崔建梅,郭燕蘭,李中華,楊 潔,于 芳,李洪濤,蘇曉云
跑臺運動對慢性睡眠剝奪大鼠行為學(xué)改變、海馬炎癥因子及海馬齒狀回BDNF/TrkB信號通路的影響
崔建梅1*,郭燕蘭1,李中華1,楊 潔1,于 芳1,李洪濤2,蘇曉云3
(1.中北大學(xué) 體育學(xué)院,山西 太原 030051;2.山西省體育科學(xué)研究所,山西 太原 030051;3.山西醫(yī)科大學(xué) 汾陽學(xué)院,山西 太原 030001)
:研究認為,體育運動可以改善慢性睡眠缺失引起的認知功能下降和情緒障礙,海馬DG區(qū)在學(xué)習(xí)、記憶和空間編碼中起著關(guān)鍵作用,并且對睡眠缺失高度敏感。因此本研究主要通過測量8周跑臺運動對慢性睡眠剝奪(chronic sleep deprivation,CSD)大鼠海馬炎癥因子(IL-6及TNF-a)水平和海馬DG區(qū)BDNF及TrkB表達的影響,探討跑臺運動改善CSD大鼠認知功能及焦慮樣行為的可能機制。:將44只大鼠隨機分為對照組(SG)、運動組(EX)、慢性睡眠剝奪組(CSD)和睡眠剝奪運動組(CSD+E)。隨后,CSD和CSD+E組大鼠采用多平臺水環(huán)境法制作CSD模型,同時,EX 和CSD+E組大鼠進行8周中等強度跑臺運動(1 h/day/6 d/week)。跑臺運動及CSD結(jié)束后,采用高架迷宮實驗(EPM)評估大鼠焦慮樣行為,八臂迷宮實驗(ERM)評估大鼠空間學(xué)習(xí)記憶能力;除外,海馬炎癥因子(IL-6、TNF-a)水平及海馬DG區(qū)BDNF及其受體TrkB表達被測量。:1)與SG組比較,ERM 實驗中,CSD組大鼠錯誤潛伏期縮短,訓(xùn)練達到標準次數(shù)及TM顯著增多(均<0.01)、CN減少(<0.05);EPM實驗中,CSD組大鼠ORT、ORE均顯著減少,焦慮指數(shù)顯著增加(均<0.01);海馬促炎因子IL-6及TNF-a水平顯著增加(均<0.01);海馬DG區(qū)BDNF及TrkB表達顯著降低(均<0.01);2)8周跑臺運動顯著削弱了大鼠焦慮樣行為,阻止了大鼠空間學(xué)習(xí)記憶能力的下降,海馬促炎因子IL-6及TNF-a水平明顯下降(<0.05,<0.01),海馬DG區(qū)BDNF及TrkB表達均顯著增強(<0.05,<0.01)。:中等強度跑臺運動可以增強CSD大鼠學(xué)習(xí)記憶能力,削弱大鼠焦慮樣行為,可能與此運動減弱海馬炎癥反應(yīng)、增加海馬DG區(qū)BDNF及其受體TrkB表達,從而增強BDNF/TrkB信號通路對CSD大鼠海馬的神經(jīng)保護作用有關(guān)。
跑臺運動;慢性睡眠剝奪;學(xué)習(xí)記憶能力;焦慮樣行為;海馬炎癥因子;BDNF/TrkB通路
隨著社會競爭日趨激烈,個人工作時間越來越長,約19%的成年人每周工作超過48 h,7%的成人每周工作超過60 h(Alterman et al.,2013)。因此,由于職業(yè)和社會的需要,長期的睡眠缺失在現(xiàn)代社會變得越來越普遍。WHO估計,全世界有3億多成年人患有睡眠障礙(每天睡眠少于6 h),其中30%~50%的睡眠障礙患者與社會壓力和神經(jīng)精神障礙直接相關(guān)。眾所周知,睡眠在大腦發(fā)育、突觸可塑性及神經(jīng)恢復(fù)方面起重要作用,并且睡眠不足或睡眠障礙會對心理造成負面影響、引起神經(jīng)發(fā)生減少、認知功能下降(包括注意力、決策和各種類型的記憶)及免疫功能紊亂(Krishnan et al.,2016)。此外,長期睡眠不足被認為是各種疾?。ㄈ缇窦膊。┑奈kU因素,甚至可能在幾個月或幾年的時間內(nèi)造成致命后果(Besedovsky et al.,2016)。Alzoubi等(2017)通過行為學(xué)實驗證實,急性及慢性睡眠剝奪會使嚙齒動物在一些行為任務(wù)中產(chǎn)生記憶缺陷。此外,臨床及動物實驗均表明長期睡眠不足會導(dǎo)致人類病態(tài)焦慮及動物類焦慮行為。因此,慢性睡眠剝奪與焦慮之間的關(guān)系需深入研究。
