孫 靜 萬曉媛 楊 倩 謝國(guó)駟 董 宣 黃 倢
病例研究:未知病因的凡納濱對(duì)蝦溞狀幼體的病原和微生物組分析*
孫 靜 萬曉媛 楊 倩 謝國(guó)駟 董 宣 黃 倢①
(中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海水養(yǎng)殖病害防治重點(diǎn)實(shí)驗(yàn)室 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室 青島市海水養(yǎng)殖流行病學(xué)與生物安保重點(diǎn)實(shí)驗(yàn)室 青島 266071)
從某對(duì)蝦育苗場(chǎng)2個(gè)育苗池中分別采集了發(fā)生攝食下降、活力降低及死亡率增高等癥狀的未知疾病的凡納濱對(duì)蝦()溞狀幼體3期(Z3)和1期(Z1)的樣品。用PCR檢測(cè)白斑綜合征病毒(WSSV)、傳染性皮下及造血組織壞死病病毒(IHHNV)、急性肝胰腺壞死病副溶血弧菌(AHPND)、桃拉綜合征病毒(TSV)、傳染性肌壞死病毒(IMNV)、黃頭病毒(YHV)、蝦肝腸胞蟲(EHP)、偷死野田村病毒(CMNV)和蝦血細(xì)胞虹彩病毒(SHIV)等9種已知病原為陰性。組織病理學(xué)診斷觀察到肝胰腺小管上皮細(xì)胞內(nèi)存在不明褐色團(tuán)塊。使用2216E培養(yǎng)基對(duì)致病菌分離鑒定,得到2株溶藻弧菌(),浸浴感染悉生鹵蟲()幼體后的平均存活率分別為58%和83%。采用Illumina HiSeq高通量測(cè)序方法對(duì)這2個(gè)溞狀幼體樣品中細(xì)菌16S rRNA基因的2個(gè)高變區(qū)(V3~V4)進(jìn)行總細(xì)菌菌群的測(cè)序,分析揭示了未知病因病蝦中細(xì)菌菌群的多樣性和相對(duì)豐度,門水平上2個(gè)樣品的優(yōu)勢(shì)菌群均包括變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes),但相對(duì)豐度有顯著差異;在屬水平上相對(duì)豐度最高的均為弧菌屬(),在2個(gè)樣品中的豐度分別為74.3%和60.5%,此外,Z1樣品相對(duì)高豐度(21.9%)的屬為黏著桿菌屬()。育苗管理信息及上述病例分析結(jié)果提示,該疾病可能是由于在過期存放的幼體飼料質(zhì)量下降所致的營(yíng)養(yǎng)障礙情況下,有一定致病性的溶藻弧菌條件性感染所引起的疾病。
病例研究;凡納濱對(duì)蝦;溞狀幼體;未知病因;菌群多樣性
對(duì)蝦養(yǎng)殖產(chǎn)業(yè)產(chǎn)生了巨大的經(jīng)濟(jì)效益,然而,急性肝胰腺壞死病等細(xì)菌性病害暴發(fā),嚴(yán)重威脅對(duì)蝦養(yǎng)殖產(chǎn)業(yè)(張寶存等, 2012; FAO, 2013)。目前,對(duì)致病微生物的研究還主要依賴于可培養(yǎng)的微生物(閻冰等, 2004),然而,迄今為止,在實(shí)驗(yàn)室條件下超過99%的微生物還無法被分離及純培養(yǎng)(Kellenberger, 2001),因此采用傳統(tǒng)培養(yǎng)技術(shù)調(diào)查養(yǎng)殖系統(tǒng)中的微生物群落會(huì)造成片面的認(rèn)識(shí),許多未知疾病的致病原也尚未被發(fā)現(xiàn)。1998年,宏基因組(Metagenomics)的概念首次被提出(Handelsman, 1998),它是將微生物生態(tài)群落中所有微生物的基因組看作一個(gè)整體,通過研究這個(gè)整體中物種的組成、豐度和功能來探索微生物群落及其生境之間的相互關(guān)系(Handelsman, 1998; 葉雷等, 2016)。與傳統(tǒng)研究方法相比,基于宏基因組的高通量測(cè)序技術(shù)具有一系列優(yōu)點(diǎn):首先,不需要依賴培養(yǎng)技術(shù)對(duì)微生物進(jìn)行分離;其次,可利用較少的樣本量檢測(cè)到低豐度的微生物;而且可以同時(shí)對(duì)多個(gè)樣本進(jìn)行分析,從而更加快速和完整地反映樣品中微生物的群落特征(Handelsman, 1998; 孫欣等, 2013; Williams, 2014)。因此,近幾年來,越來越多的研究者采用高通量測(cè)序技術(shù)來進(jìn)行未知及復(fù)雜疾病的病原檢測(cè)(Alavandi, 2012; 浦紹艷等, 2014)。采用Ion Torrent PGM平臺(tái),研究者對(duì)未知病因足部潰爛病人樣品的16S rDNA基因V1~V2高變區(qū)進(jìn)行測(cè)序,發(fā)現(xiàn)了一部分與足部慢性潰瘍有關(guān)的細(xì)菌(劉文麗等, 2016)。Johnston等(2017)研究牛呼吸道疾病(BRD)的肺部組織樣品,通過Illumina Miseq測(cè)序16S rDNA基因的V3~V4區(qū),揭示了肺和淋巴結(jié)中的不同優(yōu)勢(shì)菌組成,并發(fā)現(xiàn)導(dǎo)致牛呼吸道疾病的病原菌可能從屬于纖毛菌科(Leptotrichiaceae)中一個(gè)新的菌屬。盡管高通量測(cè)序在人體及陸生動(dòng)物疾病診斷中已經(jīng)得到應(yīng)用,但在水生動(dòng)物疾病研究中還鮮有報(bào)道。
2017年2月,在浙江某對(duì)蝦育苗場(chǎng)了解到有2個(gè)苗池的凡納濱對(duì)蝦()溞狀幼體發(fā)生未知病因的疾病,養(yǎng)殖池水體的理化指標(biāo)均正常,但幼體出現(xiàn)攝食少、活動(dòng)力差和死亡等情況。在2個(gè)苗池分別采集病蝦樣品進(jìn)行多種病原檢測(cè),并用組織病理學(xué)、微生物分離鑒定和微生物組學(xué)方法分析了各樣品的潛在病原、病理和細(xì)菌菌群結(jié)構(gòu),為該病例的發(fā)病原因分析提供線索。
凡納濱對(duì)蝦的溞狀幼體樣品于2017年2月取自浙江某育苗場(chǎng),現(xiàn)場(chǎng)了解育苗情況及病害情況后,取2個(gè)患病苗池的幼體各0.1,分別標(biāo)記為20170222002 (溞狀幼體3期, Z3)和20170222003(溞狀幼體1期, Z1),使用Davidson’s AFA (DAFA) (Bell, 1988)和3倍體積95%乙醇保存(陳大菾等, 2015),另取一部分樣品勻漿后接種于2216E液體培養(yǎng)基中。樣品運(yùn)回實(shí)驗(yàn)室后,95%乙醇保存樣品,于–80℃冰箱備用。
固定24 h后,將DAFA固定的對(duì)蝦組織更換于70%酒精中保存,并進(jìn)行梯度脫水、浸蠟、透明、石蠟包埋和切片。切片經(jīng)蘇木精-伊紅(HE)染色制片(Bell, 1988),于光學(xué)顯微鏡(Nikon E800)下觀察。
