)?h(z), and proved the following result.

    Theorem FLet F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic function in D, and let k be a positive integer. If, for each f ∈F,P(f)(z)?h(z) has at most k distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    In this paper, we consider about the order of poles of f. Here is our main result.

    Theorem 1Let k be a positive integer,let h(0)be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l. If, for each f ∈F, the function P(f)(z)?h(z) has at most k+l ?1 distinct zeros(ignoring multiplicity) in the domain D, then F is normal in D.

    ExampleSuppose that F ={fn(z)=1/nzl:n ≥(k+l?1)!+1},that P(fn)(z)=that D = {z : |z| < 1} and that h(z) = 1/(z ?1)k+l, where k is a positive integer. Then, for each fn∈F, the function P(fn)(z)?h(z) has k+l distinct zeros (ignoring multiplicity) in D,but F is not normal in D. This shows that the condition in Theorem 1 that P(f)?h has at most k+l ?1 distinct zeros (ignoring multiplicity) in D is best possible.

    Corollary 1Let F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic functions in D, and let k be a positive integer. If, for each f ∈F,all of whose poles have order at least l, and the function f(k)(z)?h(z) has at most k+l ?1 distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    Corollary 2Let F be a family of zero-free meromorphic functions in a domain D, and k be a positive integer. If, for each f ∈F, all of whose poles have order at least l, and the function f(k)has at most k+l ?1 fixed points (ignoring multiplicity) in D, then F is normal in D.

    §2. Some Lemmas

    Lemma 1[7]Let α ∈R satisfying ?1 < α < ∞and let F be a family of zero-free meromorphic functions in a domain D. If F is not normal at z0∈D,then there exist points zj(∈D)→z0, functions fj∈F, and positive numbers ρj→0+, such that gj(ξ)=f(zj+ρjξ)converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ).

    Lemma 2[8]Let f be a transcendental meromorphic function,let a(0)be a polynomial,and let k be a positive integer. If f0, then f(k)?a has infinitely many zeros.

    Lemma 3Let f be a nonconstant zero-free rational function,all of whose poles have order at least l, let a(0) be a polynomial and let k be a positive integer. Then f(k)?a has at least k+l distinct zeros (ignoring multiplicity) in C.

    ProofSuppose that

    since f is a nonconstant zero-free rational function, f is not a polynomial, and hence has at least one finite pole with order at least l. Further, by calculation, the function f(k)?a has at least one zero in C. Thus, we can write

    Where C1and C2are nonzero constants, m, n, s, li, mi, and ni≥1(1 ≤i ≤n) are positive integers, the vi(when 1 ≤i ≤m) are distinct complex numbers, and the zi(when 1 ≤i ≤n)and wi(when 1 ≤i ≤s) are distinct complex numbers. Set

    Then by induction, we deduce from (2) that

    where Pkis a polynomial of deg Pk=(n ?1)k. Thus, by (1), (3), and (4),

    and C2=?A. Thus by (5), we get

    where Q(t)=t(n?1)kPk(1/t)/A is a polynomial of deg Q ≤(n ?1)k, and it follows that

    Logarithmic differentiation of (6) shows that

    We consider two cases.

    Case 1If deg a=M =0then a is constant. Thus (7) may be rewritten:

    Comparing the coefficients of tj(j =0,1,··· ,N +k+n(l ?1)?2), we deduce that

    Let zn+i=wi(1 ≤i ≤s).

    Subcase 1.10 for each i ∈{1,··· ,n+s}. Noting that0 and using (8), we deduce that the system of linear equations

    has a nonzero solution

    If n+s ≤N +k+n(l ?1), then by Cramers rule,

    where 0 ≤j ≤N+k+n(l ?1)?1. However, the determinant is a Vandermonde determinant,so cannot be 0, which is a contradiction. Hence, we conclude that n+s>N +k+n(l ?1). It follows from this and the inequality N =≥n that s ≥k+l.

