李長明 王傳奎 魏利勝 陸華才
(1.安徽工程大學(xué)電氣工程學(xué)院 安徽蕪湖 241000;2.中國質(zhì)量認(rèn)證中心南京分中心 江蘇南京 210019)
近年來,由于稀土元素的廣泛應(yīng)用,永磁材料不斷更新,以釹鐵硼(NdFeB)材料加工而成的永磁體展現(xiàn)出很高的性能,這使得永磁類電機得到了迅速的發(fā)展,其中最為突出的是運行相對更為可靠、效率更高、體積更小的永磁同步電機(PMSM)。而且,永磁同步電機能夠在數(shù)字控制系統(tǒng)中實現(xiàn)更高性能的速度和位置控制,這得益于矢量控制和空間矢量脈寬調(diào)制這些先進(jìn)方法的應(yīng)用。目前,PMSM廣泛應(yīng)用于新能源汽車、加工制造業(yè)和冶金等領(lǐng)域,并且具有很好的發(fā)展前景[1]。
為了使整個PMSM控制系統(tǒng)穩(wěn)定運行,需要實時調(diào)節(jié)轉(zhuǎn)子的速度和位置,一般的方法是在電機轉(zhuǎn)子的軸上安裝位置傳感器,其作用是實現(xiàn)轉(zhuǎn)子轉(zhuǎn)速和位置的閉環(huán)控制。利用光電轉(zhuǎn)換原理的光電編碼器和能夠?qū)⑽灰妻D(zhuǎn)換為電信號的旋轉(zhuǎn)變壓器是比較常用的位置傳感器,它們具有相對較高的測量精度,但與此同時這些傳感器的成本相對較高,硬件電路復(fù)雜,具有大量的接口和電纜,這使得它在實際應(yīng)用時存在著的很多難以避免的問題[2]。
在過去40多年的時間里,很多國內(nèi)外的研究學(xué)者為了解決這些問題做了大量的研究,提出了多種無位置/速度傳感器控制方法應(yīng)用于交流電機。無位置傳感器控制方法可以分為工作在閾值轉(zhuǎn)速之上和工作在零速及低速條件下兩類位置估算方法,兩類方法在一定條件下都有較好的效果[3]。
但是就目前的研究現(xiàn)狀來看,以上兩類估算方法因為其方法的限制使得目前還無法實現(xiàn)兼顧成本和性能的目標(biāo)。因此,要使得PMSM在整個速度范圍內(nèi)都能穩(wěn)定運行,并且具有較好的抗擾動性能,那位置傳感器至關(guān)重要。因此人們設(shè)計出一種構(gòu)造相對簡單的低分辨率位置傳感器,文獻(xiàn)[4]、[5]詳細(xì)對低分辨率進(jìn)行了介紹,這種位置傳感器在永磁同步電機驅(qū)動系統(tǒng)中的應(yīng)用,既能保證電機的運行性能,又能很大程度降低控制系統(tǒng)成本。其中最為典型的就是Hall位置傳感器,它不再有大量接口與電纜,簡單輕巧,具有很好的抗性,堅固耐用。Hall位置傳感器又分為開關(guān)型和線性兩種類型,以開關(guān)型Hall位置傳感器為例,它在一個電周期內(nèi)只能提供六個準(zhǔn)確位置信息,這就造成了無法對轉(zhuǎn)子的位置做精確的定位。所以,需要以這六個離散的Hall 位置信號為基礎(chǔ),通過有效的方法來得到高精度的轉(zhuǎn)子位置信息,這也是Hall位置傳感器最需要解決的問題,只有提高了傳感器的測量精度,才能實現(xiàn)低成本并且提高系統(tǒng)控制性能及運行的可靠性,因此,無論從其理論研究意義還是其工程應(yīng)用價值來看都具有很大的重要性。文獻(xiàn)[6]介紹了Hall位置傳感器在輪轂電機等領(lǐng)域的應(yīng)用,有不錯的效果。但目前已有的一些估計方法,例如引用平均速度和平均加速度的方法雖然能在電機轉(zhuǎn)速平穩(wěn)狀態(tài)下有效估算轉(zhuǎn)子位置,但當(dāng)轉(zhuǎn)速變換迅速時,將會使得估算數(shù)據(jù)出現(xiàn)大量噪聲,對估算結(jié)果造成很大影響,文獻(xiàn)[7]、[8]對基于平均速度以及平均加速度等估算方案進(jìn)行分析比較。在文獻(xiàn)[9]和[10]中作者將在數(shù)據(jù)處理上具有很好效果的卡爾曼濾波原理應(yīng)用在交流電機系統(tǒng)中,對整個系統(tǒng)的控制起到很好的作用,因此,本文提出利用卡爾曼濾波的方法除估算數(shù)據(jù)里面的噪聲干擾,使得估算結(jié)果更加貼近真實值。