將2216E液體培養(yǎng)基保存的菌液,劃線接種在新鮮的2216E固體培養(yǎng)基平板上,28℃過夜培養(yǎng)。之后根據(jù)平板上菌落形態(tài)加以區(qū)分,從形態(tài)一致、數(shù)量較多的菌落中隨機(jī)選取進(jìn)行保種,并采用16S rRNA基因?qū)?yōu)勢(shì)菌株進(jìn)行PCR擴(kuò)增并測(cè)序。進(jìn)一步采用弧菌基因的特異引物(5¢-GAGAACCCGACAGAA GCGAAG-3¢和5¢-CCTAGTGCGGTGATCAGTGTTG- 3¢) (Wei, 2014)對(duì)待鑒定菌株進(jìn)行進(jìn)一步比對(duì)。MEGA6軟件用于基因的系統(tǒng)進(jìn)化樹構(gòu)建,并進(jìn)行1000次的Bootstraps重復(fù)檢驗(yàn)。
分離并鑒定出的細(xì)菌采用悉生鹵蟲()幼體進(jìn)行致病力檢測(cè)。分別將各受試菌于28℃下震蕩培養(yǎng)至OD600 nm=1備用。取50 ml無菌玻璃瓶,加入10 ml滅菌海水及20只悉生鹵蟲幼體,并加入已制備的菌液至終濃度為107CFU/ml進(jìn)行攻毒??瞻讓?duì)照組未加入細(xì)菌,陰性對(duì)照組加入相同濃度的徐氏弧菌()。每組實(shí)驗(yàn)設(shè)置3個(gè)重復(fù)。28℃下光照培養(yǎng)48 h后,統(tǒng)計(jì)并計(jì)算不同實(shí)驗(yàn)組鹵蟲的存活率。
用研磨珠將2管溞狀幼體組織勻漿,取60 μl樣品,8000 r/min離心5 min,棄上清液,在室溫下放置10 min,使管中的酒精充分揮發(fā)。使用TIANamp海洋動(dòng)物組織基因組試劑盒(天根, 北京)提取DNA,RNAiso Plus (TaKaRa, 大連)提取總RNA。每管溞狀幼體3個(gè)重復(fù)。
參照OIE《水生動(dòng)物疾病診斷手冊(cè)》(OIE, 2017)的標(biāo)準(zhǔn)檢測(cè)方法分別篩查白斑綜合征病毒(White spot syndrome virus, WSSV)、傳染性皮下及造血組織壞死病病毒(Infectious hypodermal and hematopoietic necrosis virus, IHHNV)、急性肝胰腺壞死病副溶血弧菌(Acute hepatopancreatic necrosis disease caused by,AHPND)、桃拉綜合征病毒(Taura syndrome virus, TSV)、傳染性肌壞死病毒(Infectious myonecrosis virus, IMNV)及黃頭病毒(Yellow head virus, YHV);并參考相關(guān)文獻(xiàn)檢測(cè)蝦肝腸胞蟲(, EHP) (Jaroenlak, 2016)、偷死野田村病毒(Covert mortality nodavirus, CMNV) (Zhang, 2014)及蝦血細(xì)胞虹彩病毒(Shrimp hemocyte iridescent virus, SHIV) (Qiu, 2017)。引物序列詳見表1。
表1 常見已知對(duì)蝦病原PCR檢測(cè)的引物
Tab.1 Primers of PCR detection for usual known pathogens of penaeid shrimp
將提取的基因組DNA作為模板,擴(kuò)增16S rDNA序列的V3~V4可變區(qū),引物序列為常規(guī)引物341F(5¢- CCTACGGGNGGCWGCAG-3¢)和805R(5¢-GACTAC HVGGGTATCTAATCC-3¢)。PCR反應(yīng)體系為30 μl,含2×Phusion Master Mix (Thermo Scientific, 美國(guó)) 15 μl、2 μmol/L引物混合物3 μl和1 ng/μl gDNA 10 μl。經(jīng)98℃預(yù)變性1 min;98℃ 10 s、50℃ 30 s和72℃ 30 s,30個(gè)循環(huán);72℃延伸5 min。每個(gè)樣品取等量PCR產(chǎn)物混合,用2%瓊脂糖凝膠電泳回收目的條帶,用geneJET膠回收試劑盒(Thermo Fisher Scientific, 美國(guó))回收產(chǎn)物。使用TruSeq?DNA PCR-Free Sample Preparation Kit (Illumina, 美國(guó))進(jìn)行文庫(kù)構(gòu)建,合格的文庫(kù)使用HiSeq2500 PE250進(jìn)行上機(jī)測(cè)序(諾禾致源公司, 北京)。
利用Quantitative Insights Into Microbial Ecology (QIIME, v1.7.0) (Caporaso, 2010)對(duì)拼接得到的Raw Tags進(jìn)行嚴(yán)格的質(zhì)控和去除嵌合體,從而得到高質(zhì)量的有效數(shù)據(jù)(Effective tags)。使用Uparse (v7.0.1001) (Edgar, 2013)在97%的相似性水平對(duì)有效序列聚類到分類操作單元(Operational taxonomic units, OTU),選取每個(gè)OTU中豐度最高的序列作為代表序列,對(duì)OTUs代表序列進(jìn)行物種注釋,用Mothur方法(Schloss, 2009)與SILVA (Wang, 2007)的SSU rRNA數(shù)據(jù)庫(kù)(Quast, 2013)進(jìn)行物種注釋分析(設(shè)定閾值為0.8~1),獲得分類學(xué)信息并分別在界、門、綱、目、科、屬和種等各個(gè)分類水平統(tǒng)計(jì)各樣本的群落組成。
使用QIIME (v1.7.0)計(jì)算alpha多樣性指數(shù)(Observed-species, Chao1, Shannon, Simpson, ACE, Goods-coverage),選用-test檢驗(yàn)比較2組樣品的差異。LEfSe分析使用LEfSe軟件展示了2組樣品之間具有統(tǒng)計(jì)學(xué)差異的物種[默認(rèn)設(shè)置Linear discriminant analysis (LDA) Score的篩選值為4]。