    Subcase 1.2There exist i ∈{1,··· ,n+s} such that zi= 0, for all. Without loss of generality, we assume that zn+s=0, then it follows from (8) that

    has a nonzero solution. Next, using the same argument as in Subcase 1.1, we deduce that s ≥k+l.

    Case 2deg a=M ≥1. Comparing the coefficients of tj(j =0,1,··· ,M+N+k+n(l ?1)?2) in (7), we deduce that

    Set

    Obviously, S2∩S3=?.

    Subcase 2.1S1∩S2=and S1∩S3=. Let zn+1= vi(1 ≤i ≤m), and zn+m+i=wi(1 ≤i ≤s).

    Subsubcase 2.1.10 for all i ∈{1,...,n+m+s}. Since

    it follows from (9) that

    has a nonzero solution. Then using the same argument as Subcase 1.1,we deduce that s ≥k+l.

    Subsubcase 2.1.2There exist i ∈{1,··· ,n+m+s} such that zi=0, for all. Without loss of generality, we assume that zn+m+s=0, then it follows from (9) that

    has a nonzero solution. Next,using the same argument as Subcase 1.2,we deduce that s ≥k+l.

    Subcase 2.2S1∩S2= ?and S1∩S3= ?. Without loss of generality, we may assume that S1∩S2={v1,v2,··· ,vM1}, where vi=zi(1 ≤i ≤M1). Let M3=m ?M1, and set

    If M3≥1, then set zn+i=vM1+i(1 ≤i ≤M3). In the subcase, (9) may be rewritten:

    where 0 ≤M3≤m ?1. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    Subcase 2.3S1∩S2= ?and S1∩S3?. Without loss of generality, we may assume that S1∩S3={v1,v2,··· ,vM2}, where vi=wi(1 ≤i ≤M2). Let M4=m ?M2, and set

    If M4≥1, then set ws+i=vM2+i(1 ≤i ≤M4). In the subcase, (9) may be rewritten that

    where 0 ≤M4≤m ?1. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    Subcase 2.4S1∩and S1∩S3Without loss of generality, we may assume that S1∩S2= {v1,v2,··· ,vM1}, S1∩S3= {w1,w2,··· ,wM2}, where vi= zi(1 ≤i ≤M1)and wi=vM1+i(1 ≤i ≤M2). Set M5=m ?M2?M1, and set

    If M5≥1, then set zn+i=vM1+M2+i(1 ≤i ≤M5). In the subcase, (9) may be rewritten that

    where 0 ≤M5≤m ?2. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    This completes the proof of Lemma 3.

    §3. Proof of Theorem 1

    At first we show that F is normal in the set D= {z ∈D : h(z). Suppose that F is not normal at z0∈D. We may assume that D =?and h(z0)=1. By Lemma 1, there exist fn∈F, zn→z0and ρn→0+such that gn(ξ)=+ρnξ) converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ), all of whose poles have order at least l.

    We claim that g(k)?1 has at most k+l ?1 distinct zeros. Suppose that g(k)?1 has k+l distinct zeros ξj(1 ≤j ≤k+l). Obviously, we have1. Then by

    uniformly in compact subsets of C disjoint from the poles of g. And by Hurwitzs theorem, for n sufficiently large, there exist points ξn,j→ξj(j = 1,2,··· ,k +l) , such that P(f)(zn+ρnξn,j) = h(zn+ρnξn,j). However, P(f)(z)?h(z) has at most k+l ?1 distinct zeros in D and zn+ρnξn,j→z0, which is a contradiction, and proves our claim.

    However, by Lemma 2, we know that g is a rational function. But this contradicts Lemma 3. This contradiction shows that F is normal in.

    We now prove that F is normal at{z :h(z)=0}. Making standard normalizations,we may assume that h(z)=zmb(z) (z ∈?), where m ≥1, b(0)=1 and h(z)0 for 0<|z|<1. Let

    Suppose not. Then by Lemma 1, there exist Fn∈F∞, zn→0 and ρn→0+such that gn(ξ)=ρ?knFn(zn+ρnξ)converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ).