越來越多的證據(jù)表明,睡眠剝奪會導(dǎo)致機體免疫系統(tǒng)功能紊亂和炎癥反應(yīng)過度激活。Hurtado-Alvarado等(2013)研究表明,IL-l、IL-6及TNF-a等細胞因子均參與睡眠覺醒的調(diào)節(jié)過程,而睡眠不足會增加炎癥反應(yīng)細胞因子的分泌。Yehuda等(2009)研究認為,72 h睡眠剝奪可使大鼠血清中TNF-a、IL-6、IL-1和IL-1b水平升高;Lekander等(2013)研究發(fā)現(xiàn),急性睡眠不足可激活HPA軸從而增強外周促炎細胞因子IL-6和TNF-a水平,并且睡眠障礙也被報道可以升高海馬IL-6水平,導(dǎo)致認知功能下降。上述研究證實急性睡眠剝奪和神經(jīng)炎癥因子及神經(jīng)功能紊亂之間的聯(lián)系,但是慢性睡眠不足是否會導(dǎo)致與急性睡眠不足同樣程度的大腦炎癥損害還有待研究。
海馬是與認知功能及情緒調(diào)節(jié)有關(guān)的大腦區(qū)域。研究認為,海馬DG(dentate gyrus)區(qū)在學(xué)習(xí)、記憶和空間編碼中起著關(guān)鍵作用,DG區(qū)損傷會導(dǎo)致空間學(xué)習(xí)障礙(Aimone et al.,2011)。Marks等(2005)研究發(fā)現(xiàn),即使是短時間(3~4 h)的急性睡眠剝奪也可以損害海馬DG區(qū)LTP的形成,因此海馬DG區(qū)對睡眠缺失高度敏感,并且研究認為海馬DG區(qū)新生神經(jīng)元對睡眠剝奪導(dǎo)致的神經(jīng)炎癥較為敏感,可增加新生神經(jīng)元的死亡率,并阻礙其整合到海馬回路(Monje et al.,2003)。而且臨床研究證實,睡眠剝奪被證明可以減少DG區(qū)細胞增殖及神經(jīng)發(fā)生導(dǎo)致DG區(qū)萎縮與慢性原發(fā)性失眠患者認知功能受損有關(guān)(Kline et al.,2016)。多數(shù)學(xué)者研究認為,腦源性神經(jīng)營養(yǎng)因子(BDNF)與海馬細胞增殖和/或神經(jīng)發(fā)生有關(guān)(Abrous et al.,2005),其活性主要由其受體酪氨酸激酶B(Tyrosine kinase B,TrkB)介導(dǎo),可調(diào)節(jié)局部炎癥和睡眠,并且海馬長時程增強(LTP)是由BDNF/TrkB信號通路誘導(dǎo)的,結(jié)果提示BDNF信號通路是參與學(xué)習(xí)記憶細胞機制的關(guān)鍵組成部分(Chen et al.,2017)。Zielinski等(2011)研究認為促炎因子白細胞介素-1(IL-1)和腫瘤壞死因子(TNF-a)升高及BDNF/TrkB信號通路功能障礙與睡眠缺失導(dǎo)致的認知功能下降有關(guān)。因此可以認為,慢性睡眠剝奪大鼠焦慮及認知功能受損可能與海馬神經(jīng)炎癥及海馬DG區(qū)BDNF/TrkB信號通路有關(guān)。
臨床與動物實驗均證實,體育鍛煉具有增強認知功能和學(xué)習(xí)記憶能力的作用(Rimes et al.,2015)。然而,運動的抗焦慮作用結(jié)論不一,Lalanza等(2012)研究認為,跑臺運動會加劇睡眠剝奪大鼠的焦慮行為,最近多數(shù)研究表明,運動預(yù)干預(yù)可以防止嚙齒動物因急性睡眠不足而產(chǎn)生的焦慮行為(Vollert et al.,2011)。本課題組前期研究也已證實,4周跑臺運動預(yù)干預(yù)可以通過增強睡眠剝奪大鼠杏仁核BDNF表達及抗氧化能力,改善睡眠剝奪大鼠學(xué)習(xí)記憶能力及焦慮樣行為(崔建梅 等,2016)。但是,以前的研究很少涉及中等強度跑臺運動對慢性睡眠剝奪大鼠焦慮及認知功能的影響。因此,本研究通過復(fù)制大鼠慢性睡眠剝奪(chronic sleep deprivation,CSD)模型,探討8周中等強度跑臺運動對CSD大鼠空間學(xué)習(xí)記憶能力及焦慮樣行為的影響,及確定這些影響是否與海馬炎癥因子(IL-6,TNF-a)和海馬DG區(qū)BDNF及其受體TrkB表達有關(guān)。