2.1.1 蝦苗癥狀和病理分析 2批蝦苗均來自進(jìn)口某品牌的無特定病原(SPF)親蝦產(chǎn)卵所孵化的幼體,親蝦引進(jìn)時(shí)經(jīng)檢疫部門檢測(cè)合格。蝦卵經(jīng)孵化和無節(jié)幼體培育,進(jìn)入溞狀幼體期后均只使用某品牌蝦片,該批蝦片在4℃~10℃的冷庫(kù)已存放接近6個(gè)月,輔以螺旋藻粉、黑粒、車元等添加劑配制的飼料喂養(yǎng),未投喂單細(xì)胞藻類。采樣時(shí),蝦苗分別處于溞狀幼體3期(Z3)和溞狀幼體1期(Z1),其中,Z3出現(xiàn)飼料攝食減少、蝦苗活動(dòng)能力差、蝦苗批量死亡的現(xiàn)象,取樣后因?yàn)樗劳雎矢叨劁N毀;Z1出現(xiàn)蝦苗活動(dòng)力下降、飼料攝食量降低、拖便呈細(xì)絲狀或偏少的情況,后期在變態(tài)中損失較大。
對(duì)2批蝦苗樣品進(jìn)行組織切片,結(jié)果顯示,均沒有可辨認(rèn)的常見已知病原感染的組織病理癥狀,但在Z3肝胰腺小管細(xì)胞內(nèi)的脂滴中觀察到大量棕黃色的不明團(tuán)塊,Z1肝胰腺小管和部分細(xì)胞內(nèi)也出現(xiàn)棕色顆粒(圖1)。
2.1.2 常見已知病原檢測(cè) 樣品分別取自同一個(gè)養(yǎng)殖場(chǎng)的2個(gè)發(fā)病池塘,實(shí)驗(yàn)室分子檢測(cè)結(jié)果見表2。如表2所示,2份樣品均未檢出常見的已知對(duì)蝦病原,對(duì)近幾年導(dǎo)致重大對(duì)蝦疾病的EHP、AHPND和SHIV等進(jìn)行檢測(cè),結(jié)果也均為陰性。
圖1 病理組織觀察
A:溞狀幼體3期(Z3)樣品;B:溞狀幼體1期(Z1)樣品
A: zoea stage Ⅲ (Z3); B: zoea stage Ⅰ (Z1)
表2 對(duì)樣品進(jìn)行已知病原的檢測(cè)結(jié)果
注:N表示陰性
Note: N means negative result
2.1.3 常規(guī)方法分離的細(xì)菌及其致病力檢測(cè) 根據(jù)16S rDNA的序列比對(duì)結(jié)果,進(jìn)一步采用弧菌屬特異引物對(duì)待鑒定菌株進(jìn)行測(cè)序比對(duì),最終確定該菌株為溶藻弧菌() (圖2)。使用悉生鹵蟲分別對(duì)2個(gè)池塘分離的溶藻弧菌致病力進(jìn)行評(píng)估,結(jié)果顯示,2份樣品中分離出的溶藻弧菌均對(duì)鹵蟲具有致病性,且Z3期樣品分離株致病性較強(qiáng)(<0.05) (表3)。
圖2 基于Neighbor-Joining方法的gyrB基因系統(tǒng)進(jìn)化樹
表3 不同溶藻弧菌分離株對(duì)鹵蟲的致病力檢測(cè)
Tab.3 Survival of brine shrimp larvae challenged with different V. alginolyticus isolates
注:1:為陰性對(duì)照;2:從Z3期樣品中分離出的;3:從Z1期樣品中分離出的
Note: 1:is negative control; 2:was isolated from Z3 sample; 3:was isolated from Z1 sample
2.2.1 基因組DNA提取及PCR擴(kuò)增 以提取的總菌群基因組DNA為模板,經(jīng)PCR擴(kuò)增所得16S rDNA的V3~V4區(qū)目的片段條帶清晰(圖3),可以滿足后續(xù)測(cè)序?qū)嶒?yàn)的要求。
2.2.2 樣品菌群的多樣性統(tǒng)計(jì)分析 上述所得V3~V4區(qū)的產(chǎn)物通過高通量測(cè)序,共獲得43330條有效序列,以97%的一致性(Identity)將這些序列聚類成為平均280個(gè)OTUs。
經(jīng)統(tǒng)計(jì)分析獲得序列的α-多樣性如表4所示。α-多樣性是反映樣品內(nèi)微生物群落的豐富度和均勻度的一個(gè)綜合指標(biāo)。評(píng)估豐富度的指標(biāo)主要為種類數(shù)目(Observed-species)、測(cè)序深度指數(shù)(Goods-coverage),Chao1指數(shù)和ACE指數(shù);而群落中個(gè)體分配上的均勻性,即多樣性,主要包括Shannon指數(shù)和Simpson指數(shù),通常這2個(gè)值越大意味著群落多樣性越高。Z3期(S1)樣品群落豐度指數(shù)Shannon、Simpson和Chao1略高于Z1期(S2)樣品,而ACE指數(shù)略低于Z1期樣品。比較2個(gè)時(shí)期細(xì)菌群落的α-多樣性指數(shù)可知,Z3期的細(xì)菌群落多樣性和豐度均高于Z1期(表4)。-test檢驗(yàn)結(jié)果顯示,2組樣品的細(xì)菌群落的Observed-species、Chao1、ACE和Goods-coverage指數(shù)均無顯著差異(0.05);而Shannon和Simpson指數(shù)則差異顯著(<0.05)。
圖3 6個(gè)樣品的PCR擴(kuò)增產(chǎn)物電泳
M1:100 bp分子量標(biāo)準(zhǔn); 1~6分別為6份樣品的PCR產(chǎn)物;CK:空白對(duì)照
M1: 100 bp ladder; 1~6: Six PCR products; CK: Blank control
表4 2組蝦苗中總細(xì)菌菌群的alpha多樣性
注:*表示差異顯著(<0.05)
Note: * represent significant difference (<0.05)
2.2.3 樣品細(xì)菌群落的物種相對(duì)豐度分析 根據(jù)物種注釋結(jié)果,選取每個(gè)樣品和分組在各分類水平上最大豐度排名前10的物種,生成物種相對(duì)豐度柱型累加圖(圖4)顯示,2組溞狀幼體在菌群門水平上的組成種類差異不大,總菌群的優(yōu)勢(shì)門主要包括變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)。Z3期的平均相對(duì)豐度分別為89.5%、8.9%和1.3%,合計(jì)占總細(xì)菌序列數(shù)的99.7%;Z1期的平均相對(duì)豐度為72.1%、26.9%和0.7%,合計(jì)占總細(xì)菌序列數(shù)的99.7%。Z3期溞狀幼體中變形菌門和厚壁菌門的相對(duì)豐度顯著高于Z1期,但Z1期中擬桿菌門的相對(duì)豐度高于Z3期的樣品。
在屬水平上的統(tǒng)計(jì)分析結(jié)果表明(圖5),Z3期樣品中相對(duì)豐度最高的是弧菌屬(, 74.3%),相對(duì)豐度>1%的包括發(fā)光桿菌屬(, 2.9%)、歐文維克菌屬(, 1.9%)、黏著桿菌屬(, 1.4%)、海洋螺菌屬(, 1.4%)、深海短桿菌屬(, 1.1%)和其他未分類菌(others, 16.1%);Z1期樣品中相對(duì)豐度高的除了弧菌屬(60.5%),還包括黏著桿菌屬(21.9%),相對(duì)豐度>1%的則是褐指藻桿菌屬(, 1.6%)、姜氏菌屬(,1.2%)和其他未分類菌(others, 13.1%)。由于此研究?jī)H是對(duì)總的16S rDNA序列的V3~V4可變區(qū)進(jìn)行擴(kuò)增和高通量測(cè)序,因此,只能準(zhǔn)確到屬的水平,而非物種水平。