    Next we distinguish two cases.

    Case 1There is a subsequence of zn/ρn, we still denote as zn/ρn, such that zn/ρn→α,where α is a finite complex number. Let ?g(ξ)=g(ξ ?α), then uniformly in compact subsets of C disjoint from the poles oObviously,0, and the pole of ?g at ξ =0 has order at least m. Now

    uniformly in compact subsets of C disjoint from the polesand all of the poles of G have multiplicity at least l. Since ?g has a pole of order at least m at ξ = 0, then G(0)0, and noting that

    For

    uniformly in compact subsets of C. And

    That is

    So

    uniformly in compact subsets of C disjoint from the poles of G.

    Since P(f)(z)?h(z) has at most k+l ?1 distinct zeros in D, as discussed as the above,we get that G(k)(ξ)?ξmhas at most k+l ?1 distinct zeros in C. However, by Lemma 2 and Lemma 3, G(ξ)≡C, where C is a constant. Then we have Gn(ξ)=fn(ρnξ)C, and

    uniformly in compact subsets of C disjoint from the poles of G.

    Recall {fn} is normal in, but not normal at z = 0, and since, we can deduce that there exist εn→0, such that fn(εn) = ∞, where |εn| = min{|f?1n(∞)|}. We claim that εn/ρn→∞. Otherwise, suppose that εn/ρn→α. Then

    A contradiction. Then εn/ρn→∞.

    It is easy to get that P?(Qn)(z)?zmb(εnz)has at most k+l ?1 distinct zeros in C. Obviously,Qn(0. It follows from the above that {Qn} is normal inSince Qnis holomorphic in ?, and0, by the Maximum Principle Theorem, it is easy to obtain that {Qn} is normal in ?, then {Qn} is normal in C.

    Next, there exist a subsequence of Qn, we still denote as Qn, such that Qn(z) converges locally spherically uniformly in C to a meromorphic function Q(z) or ∞. Since Qn0 and Qn(0) = Gn(0)(ρn/εn)k+m→0, we get Q(z)0 by Hurwitzs theorem. But Qn(1) = ∞, so Q(1)=∞, a contradiction.

    Case 2 There exist a subsequence of zn/ρn, we still denote as zn/ρn, such that zn/ρn→∞. By simple calculation,

    where

    Note that all of the poles of gnhave order at least l at the point zn+that is ξ?zn/ρn, and zn/ρn→∞. By gnconverging locally spherically uniformly in C to g, we see that all of the poles of g have multiplicity at least l. So we have

    Note that

    disjoint from the poles of g(ξ) and

    So

    uniformly in compact subsets of C disjoint from the poles of g.

    Thus,we proved that F∞is normal at z =0. It remains to prove that F is normal at z =0.Since F∞is normal at z =0 and F(0)=∞for each , F ∈F∞there exist 0<δ <1 such that|F(z)|≥1 for each F ∈F∞and each z ∈?(0,δ). And0, hence 1/f is analytic in ?(0,δ)for all f ∈F. Therefore, for all f ∈F, we have

    By the Maximum Principle and Montels Theorem, F is normal at z =0. Thus F is normal in D.

    This completes the proof of Theorem 1.

