曹西林
摘要:在發(fā)展中國家工業(yè)化水平不斷提升的趨勢下,化工產(chǎn)品需求量也隨之增加。而有效提高化工行業(yè)產(chǎn)品生產(chǎn)效率與質(zhì)量,節(jié)約原料能耗與制造成本,既順應(yīng)了全球資源發(fā)展現(xiàn)狀,又與我國節(jié)能高效、和諧發(fā)展理念相符。而在化工過程中,有效應(yīng)用數(shù)學(xué)建模方法能夠?qū)崿F(xiàn)這一最終目標(biāo),文章主要對數(shù)學(xué)建??旖莸卦O(shè)計化工過程的方法進行了詳細(xì)分析。
關(guān)鍵詞:數(shù)學(xué)建模;設(shè)計方法;化工過程
中圖分類號:TQ011
文獻標(biāo)識碼:A
文章編號:1001-5922(2019)08-0155-03
就科學(xué)而言,數(shù)學(xué)是其重要基礎(chǔ),也是現(xiàn)代化科學(xué)與工程技術(shù)的核心所在。盡管數(shù)學(xué)研究與教育一直在不斷更新發(fā)展,卻并不會主動引進科學(xué)技術(shù)與化工工業(yè),但是,化工行業(yè)想要實現(xiàn)長遠(yuǎn)進步,就必須依賴于數(shù)學(xué)的發(fā)展。數(shù)學(xué)既能夠繁榮國家,又能夠切實實現(xiàn)在生產(chǎn)實踐中的廣泛應(yīng)用?;瘜W(xué)工程已經(jīng)經(jīng)過了百年發(fā)展,化學(xué)工業(yè)規(guī)模以幾何數(shù)級在不斷增長,而化學(xué)工業(yè)在國民經(jīng)濟中比例也隨之增大。但是,在能源、環(huán)境、質(zhì)量等相關(guān)要素的影響下,化學(xué)工業(yè)在快速發(fā)展時,也在逐漸深化創(chuàng)新改革。而就優(yōu)化操作相關(guān)要求,特別是實時優(yōu)化要求也在漸漸提高。隨著計算機技術(shù)的快速發(fā)展,在很大程度上為技術(shù)更新優(yōu)化奠定了堅實的基礎(chǔ)。作為化學(xué)工程與技術(shù)專業(yè)學(xué)生,不僅要熟練掌握化工過程優(yōu)化,還要學(xué)會實踐操作應(yīng)用。而想要實現(xiàn)此目標(biāo),既要充分了解數(shù)學(xué)建模原理知識,又要學(xué)會建模技術(shù)在化工過程中的廣泛應(yīng)用[1]。
1 數(shù)學(xué)建?;A(chǔ)知識
數(shù)學(xué)建模是工程學(xué)的重要組成部分,在現(xiàn)實世界,很多現(xiàn)象都是能夠通過偏微分方程進行描述的。即化學(xué)工程中的對流、擴散、反應(yīng)過程、傳熱過程、流體動力學(xué)等等。而PDE是線性的,一般能夠采取科學(xué)合理的方式與處理公式獲得明確形式的解答,此方式主要包含分離變量、Laplace變換、Fourier級數(shù)、疊加等等。但是在實際中,大部分PDE是非線性的,通過這些方式方法并不容易獲得非線性PDE的解,需要依賴于數(shù)值近似求解。就Poisson方程與熱方程而言,兩者都是線性的,能夠推導(dǎo)出解析解,但是非線性方程尚未尋求出通解形式與解決唯一性問題?;し匠桃话愣际欠蔷€性的,為了獲得PDE解,可以采取的方式是把求解域離散為大量有限單元。在進行小區(qū)域處理時,可科學(xué)合理假設(shè)或者簡化,并獲取其解。
很明顯,獲取全部解,就代表著產(chǎn)生并解出大量方程,還可以需要甚至上億次算數(shù)進行運算。而以多元化工具軟件為載體,所有人都具備了問題求解計算能力,即COMSOL Multi physics便是最早基于PC求解PDE問題的重要軟件。近年來,研究者正在利用有限元方法求解PDE,其發(fā)現(xiàn)此技術(shù)能夠求解大量問題,在早期是結(jié)構(gòu)力學(xué),隨后擴展于化工、電磁、地球科學(xué)等各個領(lǐng)域[2]。