圖4 各個(gè)樣品(A)和分組樣品(B)門水平上的物種相對(duì)豐度
圖5 各個(gè)樣品(A)和分組樣品(B)屬水平上的物種相對(duì)豐度
2.2.4 樣品細(xì)菌群落結(jié)構(gòu)的差異性分析 從LDA值分布柱狀圖(圖6A)可以看出,在屬的水平上,發(fā)光桿菌屬、弧菌屬和黏著桿菌屬是2組溞狀幼體樣品中差異顯著的物種。在Z3期樣品中,光合桿菌屬和弧菌屬的LDA值均接近4.8;而對(duì)于Z1期樣品,在黏著桿菌屬的LDA值接近4.8。由進(jìn)化分支圖(圖6B)顯示,弧菌科(Vibrionaceae)-弧菌目(Vibrionales)、侏囊菌科(Nannocystaceae)-黏球菌目(Myxococcales)和交替單胞菌科(Alteromonadaceae)均屬于變形菌門;而黃桿菌科(Flavobacteriaceae)-黃桿菌目(Flavobacteriales)-黃桿菌綱(Flavobacteriia)屬于擬桿菌門。
在對(duì)蝦的育苗期,對(duì)蝦先由無節(jié)幼體變態(tài)發(fā)育為溞狀幼體,溞狀幼體分為3期,在此階段發(fā)育至具有完整口器和消化器官,開始攝食。在對(duì)蝦育苗生產(chǎn)中,溞狀期的培育是成敗的關(guān)鍵,幼體營(yíng)養(yǎng)需求的滿足能顯著影響其變態(tài)時(shí)間(李紹彬等, 2000),以蝦片為飼料主成分時(shí),不同品牌的蝦片對(duì)育苗效果也可能有顯著影響(楊育凱等, 2017)。本研究所針對(duì)的育苗場(chǎng)只采用了某品牌的蝦片為飼料主成分,且該批蝦片在育苗場(chǎng)的4℃~10℃的冷庫(kù)存放接近半年。采用該蝦片投喂的溞狀幼體出現(xiàn)了明顯的攝食量下降、活力減弱和死亡問題,其中,Z3期的育苗池發(fā)病比Z1期的育苗池表現(xiàn)更嚴(yán)重,在采樣后Z3期的育苗池因?yàn)榇婊盥侍投N毀。組織病理觀察發(fā)現(xiàn),Z3的樣品在肝胰腺細(xì)胞內(nèi)出現(xiàn)大量不明的棕色團(tuán)塊,疑似飼料沉積物。因此,初步懷疑可能是因?yàn)槲r片品牌或存儲(chǔ)時(shí)間過長(zhǎng),發(fā)生酸敗或其他問題影響了蝦片質(zhì)量,導(dǎo)致其營(yíng)養(yǎng)未能有效利用,產(chǎn)生細(xì)胞內(nèi)沉積,影響了蝦苗的抗病力和存活率(梁萌青等, 1996; Laohabanjong, 2009),而Z1期可能剛開始攝食,受飼料的影響剛開始出現(xiàn),尚不如Z3嚴(yán)重。
通過分子學(xué)手段對(duì)對(duì)蝦已知的多種病原進(jìn)行檢測(cè),均為陰性,說明這次溞狀幼體期的病害不是這些感染性病原所致。通過2216E培養(yǎng)基的培養(yǎng),從Z3和Z1幼體中均分離到溶藻弧菌,2株溶藻弧菌對(duì)悉生鹵蟲幼體表現(xiàn)出致病力,表明該菌存在一定的毒力。研究表明,包括溶藻弧菌在內(nèi)的多種弧菌容易侵染溞狀幼體,且短時(shí)間內(nèi)能導(dǎo)致全部死亡(王景明等, 1992),Hamza等(2018)研究也發(fā)現(xiàn),從發(fā)病對(duì)蝦樣品中分離出的溶藻弧菌可使悉生鹵蟲幼體的死亡率達(dá)到97%。然而溶藻弧菌的來源尚不明確,此菌不存在芽孢形式,在干粉飼料制作中如果有污染,其存活的時(shí)間也十分有限,因此,飼料中存在溶藻弧菌的可能性很小。
圖6 LDA值分布柱狀圖(A)和進(jìn)化分支圖(B)
LDA值展示2組樣品中豐度差異顯著的物種(LDA Score>4),柱狀圖的長(zhǎng)度代表差異物種的影響大小。進(jìn)化分支圖由內(nèi)至外輻射的圓圈代表了由門到種的分類級(jí)別。在不同分類級(jí)別上的每一個(gè)小圓圈代表該水平下的一個(gè)分類,小圓圈直徑大小與相對(duì)豐度大小呈正比。紅色圓圈代表Z3期樣品(S1)中差異顯著的物種,綠色圓圈代表Z1期樣品(S2)中差異顯著的物種,黃色圓圈代表無顯著差異的物種
LDA score (>4) represents the significantly differential abundance in the microbial taxa between samples. The biomarkers from samples were highlighted in the cladogram. From the innermost to outmost, each cycle represents the phylum, class, order, family, genus and species level. Each dot represents a taxon, and its diameter positively correlates with the abundance of the corresponding taxon. The red and green colored dots indicate the biomarkers from Z3 (S1) and Z1(S2) samples, respectively. The yellow dot represents the taxa with nonsignificant changes between groups
宏基因組學(xué)方法為未知疾病的病因及其潛在致病微生物分析提供了更全面的微生物組信息。由于大多數(shù)微生物在常規(guī)的培養(yǎng)基上無法生長(zhǎng),而且采用傳統(tǒng)平板培養(yǎng)基分離出的微生物具有營(yíng)養(yǎng)偏好性,因此,得到的結(jié)果無法全面地體現(xiàn)菌群組成的真實(shí)情況。高通量測(cè)序無需培養(yǎng),能全面地反映樣品的微生物多樣性。目前,已有不少對(duì)蝦體內(nèi)和養(yǎng)殖水體中菌群組成的研究,但發(fā)病蝦苗中菌群多樣性研究的報(bào)道較少。本研究檢測(cè)到發(fā)病對(duì)蝦溞狀幼體主要菌群與報(bào)道的健康凡納濱對(duì)蝦菌群類似,在門水平均包括變形菌門和擬桿菌門(Rungrassamee, 2013、2014; 吳金鳳等, 2016; 唐陽等, 2017),但在屬水平上,發(fā)病對(duì)蝦溞狀幼體樣品中弧菌屬和黏著桿菌屬相對(duì)豐度較高。采用平板培養(yǎng)分離出的優(yōu)勢(shì)菌亦為弧菌屬的溶藻弧菌,且使用悉生鹵蟲檢驗(yàn)了此菌的致病力,推斷弧菌可能是導(dǎo)致這些蝦苗發(fā)病的原因。有研究顯示,加入有益菌(如蠟樣芽孢桿菌)可以抑制弧菌等有害菌的生長(zhǎng)(唐陽等, 2017),生產(chǎn)中也觀察到向溞狀幼體期的水體投放益生菌(如交替投放芽孢桿菌和乳酸菌制劑),可提高溞狀幼體期的變態(tài)率和存活率(林黑著等, 2015)。