    成在线人永久免费视频| 亚洲欧美精品综合一区二区三区| 亚洲全国av大片| 亚洲国产看品久久| 欧美av亚洲av综合av国产av| 亚洲成人国产一区在线观看| 蜜桃在线观看..| 免费观看av网站的网址| 三级毛片av免费| 亚洲国产精品一区三区| 女性被躁到高潮视频| 午夜免费成人在线视频| 亚洲成人国产一区在线观看| 91国产中文字幕| 国产精品欧美亚洲77777| 国产精品久久久久成人av| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久av网站| 久久天躁狠狠躁夜夜2o2o| 亚洲伊人久久精品综合| 真人做人爱边吃奶动态| 999久久久国产精品视频| 欧美老熟妇乱子伦牲交| 久久精品亚洲av国产电影网| 国产高清videossex| 在线十欧美十亚洲十日本专区| 自线自在国产av| 午夜福利视频在线观看免费| 欧美日韩黄片免| 亚洲人成电影免费在线| 在线观看免费日韩欧美大片| 久久久久国内视频| 国产av又大| 久久九九热精品免费| 亚洲av欧美aⅴ国产| 精品国产一区二区三区久久久樱花| 国内毛片毛片毛片毛片毛片| 永久免费av网站大全| 成人手机av| 免费观看a级毛片全部| 老司机午夜十八禁免费视频| 国产精品 欧美亚洲| 国产精品一区二区在线不卡| 精品一区二区三区av网在线观看 | 色婷婷av一区二区三区视频| 中文字幕高清在线视频| www.自偷自拍.com| 女人久久www免费人成看片| 国产一区二区三区av在线| 欧美国产精品一级二级三级| 国产精品国产三级国产专区5o| 久久精品aⅴ一区二区三区四区| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区三区在线臀色熟女 | 国产日韩欧美在线精品| 俄罗斯特黄特色一大片| 日本wwww免费看| 中文字幕av电影在线播放| 999久久久精品免费观看国产| 国产91精品成人一区二区三区 | 久久国产精品人妻蜜桃| 在线观看www视频免费| 国产91精品成人一区二区三区 | 国产人伦9x9x在线观看| 国产精品一二三区在线看| 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 91老司机精品| 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 极品人妻少妇av视频| 丁香六月欧美| 亚洲专区中文字幕在线| 美女脱内裤让男人舔精品视频| 99热国产这里只有精品6| 黄色怎么调成土黄色| 韩国高清视频一区二区三区| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 国产片内射在线| a级毛片黄视频| 午夜影院在线不卡| 中国美女看黄片| 男女国产视频网站| 亚洲精品中文字幕在线视频| 欧美黑人欧美精品刺激| 亚洲人成电影免费在线| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 日韩视频一区二区在线观看| 亚洲精品乱久久久久久| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 久久香蕉激情| 欧美乱码精品一区二区三区| 日韩电影二区| 亚洲美女黄色视频免费看| 50天的宝宝边吃奶边哭怎么回事| 天天躁夜夜躁狠狠躁躁| 少妇裸体淫交视频免费看高清 | 婷婷成人精品国产| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 久久国产精品人妻蜜桃| 久久久久网色| 亚洲精品成人av观看孕妇| 午夜福利视频在线观看免费| 他把我摸到了高潮在线观看 | 免费观看人在逋| 高清黄色对白视频在线免费看| 中文字幕人妻熟女乱码| 婷婷丁香在线五月| 日日夜夜操网爽| a 毛片基地| www.自偷自拍.com| kizo精华| 丝袜美腿诱惑在线| 中文欧美无线码| 两人在一起打扑克的视频| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| videos熟女内射| 亚洲av美国av| 91av网站免费观看| 久久久久国内视频| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲欧美日韩另类电影网站| 女人高潮潮喷娇喘18禁视频| 久久天堂一区二区三区四区| 国产有黄有色有爽视频| 免费观看a级毛片全部| 欧美另类亚洲清纯唯美| 啦啦啦视频在线资源免费观看| 国产精品一区二区精品视频观看| 成人国产一区最新在线观看| 日本精品一区二区三区蜜桃| 日本一区二区免费在线视频| 99国产精品一区二区三区| 日本欧美视频一区| 久久九九热精品免费| 色播在线永久视频| 午夜免费观看性视频| 日韩大码丰满熟妇| 搡老乐熟女国产| 水蜜桃什么品种好| 每晚都被弄得嗷嗷叫到高潮| 日韩 欧美 亚洲 中文字幕| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 操出白浆在线播放| 