2 數(shù)學(xué)建模是化工過程的重要手段
1)基于數(shù)學(xué)方法與計算機技術(shù)的工藝研究與裝備制造,是現(xiàn)代化化工的重要方式。在近幾十年來,能源價格不斷上漲,環(huán)境控制保護要求越來越高,產(chǎn)品價格與質(zhì)量競爭逐漸全球化,化工行業(yè)也由此出現(xiàn)了巨大轉(zhuǎn)變。而最優(yōu)化技術(shù)則是用來表述這些現(xiàn)狀的主要工程方式。目前,已經(jīng)可以通過優(yōu)化完善工廠設(shè)計與操作流程,實現(xiàn)成本降低,并促使其進一步滿足多元化限制條件,其中關(guān)鍵是提高生產(chǎn)效率,并帶來良好經(jīng)濟效益。通過提高工藝過程、化工企業(yè)自動化水平,能夠促使最優(yōu)化操作條件有效落實,此過程一般會被稱之為計算機集成制造或者CIM。根據(jù)摩爾法則來講,計算機速度會定期每18個月增加一倍。
在計算機的計算水平與能力逐漸提升的影響下,可以利用最優(yōu)化技術(shù)求解的問題的復(fù)雜程度與大小也得以擴大,并且個人電腦中的軟件中也包括了科學(xué)合理的優(yōu)化改進技術(shù),這是以前所無法實現(xiàn)。此外,在過去的將近10年時間里,因為從事多種化工業(yè)務(wù)的企業(yè)越來越多,規(guī)模也越來越大,導(dǎo)致部分化工產(chǎn)品的供求關(guān)系出現(xiàn)嚴(yán)重失衡,基本上都呈現(xiàn)了供大于求的不良現(xiàn)象,造成精細(xì)化工與合同化工生產(chǎn)領(lǐng)域的競爭愈演愈烈。由于競爭愈演愈烈,化學(xué)原料藥物市場為了獲取更多有效訂單,必須具備自身獨立的競爭性優(yōu)勢,而此優(yōu)勢的關(guān)鍵在于合成工藝開發(fā)產(chǎn)生重大的突破,促使成本大大降低。為了促使生產(chǎn)工藝實現(xiàn)長遠(yuǎn)突破性發(fā)展,工藝開發(fā)不能只基于既有工藝,針對某一環(huán)節(jié)提高些許回收率,或者提高溶劑的回收率。最關(guān)鍵的目標(biāo)是通過科學(xué)合理的數(shù)學(xué)建模,簡化生產(chǎn)流程中的繁雜流程,并利用性價比較高、安全性與穩(wěn)定性良好的原料,尋求更加簡單的物理處理方式,避免廢棄物的排放,防止造成環(huán)境污染。
2)基于數(shù)學(xué)建模與計算機網(wǎng)絡(luò)技術(shù)的生產(chǎn)管理、新品設(shè)計研發(fā),已經(jīng)成為了現(xiàn)代化化工企業(yè)的主要發(fā)展模式。而就未來領(lǐng)先的化工企業(yè)所應(yīng)具有的獨特特制來講,西方國家提出了基于技術(shù)創(chuàng)造更加良好的全球供應(yīng)鏈管理能力。其一可以順應(yīng)國際市場的不斷演變,這樣一來,既能夠生產(chǎn)出通用產(chǎn)品,又能夠生產(chǎn)出一些特殊類型產(chǎn)品。其二可以就全球各式各樣的客戶需求,提供更加符合客戶要求的個性化服務(wù)。其三可以就市場需求的不斷變化,研發(fā)出具備新功能特性的化學(xué)產(chǎn)品與生產(chǎn)工藝,即以生物技術(shù)為基礎(chǔ)所生產(chǎn)的特殊產(chǎn)品與通用產(chǎn)品等等。這些都在很大程度上提高了要求,并且也明確指出化工院校數(shù)學(xué)教育教學(xué)必須與時俱進,增強其與化工專業(yè)的有機結(jié)合,強化數(shù)學(xué)建模與化工過程的密切融合[3]。