黏著桿菌屬也是海洋環(huán)境中常見的一類致病細(xì)菌(Pridgeon, 2012),最早發(fā)現(xiàn)可侵染魚類,比如能導(dǎo)致舌鰨和大菱鲆發(fā)生黏著桿菌病(Tenacibaculosis)的海洋黏著桿菌() [曾用名為海洋屈撓桿菌()] (Vilar, 2012; Avenda?o-herrera, 2006)。巴西學(xué)者發(fā)現(xiàn),海洋黏著桿菌能造成凡納濱對(duì)蝦苗期,尤其是仔蝦期(Postlarvae)大規(guī)模死亡,同時(shí)還伴有身體發(fā)黑、活力差和吃料少等病癥(Mouri?o, 2008);但也有研究表明,黏著桿菌在正常的對(duì)蝦中也存在(張歡歡等, 2016; 唐陽等, 2017),但豐度較低。在本研究的Z1期樣品中黏著桿菌的豐度僅次于弧菌,此類細(xì)菌也可能直接或者間接導(dǎo)致這批凡納濱對(duì)蝦溞狀幼體的發(fā)病。
蝦類病害診斷的目的是確定病害種類、掌握病因和查明病原。但與醫(yī)學(xué)疾病診斷相比,針對(duì)病例進(jìn)行詳細(xì)剖析的報(bào)道少,診斷工作中遇到的多種多樣的情況難以找到判斷的依據(jù),因此,病例研究的報(bào)道是提高對(duì)各種病害診斷的準(zhǔn)確性的重要支持。本研究首先對(duì)對(duì)蝦育苗期的未知病例進(jìn)行了詳細(xì)的背景描述和癥狀觀察,再采用組織病理學(xué)、病原檢測(cè)、分離培養(yǎng)并結(jié)合宏基因組測(cè)定方法進(jìn)行分析,報(bào)告全面的背景情況和分析數(shù)據(jù)信息,能為將來該類病害的診斷提供參考。目前,目標(biāo)基因的宏基因組測(cè)序成本降低,此技術(shù)能提供微生物組的種屬和數(shù)量的更全面信息,在疾病診斷方面具有重要意義,因此,對(duì)于病因復(fù)雜的疾病,應(yīng)考慮增加宏基因組分析樣品的取樣,以備為發(fā)病宿主的微生物群落分析提供材料。
Alavandi SV, Poornima M. Viral metagnomics: A tool for virus discovery and diversity in aquaculture. Indian Journal of Virology, 2012, 23(2): 88–98
Avenda?o-herrera R, Magari?os B, Irgang R,. Use of hydrogen peroxide against the fish pathogenand its effect on infected turbot (). Aquaculture, 2006, 257(1–4): 104–110
Bell TA, Lightner DV. A handbook of normal penaeid shrimp histology. Baton Rouge, LA: World Aquaculture Society, 1988
Caporaso JG, Kuczynski J, Stombaugh J,. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335–336
Chen DT, Huang J, Wang HL,Selection and optimization of simple and convenient sample solutions for shrimp tissue preservation at normal temperature. Progress in Fishery Sciences, 2015, 36(5): 71–80 [陳大菾, 黃倢, 王海亮, 等. 凡納濱對(duì)蝦()組織樣品常溫保存液的篩選和優(yōu)化. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(5): 71–80]
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996–998
FAO. Report of the FAO/MARD technical workshop on early mortality syndrome (EMS) or acute hepatopancreatic necrosis syndrome (AHPNS) of cultured shrimp (under TCP/VIE/3304) Hanoi, Vietnam, 25–27 June, 2013, FAO Fisheries and Aquaculture Report No. 1053
Hamza F, Kumar AR, Zinjarde S. Efficacy of cell free supernatant fromin protectingagainstand. Microbial Pathogenesis, 2018, 116: 335–344
Handelsman J, Rondon MR, Brady SF,Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry and Biology, 1998, 5(10): 245–249
Jaroenlak P, Sanguanrut P, Williams BA,. A nested PCR assay to avoid false positive detection of the microsporidian(EHP) in environmental samples in shrimp farms. PLoS One, 2016, 11(11): e0166320
Johnston D, Earley B, Cormican P,. Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue. BMC Veterinary Research, 2017, 13(1): 118
Kellenberger E. Exploring the unknown. The silent revolution of microbiology. EMBO Report, 2001, 2(1): 5–7
Laohabanjong R, Tantikitti C, Benjakul S,. Lipid oxidation in fish meal stored under different conditions on growth, feed efficiency and hepatopancreatic cells of black tiger shrimp (). Aquaculture, 2009, 286(3–4): 283–289