人妻久久中文字幕网| 久久影院123| 男女国产视频网站| 亚洲精品久久午夜乱码| 亚洲国产精品成人久久小说| 亚洲全国av大片| 91麻豆精品激情在线观看国产 | 免费高清在线观看视频在线观看| 99热网站在线观看| 窝窝影院91人妻| 亚洲熟女毛片儿| 日本欧美视频一区| 国产精品九九99| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 成年动漫av网址| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 日韩视频一区二区在线观看| 国产激情久久老熟女| 国产视频一区二区在线看| 人妻一区二区av| 精品熟女少妇八av免费久了| 精品福利观看| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| 91成人精品电影| 天天操日日干夜夜撸| 午夜成年电影在线免费观看| 999久久久国产精品视频| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 国产精品国产三级国产专区5o| 国产在线免费精品| 一级毛片电影观看| 亚洲伊人色综图| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 成年美女黄网站色视频大全免费| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 国产精品九九99| 婷婷丁香在线五月| 91字幕亚洲| 人成视频在线观看免费观看| 丁香六月欧美| 他把我摸到了高潮在线观看 | 精品一区二区三区四区五区乱码| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 在线观看舔阴道视频| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 91国产中文字幕| 99久久精品国产亚洲精品| 99九九在线精品视频| 黄色 视频免费看| 久热这里只有精品99| 超色免费av| 久久久久精品国产欧美久久久 | 黄色视频不卡| 首页视频小说图片口味搜索| 亚洲精品在线美女| 国产av精品麻豆| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| 日韩,欧美,国产一区二区三区| 热99re8久久精品国产| 亚洲av成人一区二区三| 精品视频人人做人人爽| 国产一区二区三区av在线| 99久久综合免费| 亚洲国产看品久久| 久久性视频一级片| 国产在视频线精品| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 黄色毛片三级朝国网站| 国产又爽黄色视频| 波多野结衣一区麻豆| 男男h啪啪无遮挡| 在线观看人妻少妇| 99精品久久久久人妻精品| 色播在线永久视频| 久久中文看片网| 久久久国产成人免费| 啦啦啦中文免费视频观看日本| 麻豆乱淫一区二区| 五月开心婷婷网| 国产精品成人在线| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 国产精品成人在线| 国产亚洲精品一区二区www | 久久国产亚洲av麻豆专区| 国产一区有黄有色的免费视频| a级毛片在线看网站| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 久久99一区二区三区| 少妇的丰满在线观看| www日本在线高清视频| 999精品在线视频| 19禁男女啪啪无遮挡网站| 天堂俺去俺来也www色官网| 久久午夜综合久久蜜桃| 黑人操中国人逼视频| 欧美成人午夜精品| 在线观看免费视频网站a站| 国产成人精品久久二区二区91| 菩萨蛮人人尽说江南好唐韦庄| 老司机午夜十八禁免费视频| 亚洲av片天天在线观看| 欧美日韩亚洲高清精品| 人妻一区二区av| 桃红色精品国产亚洲av| 一级毛片电影观看| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 中文欧美无线码| 啦啦啦在线免费观看视频4| videos熟女内射| 欧美精品一区二区大全| tocl精华| 亚洲精华国产精华精| 午夜激情久久久久久久| 欧美 亚洲 国产 日韩一| 日本91视频免费播放| 高清黄色对白视频在线免费看| 欧美中文综合在线视频| 岛国在线观看网站| 在线永久观看黄色视频| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠躁躁| 美女脱内裤让男人舔精品视频| 欧美另类亚洲清纯唯美| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 欧美亚洲 丝袜 人妻 在线| 欧美大码av| 好男人电影高清在线观看| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 手机成人av网站| 国产在线视频一区二区| 十分钟在线观看高清视频www| 曰老女人黄片| 