2月齡SD雄性大鼠44只,體質(zhì)量(200~220)g,被放在標準鼠籠中飼養(yǎng)(3只/籠),室溫(24±2)℃,濕度(55±10)%, 光暗周期為12 h光照/12 h黑暗,大鼠可自由攝食、飲水。實驗前將大鼠隨機分為對照組(sedentary group,SG)、運動組(exercise group,EX)、慢性睡眠剝奪組(chronic sleep deprived group,CSD)和睡眠剝奪運動組(chronic sleep deprived group with exercise group,CSD+E)。
適應(yīng)實驗室環(huán)境1周后,CSD組及CSD+E組大鼠根據(jù) Alzoubi等(2016)學(xué)者采用的多平臺水環(huán)境法制作大鼠CSD模型。每天睡眠剝奪18 h(每天中午12:00至次日早上6:00時),持續(xù)8周。具體方法如下:大鼠被放在一個大玻璃缸(170 cm×40 cm×55 cm),20個直徑5 cm的小平臺(置于水平面上2 cm、水溫24℃)、間隔7 cm,排成2排放置在玻璃缸中,并且大鼠在平臺上可自由攝食飲水。當大鼠進入REM階段時,就會出現(xiàn)肌肉張力失調(diào)導(dǎo)致大鼠觸水驚醒。CSD前大鼠需適應(yīng)水環(huán)境平臺3天(1 h/天)。
EX及CSD+E組大鼠實施跑臺運動8周,跑臺訓(xùn)練時大鼠跑速(18~21)m/min,5% 坡度運動8周(60 min/ 天/6天/周,每周一到周六),每周日允許大鼠休息1天(Zielinski et al.,2013)。
1.4.1 高架迷宮(elevated-plus maze,EPM )測試
跑臺運動結(jié)束后第2天,根據(jù)Mazor等(2009)描述的EPM實驗評估大鼠的焦慮樣行為。EPM(距離地面50 cm)包括兩個開放臂和兩個閉合臂,一中央平臺連接4臂。正式實驗時,大鼠被面對開放臂放置在迷宮中央,自由探索迷宮5 min。
測試指標:開放臂時間(open arm time,ORT)及閉合臂時間(close arm time,CRT);開放臂次數(shù)(open arm entries,ORE)及閉合臂次數(shù)(close arm entries,CRE);焦慮指數(shù):1-[(ORT/ORT+CRT) + (ORE/ORE+CRE)]×%,比值越大,表明焦慮程度越嚴重。
1.4.2 八臂迷宮測試(eight arm maze test,ERM)
所有大鼠在第9周周一進行ERM實驗,實驗前大鼠被放置在迷宮中適應(yīng)2天。第1天,將(3~4)只大鼠同時放在迷宮中央,通向八臂的門均打開,大鼠自由活動;第2天八臂末端均放置食物,允許大鼠自由活動及攝食,所有食物攝取完畢后結(jié)束;第3天進行訓(xùn)練(2次/天)。每次訓(xùn)練時,只有1、2、5、7號臂放置餌料,整個實驗過程均維持此順序。訓(xùn)練成功標準:在連續(xù)3次訓(xùn)練中,錯誤次數(shù)少于2次,為訓(xùn)練成功。正式測試時,大鼠置于迷宮中央?yún)^(qū),關(guān)住鼠門,20 s后打開鼠門并開啟八臂迷宮測試軟件,測試時間10 min。
測試指標包括:總記憶錯誤次數(shù)(參考記憶錯誤次數(shù)+工作記憶錯誤次數(shù),total memory errors,TM)、錯誤潛伏期(s)、訓(xùn)練達到標準次數(shù)及大鼠第一次錯誤前正確次數(shù)(correct numbers,CN)。
ERM實驗結(jié)束后,將每組6只大鼠斷頭取腦后,冰上剝離海馬組織并稱重,加入生理鹽水制成10%海馬組織勻漿,離心(12 000 rpm/min,10 min)后取上清液,參照試劑盒說明(購買于美國Abcam公司)采用ELISA法檢測海馬炎癥因子IL-6及TNF-a水平。
ERM實驗結(jié)束后,每組剩余大鼠經(jīng)水合氯醛(150 mg/ kg)麻醉后4%多聚甲醛150ml經(jīng)心臟灌注取腦,石蠟包埋腦組織行海馬DG區(qū)冠狀位切片(5 μm),將切片置于烘烤箱內(nèi)烘烤2 h,隨后經(jīng)二甲苯脫蠟(10 min)、乙醇水化后加H2O2(3%)的甲醇溶液室溫孵育30 min,PBS漂洗后滴加BDNF(1:00)、TrkB(1:2000)一抗4℃過夜,滴加BDNF及TrkB二抗,在37℃恒溫箱內(nèi)孵育30 min,顯色劑顯色10 min,蘇木素復(fù)染,梯度酒精脫水(50%、80%、90%、95%、100%乙醇各5 min),二甲苯透明(20 min),中性樹脂封片。