3 數(shù)學(xué)建模會計地設(shè)計化工過程的方法
3.1 仿真實際應(yīng)用
化工工程仿真,通過利用臭氧代替氯凈化劑,期望可以尋求最優(yōu)化配置,以此分布這些物質(zhì)。COMSOLMulti physics數(shù)學(xué)建模軟件為測試相關(guān)配置提供了便利,并以最低成本實現(xiàn)了大量自來水的凈化。通過COM-SOL Multi physics數(shù)學(xué)建模軟件進行計算,以期獲取提高生產(chǎn)金屬棒效率的方式方法。通過進行模擬計算,適度優(yōu)化改進化工工藝過程,能夠顯著提高加工速度。
而且仿真也是化工工程的一大主要課程,教師都在嘗試?yán)媚M軟件輔助學(xué)生深入理解現(xiàn)實世界的關(guān)鍵性公式的本質(zhì)特性。在傳遞現(xiàn)場課程上,可以督促學(xué)生通過模擬解釋課程概念及其公式,從而調(diào)動學(xué)生對于流體動力學(xué)計算的興趣與積極性,并激發(fā)其不斷的深層探索。此外,在化工反應(yīng)工程課程中,引用PDE進行仿真,也已經(jīng)得到了論證。Scott Folger教授通過仿真,并編制的管式反應(yīng)器課堂練習(xí),呈現(xiàn)于《化工反應(yīng)工程原理》中。 現(xiàn)階段,化工工程師大部分都在利用數(shù)學(xué)工具快速有效設(shè)計并優(yōu)化系統(tǒng)、工藝流程。所以,要求其必須充分掌握模型構(gòu)建與驗證方式,并基于此擴展想象力,并研發(fā)更多新型技術(shù)[4]。
3.2 實例仿真模擬
利用COMSOL Multi physics數(shù)學(xué)建模軟件進行模型構(gòu)建相對簡單。某模型主要考察固定床反應(yīng)器中耦合自由與多孔介質(zhì)流動,包含三種氣體,其中兩種為反應(yīng)物,另一種則為產(chǎn)物。通過主管道與注射管注射物質(zhì),基于固定的多孔介質(zhì)催化床發(fā)生反應(yīng),獲得產(chǎn)物組成部分。具體模擬流程為:
3.2.1 構(gòu)建幾何模型
構(gòu)建幾何模型,定義具備不同屬性的區(qū)域。反應(yīng)器則是由管結(jié)構(gòu)與注射管所構(gòu)成的。因為反應(yīng)器具備一定的對稱性,所以只需要模擬其中一半即可,這樣便可以縮減計算量。
3.2.2 物理設(shè)定
針對COMSOL Multi physics數(shù)學(xué)建模軟件所選擇的內(nèi)建應(yīng)用模式,設(shè)置各區(qū)域?qū)傩耘c邊界條件。在多孔床中,利用Navier Stokes方程與Brinkman方程進行自由流動區(qū)與多孔介質(zhì)區(qū)的流體流動詳細(xì)描述。此外,模型則利用對流擴散方程對不同物質(zhì)質(zhì)量傳遞進行模擬。不同應(yīng)用模式的材料屬性與邊界條件設(shè)定,都能夠設(shè)定為常數(shù)或者任意的表達式。
3.2.3 網(wǎng)格剖分
在明確定義物理場之后,開始生成網(wǎng)絡(luò),即可代表整體系統(tǒng)的大量三角形或者其他的形狀。軟件在選擇缺省網(wǎng)格之后,便可以自主手動進行網(wǎng)絡(luò)劃分。COMSOL Multi physics數(shù)學(xué)建模軟件缺省主要選擇三角形單元,同時也提供四邊形、四面體、棱柱、六面體等等,將其應(yīng)用到各種不同實例中。另外,還能夠簡潔使用框架選擇所感興趣的部分,在此區(qū)域精細(xì)優(yōu)化網(wǎng)格,以此保證其精確性與可靠性。