天天添夜夜摸| 国产成人a∨麻豆精品| 99国产精品免费福利视频| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 国产xxxxx性猛交| 国产麻豆69| 在线观看www视频免费| 狠狠狠狠99中文字幕| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 国产成人系列免费观看| 操美女的视频在线观看| av线在线观看网站| bbb黄色大片| 999久久久精品免费观看国产| 久久免费观看电影| 老熟妇乱子伦视频在线观看 | 一本色道久久久久久精品综合| 18禁观看日本| 日本一区二区免费在线视频| 国产高清视频在线播放一区 | 天天躁夜夜躁狠狠躁躁| 亚洲人成电影免费在线| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| 韩国高清视频一区二区三区| 桃红色精品国产亚洲av| 麻豆乱淫一区二区| 十八禁人妻一区二区| 黄色视频在线播放观看不卡| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 十八禁高潮呻吟视频| 久久九九热精品免费| 亚洲精品第二区| 精品福利永久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 男女高潮啪啪啪动态图| 久久精品国产亚洲av香蕉五月 | 十分钟在线观看高清视频www| 亚洲全国av大片| 亚洲天堂av无毛| 一区二区三区激情视频| 久久性视频一级片| 在线观看www视频免费| 亚洲av国产av综合av卡| 国产日韩欧美视频二区| 亚洲五月婷婷丁香| 性色av一级| 这个男人来自地球电影免费观看| 亚洲欧美一区二区三区久久| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 啪啪无遮挡十八禁网站| 搡老乐熟女国产| 日韩欧美国产一区二区入口| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 99精品久久久久人妻精品| 热99国产精品久久久久久7| 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 热re99久久国产66热| h视频一区二区三区| 亚洲人成电影免费在线| 男人舔女人的私密视频| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 日韩制服丝袜自拍偷拍| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 成人国产av品久久久| 三上悠亚av全集在线观看| 国产av又大| 亚洲精品在线美女| 久9热在线精品视频| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 中文精品一卡2卡3卡4更新| 成年动漫av网址| 高清在线国产一区| 精品少妇黑人巨大在线播放| 丁香六月欧美| 欧美激情高清一区二区三区| 黄色视频在线播放观看不卡| 国产精品成人在线| 男人舔女人的私密视频| 国产精品亚洲av一区麻豆| 日本欧美视频一区| 国产人伦9x9x在线观看| 在线天堂中文资源库| 热re99久久国产66热| 亚洲九九香蕉| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 91成人精品电影| 午夜激情久久久久久久| 18禁国产床啪视频网站| 国产成人免费无遮挡视频| 亚洲性夜色夜夜综合| 两性午夜刺激爽爽歪歪视频在线观看 | cao死你这个sao货| 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 欧美+亚洲+日韩+国产| 国产麻豆69| 中文字幕制服av| 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 日本撒尿小便嘘嘘汇集6| 丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 欧美97在线视频| 多毛熟女@视频| 亚洲第一青青草原| 91精品国产国语对白视频| 国产一区二区三区在线臀色熟女 | 伊人亚洲综合成人网| 秋霞在线观看毛片| 国产极品粉嫩免费观看在线| 亚洲欧美色中文字幕在线| 91麻豆av在线| 久热这里只有精品99| 国产成人啪精品午夜网站| 日本欧美视频一区| 日本vs欧美在线观看视频| 欧美精品高潮呻吟av久久| 性少妇av在线| 999久久久国产精品视频| 在线av久久热| 国产野战对白在线观看| 日本wwww免费看| av不卡在线播放| 亚洲三区欧美一区| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 黄色 视频免费看| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 精品人妻1区二区| 日韩大码丰满熟妇| 