光學(xué)顯微鏡下每組每張切片隨機取5個視野(400 倍)拍片,測量大鼠海馬DG區(qū)BDNF及TrkB陽性細胞數(shù)量(number)及面積(μm2)。
數(shù)據(jù)統(tǒng)計應(yīng)用SPSS 18.0軟件,數(shù)據(jù)結(jié)果用±表示,CSD和跑臺運動對大鼠行為學(xué)數(shù)據(jù)及海馬炎癥因子和海馬DG區(qū)BDNF及TrkB表達的影響采用雙因素方差(Two Way ANOVA)分析,組間差異比較采用LSD post hoc法,<0.05表示差異具有統(tǒng)計學(xué)意義。
圖1 實驗流程
Figure 1. Protocols of the Experimental
雙因素方差分析顯示慢性睡眠剝奪和跑臺運動顯著影響了大鼠EPM實驗中ORT(F1,43=28.627,=0.000;F1,43=9.420,=0.004)、ORE(F1,43=55.215,=0.000;F1,43=8.834,=0.005)及焦慮指數(shù)(F1,43=69.773,=0.000;F1,43=28.969,=0.000)。運動和慢性睡眠剝奪對ORE(F1,43=7.423,=0.010)和焦慮指數(shù)均有顯著交互效應(yīng)(F1,43=6.061,=0.018),但對ORT無顯著交互相應(yīng)(F1,43=0.028,=0.050)。
表1結(jié)果顯示,與SG組比較,CSD組大鼠EPM實驗中ORT、ORE均明顯減少(=0.000,=0.003),焦慮指數(shù)顯著增加(=0.000);而經(jīng)過8周跑臺運動,CSD運動組大鼠與CSD組大鼠比較,ORT顯著增加(=0.028),焦慮指數(shù)顯著下降(=0.045),而ORE無顯著改變(=0.862);而與SG組比較,EX組大鼠ORT、ORE均明顯增加(=0.047,=0.000),焦慮指數(shù)顯著下降(=0.000)。
表1 各組大鼠高架迷宮實驗中開放臂時間、次數(shù)及焦慮指數(shù)結(jié)果
注:##<0.01,#<0.05,vs SG group;*<0.05,CSD+E vs CSD group。
雙因素方差分析顯示,CSD和跑臺運動顯著影響了大鼠ERM實驗中訓(xùn)練達到標準次數(shù)(F1,43=55.442,=0.000;F1,43=25.442,=0.000)、錯誤潛伏期(F1,43=43.222,=0.000;F1,43=10.550,=0.002)、第一次錯誤前正確次數(shù)(F1,43=21.316,=0.000;F1,43=5.329,=0.026)及總錯誤次數(shù)(F1,43=121.121,=0.000;F1,43=5.981,=0.019);運動和慢性睡眠剝奪除對訓(xùn)練達到標準次數(shù)具有交互效應(yīng)外(F1,43=9.750,=0.003),錯誤潛伏期(F1,43=1.591,=0.215)、第一次錯誤前正確次數(shù)(F1,43=0.592,=0.446)及總錯誤次數(shù)(F1,43=1.495,=0.229)均無顯著交互效應(yīng)。
圖2顯示,與SG組比較,CSD組大鼠訓(xùn)練達到標準次數(shù)(15.72±2.28次)及TM(6.19±1.16次)顯著增多(=0.000,=0.003)、錯誤潛伏期(302.37±42.22 s)縮短(=0.003)、第一次錯誤前正確次數(shù)(3.18±0.98次)減少(=0.035);而經(jīng)過8周跑臺運動,與CSD組大鼠比較,CSD運動組大鼠達到標準次數(shù)(11.09±1.92次)及TM(5.09±0.94次)顯著減少(均=0.000)、錯誤潛伏期(357.45±46.25 s)顯著延長(=0.000)、第一次錯誤前正確次數(shù)(4.27±1.10次)增多(=0.000);與SG組比較,EX組大鼠訓(xùn)練達到標準次數(shù)及TM顯著減少(=0.045,=0.039),其它指標均無顯著差異(均>0.05)。