Li SB, Zhang X. Effect of nutrition on transformation of zoea stage of white leg shrimp. Mariculture, 2000, 55: 11–13 [李紹彬, 張欣. 南美白對(duì)蝦蚤狀期幼體的營(yíng)養(yǎng)對(duì)其變態(tài)的影響. 海水養(yǎng)殖, 2000, 55: 11–13]
Liang MQ, Xu MQ, Yao J,. The effect of acided oil and aflatoxin on the prawns () growth. Journal of Fishery Sciences of China, 1996, 3(4): 48–52 [梁萌青, 徐明起, 姚健, 等. 酸敗油脂和黃曲霉毒素對(duì)中國(guó)對(duì)蝦()生長(zhǎng)的影響. 中國(guó)水產(chǎn)科學(xué), 1996, 3(4): 48–52]
Lin HZ, Hong YQ, Yang YK. One kind of white shrimp breeding methods. China patent: CN201510114710.1, 2015 [林黑著, 洪越群,楊育凱,等. 一種南美白對(duì)蝦的育苗方法. 專利號(hào):CN201510114710.1, 2015]
Liu WL, Mi ZQ, Wang W,. Pathogenic factors research of foot ulcers patients with unknown etiology. Letters in Biotechnology, 2016, 27(3): 318–321, 361 [劉文麗, 米志強(qiáng), 王偉, 等. 基于16S rDNA宏基因組學(xué)技術(shù)探究未知病因足部潰爛的致病因素. 生物技術(shù)通訊, 2016, 27(3): 318–321, 361]
Mouri?o JL, Vinatea L, Buglioneneto C,. Characterization and experimental infection of(Wakabayashi. 1986) in hatcheries of post-larvae ofBoone, 1931. Brazilian Journal of Biology, 2008, 68(1): 173–177
OIE. Manual of diagnostic tests for aquatic animals. World Organisation of Animal Health, 2017, http://www.oie.int/ international-standard-setting/aquatic-manual/access-online/
Pridgeon JW, Klesius PH. Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2012, 7(48): doi: 10.1079/ PAVSNNR20127048
Pu SY, Zhang XL, Jiang TJ,. Metagenomics research and its applications in virus detection. Acta Biophysica Sinica, 2014, 30(1): 3–14 [浦紹艷, 張?chǎng)卫? 蔣太交, 等. 宏基因組學(xué)研究方法及其在病原體檢測(cè)中的應(yīng)用. 生物物理學(xué)報(bào), 2014, 30(1): 3–14]
Qiu L, Chen M, Wan X,. Characterization of a new member of, shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (). Scientific Reports, 2017, 7(1): 11834
Quast C, Pruesse E, Yilmaz P,The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41: D590–D596
Rungrassamee W, Klanchui A, Chaiyapechara S,. Bacterial population in intestines of the black tiger shrimp () under different growth stages. PLoS One, 2013, 8(4): e60802
Rungrassamee W, Klanchui A, Maibunkaew S,. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (). PLoS One, 2014, 9(3): e91853
Schloss PD, Westcott SL, Ryabin T,. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537–7541
Sun X, Gao Y, Yang YF. Recent advancement in microbial environmental research using metagenomics tools. Biodiversity Science, 2013, 21(4): 393–400 [孫欣, 高瑩, 楊云鋒. 環(huán)境微生物的宏基因組學(xué)研究新進(jìn)展. 生物多樣性, 2013, 21(4): 393–400]
Tang Y, Liu WL, Song XL,. Effects of dietary withon the growth rate and intestinal microflora of. Journal of Fisheries of China, 2017, 41(5): 766–774 [唐陽, 劉文亮, 宋曉玲, 等. 飼料中補(bǔ)充蠟樣芽孢桿菌對(duì)凡納濱對(duì)蝦生長(zhǎng)及其腸道微生物組成的影響. 水產(chǎn)學(xué)報(bào), 2017, 41(5): 766–774]
Vilar P, Failde LD, Bermudez R,. Morphopathological features of a severe ulcerative disease outbreak associated within cultivated sole,(L.). Journal of Fish Diseases, 2012, 35(6): 437–445