直流電機作為應(yīng)用比較成熟的電機類型,其具有電樞電流和勵磁電流相互垂直、沒有耦合以及可以獨立控制的特點,使得其控制比較方便。矢量控制就是借鑒直流電機的這些特點以坐標(biāo)變換理論為基礎(chǔ),通過控制電機定子電流在同步旋轉(zhuǎn)坐標(biāo)系中大小和方向,來對直軸和交軸分量進(jìn)行解耦,從而實現(xiàn)磁場和轉(zhuǎn)矩的解耦控制,這就使交流電機的控制性能具有類似直流電機控制性能的特點??刂葡到y(tǒng)中,坐標(biāo)變換是核心,采用的坐標(biāo)變換通常包括靜止坐標(biāo)變換(Clark 變換)和同步旋轉(zhuǎn)坐標(biāo)變換(Park 變換),它們之間的坐標(biāo)關(guān)系如圖1所示。
圖1 各坐標(biāo)系之間的關(guān)系
傳統(tǒng)矢量控制如圖2所示,系統(tǒng)采用雙閉環(huán)控制,其中主要包括三個部分:轉(zhuǎn)速環(huán)PI 調(diào)節(jié)器、電流環(huán)PI 調(diào)節(jié)器和SVPWM 算法。首先通過電機的等效電路來得出一系列磁鏈方程,通過3s/2r變換,將自然坐標(biāo)系變換到同步旋轉(zhuǎn)坐標(biāo)系d-q,其中d、q分別為直軸和交軸,相差90°,然后通過計算磁鏈方程,產(chǎn)生單位矢量來得到旋轉(zhuǎn)坐標(biāo)系下的轉(zhuǎn)矩、磁場電流分量,這些電流分量與直流電機相類似,也就是說,在此d-q軸系內(nèi)亦將PMSM等效為一臺他勵直流電動機,交軸電流iq就相當(dāng)于直流電機的電樞電流,這樣就實現(xiàn)了對復(fù)雜的交流電機控制系統(tǒng)的解耦,化繁為簡,使系統(tǒng)的響應(yīng)速度變的更快。最后對iq的控制還要通過控制三相電流才能得以實現(xiàn),因此需再通過2r/3s坐標(biāo)變換,得到控制電機的三相交流電,這樣就使系統(tǒng)獲得更好的性能。
圖2 傳統(tǒng)PMSM矢量控制框圖
本文采用的是基于霍爾原理的低精度位置傳感器,由于它相對成本昂貴、結(jié)構(gòu)復(fù)雜的旋轉(zhuǎn)變壓器以及光電編碼器等高精度位置傳感器具有安裝簡單、成本低、體積小且對工作環(huán)境抗性較高等優(yōu)點,因此得到廣泛應(yīng)用。
由于永磁同步電機是由正弦波所驅(qū)動的,它不能被低分辨率傳感器檢測的精準(zhǔn)離散信號直接獲得,所以需要通過低分辨率傳感器檢測離散位置信號,并經(jīng)過適當(dāng)?shù)墓浪銇淼玫竭m合電機正常運轉(zhuǎn)的位置以及速度的大小。
因為電機機械時間常數(shù)與電氣時間常數(shù)差別很大,前者遠(yuǎn)大于后者,所以就可認(rèn)為在任意某個扇區(qū)內(nèi),電機的轉(zhuǎn)速保持不變或者只有很小程度的改變,并且認(rèn)為相鄰兩個扇區(qū)的速度同樣變化較小,這里就可以引用平均速度的概念,計算上一個扇區(qū)的平均速度,它的值近似等于當(dāng)前所在扇區(qū)的平均速度,并以此來估算當(dāng)前扇區(qū)轉(zhuǎn)子的位置。