3.2.4 選擇和運行求解器
類似于大多數(shù)程序,COMSOL Multi physics數(shù)學(xué)建模軟件建議缺省求解器,但是也能夠就靜態(tài)與動態(tài)線性求解器、特征值求解器、瞬態(tài)求解器、參數(shù)化線性或非線性求解器、自適應(yīng)求解器中加以選擇。以瞬態(tài)求解器為例,明確求解時間,并安排軟件生成解具體流程,即先求解Brinkman方程與Navier Stokes方程,后求解對流方程與擴散方程。其中發(fā)生反應(yīng)影響氣體密度,軟件能夠同時進行全部方程計算。
3.2.5 后處理和圖形化
功能太過強大的軟件能夠通過各式各樣的方式顯示結(jié)果。不僅可以提供海量圖與圖表信息,COM-SOL Multi physics數(shù)學(xué)建模軟件還能夠進行動畫制作,用戶可利用電影動畫詳細(xì)分析其隨時間所產(chǎn)生的轉(zhuǎn)變。此反應(yīng)器能夠檢查流場分布、反應(yīng)物、產(chǎn)物等濃度分布狀況。
3.3 其它模擬
此仿真流程依舊只是處于初步階段,其還能夠模擬燃料電池的流動動量守恒,熱交換器的能量守恒,靜態(tài)層流混合器的傳質(zhì),電化學(xué)效應(yīng)等,例如腫瘤電化學(xué)治療,可以進行電廠混合流體微流裝置科學(xué)合理設(shè)計,并詳細(xì)檢查電泳與色譜效應(yīng)等等。其中許多研究都需要對傳質(zhì)與流動進行模擬,并耦合物理場,即電磁或者結(jié)構(gòu)力學(xué)。COMSOL Multi physics數(shù)學(xué)建模軟件為多物理場同時耦合的問題研究奠定了堅實的基礎(chǔ)[5]。
4 結(jié)語
綜上所述,在化工過程中,數(shù)學(xué)建模在優(yōu)化改善新型工藝與原型等各個方面凸顯出了優(yōu)勢作用。人們能夠理解工藝內(nèi)部工作具體原理,但是在明確最佳參數(shù)的時候,卻需要進行大量相關(guān)工作,即反應(yīng)器及單元尺寸,物料的正確用量與配比,或最佳流速。傳統(tǒng)模式下,人們經(jīng)常通過進行多次實驗,或者就實際經(jīng)驗切實解決相關(guān)問題,但是想要構(gòu)建并測試大批量的原型裝置,此方法會耗費許多時間與成本。而數(shù)學(xué)建模工具能夠促使人們通過構(gòu)建虛擬原型,從而揭示化工工藝過程的真實內(nèi)部機制,并實時修正任意參數(shù),效果顯著,且具有一定的實時性。正是由于此數(shù)學(xué)建模工具的獨特優(yōu)勢能力,在很大程度上激勵著研究者進行創(chuàng)新工作,并提出更多新型方式方法,尤其是在藥理、生物科技、新材料等相關(guān)領(lǐng)域。
參考文獻
[1]鄭小松,李實.計算機程序設(shè)計改善數(shù)學(xué)建模進程[J].計算機光盤軟件與應(yīng)用,2012,(19):275-276.
[2]劉志平.基于數(shù)學(xué)建模和LabVIEW的虛擬儀表設(shè)計和研究[J].自動化與儀器儀表,2018,(11):15卜154+159.
[3]邢銀全,化工設(shè)計過程中的有效能分析[J].化工管理,2015,(5)202-203.
[4]榮進國.虛擬儀表中數(shù)學(xué)建模技術(shù)的應(yīng)用[J].化工設(shè)計通訊,2018,44(5):81-82.
[5]王美晨,李嘉萱,席典兵,等.基于數(shù)學(xué)建模下的CT圖形成像及系統(tǒng)參數(shù)標(biāo)定[J].電子制作,2018,(13):49-53.