Wang JM, Wan SY, Xiao YF,. Studies on the pathogenicity of Vibios to shrimpFishery Science, 1992, 11(12): 10–12 [王景明, 萬三元, 肖艷芳, 等. 弧菌對(duì)斑節(jié)對(duì)蝦蝦苗致病性的研究. 水產(chǎn)科學(xué), 1992, 11(12): 10–12]
Wang Q, Garrity GM, Tiedje JM,. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261–5267
Wei S, Zhao H, Xian Y,. Multiplex PCR assays for the detection of,,, andwith an internal amplification control.Diagnostic Microbiology and Infectious Disease, 2014, 79(2): 115–118
Williams ST, Foster PG, Littlewood DT. The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene, 2014, 533(1): 38–47
Wu JF, Xiong JB, Wang X,. Intestinal bacterial community is indicative for the healthy status of. Chinese Journal of Applied Ecology, 2016, 27(2): 611–621 [吳金鳳, 熊金波, 王欣, 等. 腸道菌群對(duì)凡納濱對(duì)蝦健康的指示作用. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(2): 611–621]
Yan B, Hong K, Xu Y,. Metagenome cloning?A new approach for novel microbial bioactive compounds discovery. Microbiology, 2004, 32(1): 113–117 [閻冰, 洪葵許云, 等. 宏基因組克隆——微生物活性物質(zhì)篩選的新途徑. 微生物學(xué)通報(bào), 2004, 32(1): 113–117]
Yang YK, Lin HZ, Yang QB,. Effect evaluation of three kinds of shrimp flake in the larval rearing of. Journal of Sichuan Agricultural University, 2017, 35(2): 266–272 [楊育凱, 林黑著, 楊其彬, 等. 3種蝦片在凡納濱對(duì)蝦育苗中的效果評(píng)價(jià). 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 35(2): 266–272]
Ye L, Yan YL, Chen QS,. Application of high-throughput sequencing technology in studying matagenomics of intestinal microbiota. Journal of Chinese Institute of Food Science and Technology, 2016, 16(7): 216–223 [葉雷, 閆亞麗, 陳慶森, 等. 高通量測(cè)序技術(shù)在腸道微生物宏基因組學(xué)研究中的應(yīng)用. 中國(guó)食品學(xué)報(bào), 2016, 16(7): 216–223]
Zhang BC, Liu F, Bian HH,. Isolation, identification, and pathogenicity analysis of astrain from. Progress in Fishery Sciences, 2012, 33(2) 56–62 [張寶存, 劉飛, 邊慧慧, 等. 一株凡納濱對(duì)蝦病原菌的分離、鑒定及其致病力分析. 漁業(yè)科學(xué)進(jìn)展, 2012, 33(2): 56–62]
Zhang HH, Wang XH, Li C,. Isolation and identification of asp. strain and its role in bioflocs for the shrimp culture system. Progress in Fishery Sciences, 2016, 37(2): 111–118 [張歡歡, 王秀華, 李晨, 等. 一株芽孢桿菌的分離鑒定及在生物絮團(tuán)對(duì)蝦養(yǎng)殖中的應(yīng)用. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(2): 111–118]
Zhang Q, Liu Q, Liu S,. A new nodavirus is associated with covert mortality disease of shrimp. Journal of General Virology, 2014, 95(12): 2700–2709
Case Studies: Pathogenic Agent and Microbiome Analysis for Zoea ofSuffering from an Unknown Disease
SUN Jing, WAN Xiaoyuan, YANG Qian, XIE Guosi, DONG Xuan, HUANG Jie①
(Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao); Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071)