這種利用平均速度來估算位置的方法雖然可行,但是適應(yīng)范圍卻很狹窄,只有當(dāng)電機平穩(wěn)運行的時候才有好的效果,當(dāng)電機加、減速的時候,速度的快速變化使得位置估算存在很大的誤差,為了應(yīng)對電機的快節(jié)奏,因此引入了平均加速度的計算,在平均速度的基礎(chǔ)上考慮當(dāng)前扇區(qū)的加速度的大小,以此來適應(yīng)速度的變化。根據(jù)平均速度認(rèn)為每個扇區(qū)的加速的大小不變,這也就意味著可以求得扇區(qū)中心時刻順時速度來求出這個扇區(qū)的平均速度,以此可以得到平均速度以及兩個扇區(qū)的平均加速度為:
式中 ωn-1、ωn-2分別為轉(zhuǎn)子在位置 θn-1到θn、θn-1到θn-2的平均速度,Tn-1、Tn-2為經(jīng)過前兩個扇區(qū)的時間。計算出當(dāng)前扇區(qū)起始速度為:
因為當(dāng)前扇區(qū)的加速度近似等于前面兩個扇區(qū)的加速度的平均數(shù),所以可以通過求得的當(dāng)前扇區(qū)的加速度來得出當(dāng)前扇區(qū)內(nèi)轉(zhuǎn)子的速度和位置大?。?/p>
按照此估算方法得出Matlab仿真系統(tǒng)如圖3所示。
圖3 平均加速度位置估算模塊
卡爾曼濾波是一種利用線性狀態(tài)方程,通過系統(tǒng)輸入輸出觀測數(shù)據(jù)來還原真實數(shù)據(jù)的一種先進(jìn)方法,卡爾曼(Kalman)濾波器是用于時變線性系統(tǒng)的遞歸濾波器。它將過去的測量估計誤差合并到新的測量誤差中來估計將來的誤差,系統(tǒng)可用包含正交狀態(tài)變量的微分方程模型來描述。實質(zhì)上就是利用量測值來對系統(tǒng)的狀態(tài)向量進(jìn)行重新構(gòu)成,并以線性最小方差估計(LMMSE)作為遵循的準(zhǔn)則。它首先對數(shù)據(jù)進(jìn)行預(yù)測,然后實測,最后再加以修正,并以此方式不斷循環(huán)下去,根據(jù)系統(tǒng)的量測值來消除混入了系統(tǒng)使整個系統(tǒng)的數(shù)據(jù)變得渾濁的隨機干擾,還原系統(tǒng)的原始面貌。因此,通過利用卡爾曼濾波技術(shù)可以有效地對信號中夾雜的噪聲干擾進(jìn)行濾除,凈化系統(tǒng),得到更加貼近真實值的估算結(jié)果。
卡爾曼濾波原理主要歸納為五個基本的公式,分為預(yù)測和校正兩個部分,整個遞推簡易流程如圖4所示。
圖4 Kalman濾波原理流程圖
首先針對系統(tǒng):
式(6)、(7)分別為系統(tǒng)狀態(tài)方程和測量方程,W是狀態(tài)預(yù)測的噪聲,V是測量的噪聲。通過采取不一樣的方式去獲得同一個目標(biāo)值,這個目標(biāo)值的大小不是絕對的相同,以此來進(jìn)行校正并預(yù)測。于是得到三個值,分別是測量值Zk、上一次綜合預(yù)測值和測量值得到的最優(yōu)值以及對上一次最優(yōu)值通過狀態(tài)方程預(yù)測的下一個結(jié)果。狀態(tài)預(yù)測方程為:
式中“^”表示估計量,下標(biāo)k/k-1表示根據(jù)k-1時刻對k時刻做出的預(yù)測??柭鼮V波通過分配權(quán)重的方式綜合測量值和預(yù)測值的大小來得到一個最優(yōu)值,綜合預(yù)測值和測量值的最優(yōu)解為Xk/k=Xk/k-1+Kk( Zk-HXk/k-1),式中的K就是綜合方法的權(quán)重,稱為卡爾曼增益(Kalman gain),是整個方法中至關(guān)重要的一環(huán),為確定K的大小,需要讓估計值Xk/k與真實值Xk的均方誤差達(dá)到最小,此時的K值即為正確解,才能求得最優(yōu)估計。求均方誤差最小,需要通過求估計值Xk/k與真實值Xk的協(xié)方差矩陣,這樣得到關(guān)于K的矩陣等式,然后通過矩陣跡的性質(zhì)對跡tr進(jìn)行求導(dǎo)計算,一直到求導(dǎo)結(jié)果等于零,此時通過簡單變化即可得到K的值。