丝袜美足系列| 日韩欧美一区二区三区在线观看 | 午夜福利视频在线观看免费| 久久精品久久久久久噜噜老黄| 男人爽女人下面视频在线观看| 色94色欧美一区二区| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 欧美xxⅹ黑人| 我要看黄色一级片免费的| 一级,二级,三级黄色视频| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 亚洲欧美激情在线| 亚洲国产欧美一区二区综合| 老司机靠b影院| 久9热在线精品视频| 丁香六月天网| 各种免费的搞黄视频| 国产不卡av网站在线观看| 国产精品 欧美亚洲| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 久久久水蜜桃国产精品网| 久久精品国产综合久久久| 国产精品一区二区在线观看99| a级毛片黄视频| 99国产精品一区二区蜜桃av | www.熟女人妻精品国产| 日韩欧美一区视频在线观看| 久久青草综合色| 成年美女黄网站色视频大全免费| 秋霞在线观看毛片| 久久精品亚洲av国产电影网| 亚洲精品国产区一区二| 极品人妻少妇av视频| 在线观看人妻少妇| 国产精品偷伦视频观看了| 9色porny在线观看| 国产精品秋霞免费鲁丝片| 各种免费的搞黄视频| 亚洲精品一区蜜桃| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 91国产中文字幕| 老司机在亚洲福利影院| 最近最新免费中文字幕在线| 国产精品熟女久久久久浪| 午夜福利在线免费观看网站| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 啦啦啦视频在线资源免费观看| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区 | 国产精品 国内视频| 岛国在线观看网站| 午夜福利在线免费观看网站| 搡老乐熟女国产| 成年av动漫网址| 日韩有码中文字幕| 欧美日韩av久久| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 精品乱码久久久久久99久播| www.精华液| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 亚洲伊人色综图| 国产人伦9x9x在线观看| 国产在线视频一区二区| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 脱女人内裤的视频| 国产福利在线免费观看视频| 丝袜脚勾引网站| 操出白浆在线播放| 日本五十路高清| 中国国产av一级| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区 | 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 人妻人人澡人人爽人人| 久久性视频一级片| 久久久久久久国产电影| 欧美少妇被猛烈插入视频| 宅男免费午夜| 国产在视频线精品| 欧美在线一区亚洲| 亚洲中文字幕日韩| 国产精品 国内视频| 日本av免费视频播放| 久久久精品94久久精品| 韩国精品一区二区三区| 久久精品成人免费网站| 午夜两性在线视频| 美女脱内裤让男人舔精品视频| 久久 成人 亚洲| 午夜福利一区二区在线看| 久久ye,这里只有精品| 在线观看一区二区三区激情| 国产成人一区二区三区免费视频网站| 国产老妇伦熟女老妇高清| 午夜福利免费观看在线| 看免费av毛片| 国产欧美亚洲国产| 色视频在线一区二区三区| 久久久精品免费免费高清| 亚洲国产欧美在线一区| avwww免费| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人不卡在线观看播放网 | 美女福利国产在线| 国产精品久久久人人做人人爽| 最新在线观看一区二区三区| 国产深夜福利视频在线观看| av一本久久久久| 在线精品无人区一区二区三| 亚洲国产精品成人久久小说| 亚洲美女黄色视频免费看| 欧美97在线视频| 国产日韩一区二区三区精品不卡| 亚洲国产精品一区二区三区在线| 亚洲成人免费电影在线观看| 色综合欧美亚洲国产小说| 亚洲国产精品999| 欧美精品啪啪一区二区三区 | 国产精品欧美亚洲77777| 99精品欧美一区二区三区四区| 国产在线免费精品| 免费av中文字幕在线| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 日韩 欧美 亚洲 中文字幕| 久久精品久久久久久噜噜老黄| 婷婷色av中文字幕| 精品熟女少妇八av免费久了| 另类精品久久| 亚洲黑人精品在线| 动漫黄色视频在线观看| 久久久久国内视频| 老司机影院成人| 又大又爽又粗| 伊人久久大香线蕉亚洲五| 久久久久国产一级毛片高清牌| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 国产日韩欧美在线精品|