A shrimp hatchery ofwas infected by an unknown disease during the zoea stage with declined feeding, reduced activity, and increased mortality. In order to diagnose and explore the pathogenic factors causing the zoea disease, we collected samples from two diseased rearing ponds at zoea stage 3 (Z3) and zoea stage 1 (Z1), respectively. PCR detection for nine known pathogens, including WSSV (White spot syndrome virus), IHHNV (Infectious hypodermal and hematopoietic necrosis virus),AHPND(Acute hepatopancreatic necrosis disease caused by), TSV (Taura syndrome virus), IMNV (Infectious myonecrosis virus), YHV (Yellow head virus), EHP (), CMNV (Covert mortality nodavirus), and SHIV (Shrimp hemocyte iridescent virus) showed negative results. Histopathological diagnosis showed unknown brown particles in the epithelial cells of the hepatopancreatic tubules. The results of bacterial isolation and identification for potential pathogens resulted in only two isolates ofon 2216E media. The average survival rate of gnotobiotic brine shrimp () nauplii immersion- challenged with these isolates were 58% and 83% respectively. The microbial communities were profiled by high-throughput sequencing of the V3~V4 hypervariable region of 16S rRNA gene using the Illumina HiSeq sequencing platform. Meta-16S-sequencing revealed the microbial diversities and their relative abundance in the zoea stage of. The results showed that Proteobacteria, Bacteroidetes, and Firmicutes were the most dominant phyla in the entire bacterial community from both samples, but their relative abundance was obviously different. At the genus level,was the most abundant genus in both samples, at 74.3% and 60.5%, respectively, and the relative abundance of(21.9%) was the second highest genus in the Z1 stage sample. Collectively, the information regarding the management of larval rearing and the above results of the case study imply that the disease may be caused by an opportunistic infection with some strains ofhaving moderate pathogenicity under the dystrophia of larva caused by quality degradation of larval feed due to the expiration of storage.
Case study;; Zoea; Unknown disease; Microbial diversity
HUANG Jie, E-mail: huangjie@ysfri.ac.cn
* 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室主任基金(QNLM201706)、中國(guó)-東盟海上合作基金項(xiàng)目(2016-2018)、中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2017HY-ZD10)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-48)共同資助[This work was supported by Pilot National Laboratory for Marine Science and Technology (Qingdao) (QNLM201706), China ASEAN Maritime Cooperation Fund Project (2016-2018), the Fundamental Research Funds for Chinese Academy of Fishery Sciences (2017HY-ZD10), and China Agriculture Research System (CARS-48)]. 孫 靜,E-mail: sunjing@ysfri.ac.cn
黃 倢,研究員,E-mail: huangjie@ysfri.ac.cn
2018-06-29,
2018-08-22
S945
A
2095-9869(2019)05-0134-11
10.19663/j.issn2095-9869.20180629001
http://www.yykxjz.cn/
孫靜, 萬曉媛, 楊倩, 謝國(guó)駟, 董宣, 黃倢. 病例研究:未知病因的凡納濱對(duì)蝦溞狀幼體的病原和微生物組分析. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(5): 134–144
Sun J, Wan XY, Yang Q, Xie GS, Dong X, Huang J. Case studies: Pathogenic agent and microbiome analysis for zoea ofsuffering from an unknown disease. Progress in Fishery Sciences, 2019, 40(5): 134–144
(編輯 馬璀艷)