這一系列復(fù)雜的計算即得到基本公式如下:
其中T表示轉(zhuǎn)置運算,Pk/k狀態(tài)估計均方誤差,Pk/k-1是狀態(tài)預(yù)測均方誤差,其具體公式推導(dǎo)如圖5所示。
圖5 Kalman濾波公式推導(dǎo)
本文正是利用Kalman濾波器對信號里存在的噪聲的有效濾除的原理,對PMSM轉(zhuǎn)子位置估算模塊估計的估算信號進(jìn)行處理,去除噪聲,還原信號本來面目。
實現(xiàn)去燥處理,首先需要得到轉(zhuǎn)子信號狀態(tài)方程,在轉(zhuǎn)子磁場定向dq 坐標(biāo)系下,根據(jù)表面貼式永磁同步電機的定子電壓方程和機械運動方程,以定子dq軸電流、轉(zhuǎn)速、轉(zhuǎn)子位置和負(fù)載轉(zhuǎn)矩為狀態(tài)變量。
表貼式三相PMSM在同步旋轉(zhuǎn)坐標(biāo)系下的電壓方程為:
將上式變換為電流方程,可得:
其機械運動方程為
考慮到如下關(guān)系式:
其中,ud、uq、Id、Iq分別為電機dq軸電壓電流,Ls為定子繞組電感,R為繞組電阻,ωe為電角速度,θe轉(zhuǎn)子電角度,ψf為磁鏈幅值,p為極對數(shù),TL為負(fù)載轉(zhuǎn)矩,一般情況下負(fù)載轉(zhuǎn)矩特性未知,近似認(rèn)為負(fù)載轉(zhuǎn)矩的變化速度較慢,其導(dǎo)數(shù)為零。因此,轉(zhuǎn)子信號狀態(tài)方程為:
式中W表示輸入噪聲(系統(tǒng)噪聲),V表示輸出噪聲(測量噪聲),噪聲一般為平穩(wěn)的高斯白噪聲,平均值為零。即:
其中,Ε{ }表示數(shù)字期望值。
得到信號狀態(tài)方程之后,即通過上面介紹的卡爾曼濾波公式推導(dǎo)對得到的轉(zhuǎn)子位置信號進(jìn)行去燥處理,恢復(fù)位置信號。
在Matlab的simulink環(huán)境下,利用Simpowersystem豐富的模塊庫,在傳統(tǒng)PMSM位置估算模型上,根據(jù)以上分析建立了基于Kalman濾波的永磁同步電機轉(zhuǎn)子位置估算仿真模型,如圖6所示,其中電機轉(zhuǎn)速設(shè)定為Nref=1000r/min。
通過實驗,得出仿真圖,圖7、8 分別表示的是傳統(tǒng)平均加速度法得出的速度仿真曲線以及轉(zhuǎn)子實際位置與估計位置之間的差值曲線。圖9、10表示的是利用Kalman濾波器原理改進(jìn)仿真得出的速度仿真曲線以及轉(zhuǎn)子實際位置與估計位置之間的差值誤差曲線。從圖中不難看出傳統(tǒng)平均加速度法估算方法雖然很大程度上接近轉(zhuǎn)子實際狀態(tài),但是當(dāng)電機速度變化較快時存在很大噪聲干擾,嚴(yán)重影響估算的準(zhǔn)確性,在添加Kalman濾波器之后很大程度上削弱了噪聲的干擾,使得估算模塊在原有基礎(chǔ)上能夠更好的適應(yīng)速度變化快的情況。
圖6 結(jié)合Kalman濾波器構(gòu)造的位置估算仿真模型
圖7 實際速度與估計速度對比
圖8 實際位置與估計位置的誤差
圖9 實際速度與估算速度對比
圖10 實際位置與估計位置的誤差
本文對利用低分辨率Hall 位置傳感器的新能源汽車PMSM矢量控制系統(tǒng)進(jìn)行了研究。首先,對永磁同步電機矢量控制方法以及傳統(tǒng)基于平均加速的轉(zhuǎn)子位置估算方法進(jìn)行分析,然后對平均加速度法估算轉(zhuǎn)子位置在電機速度變化快時噪聲干擾大的情況,提出了利用Kalman濾波器原理對系統(tǒng)信號進(jìn)行降噪處理,在原有估算方法上進(jìn)行改進(jìn)。通過Matlab實驗結(jié)果分析,相比于傳統(tǒng)的平均加速度估算方法,該方法能夠很好的濾除噪聲干擾,使得估算結(jié)果更加貼近真實值。