Figure 2. Results of the Numbers of Achieving Training Standard, Correct Numbers before First Error, Total Memory Errors and the Latency of Memory Error after 8-week Treadmill Exercise or CSD Treatment among SG, EX, CSD and CSD+E Groups
注:##<0.01,<0.05,vs SG group;**<0.01,CSD+E vs CSD group。
雙因素方差分析顯示慢性睡眠剝奪和跑臺運動顯著影響了海馬促炎因子IL-6(F1,43=6.827,=0.017)及TNF-a水平(F1,43=91.792,=0.000),然而運動和慢性睡眠剝奪對IL-6及TNF-a均無交互效應(yīng)(F1,43=0.010,=0.922;F1,43=1.117,=0.303)。
表2 各組大鼠海馬炎癥因子TNF-a及IL-6結(jié)果
注:##<0.01,#<0.05,vs SG group;**<0.01,*<0.05,CSD+E vs CSD group。
與對照組比較,CSD組大鼠海馬促炎因子IL-6及TNF-a水平明顯增加(=0.003,=0.000);而經(jīng)過8周跑臺運動,與CSD組大鼠比較,CSD運動組大鼠海馬促炎因子IL-6及TNF-a水平顯著減少(=0.039,=0.000);與對照組比較,運動組海馬促炎因子IL-6及TNF-a水平顯著下降(=0.046,=0.000)。
雙因素方差分析顯示,慢性睡眠剝奪和跑臺運動顯著影響了海馬DG區(qū)BDNF個數(shù)(F1,39=111.962,=0.000;F1,39=51.621,=0.000)及面積(F1,39=120.822,=0.000;F1,39=53.980,=0.000),然而運動和慢性睡眠剝奪對海馬DG區(qū)BDNF個數(shù)及面積均無交互效應(yīng)(F1,39=1.382,=0.247;F1,39=1.118,=0.297)。
圖3和圖6顯示,與對照組比較,CSD組大鼠海馬DG區(qū)BDNF個數(shù)(8.18±1.16個)及面積(901.58±124.81μm2)均明顯減少(均=0.000),減少幅度分別為33.33%及33.72%;而經(jīng)過8周跑臺運動,與CSD組大鼠比較,CSD運動組大鼠海馬DG區(qū)BDNF個數(shù)(11.09±1.22個)及面積(1221.64±139.59μm2)均明顯增加(均=0.000),增加幅度為26.24%、26.19%;與對照組比較,運動組大鼠海馬DG區(qū)BDNF個數(shù)(14.36±1.28個)及面積(1599.98±134.62μm2)均明顯增加(均=0.000),增加幅度分別為17.03%、17.61%。
圖3 對照組(SG)、運動組(EX)、CSD組及CSD運動組(CSD+E)大鼠海馬DG區(qū)BDNF比較
Figure 3. Results of BDNF Expression in Hippocampus DG among SG, EX, CSD and CSD+E Groups
注:##<0.01,<0.05,vs SG group;**<0.01,*<0.05,CSD+E vs CSD group。
雙因素方差分析顯示,CSD明顯影響了海馬DG區(qū)TrkB個數(shù)(F1,39=64.167,=0.000)及面積(F1,39=58.005,=0.000),而運動顯著影響了海馬DG區(qū)TrkB個數(shù)(F1,39=4.804,=0.035),對TrkB面積(F1,39=3.346,=0.076)無明顯影響,并且運動和慢性睡眠剝奪對海馬DG區(qū)BDNF個數(shù)及面積均無交互效應(yīng)(F1,39=2.775,=0.104;F1,39=1.121,=0.297)。
圖4和圖7顯示,與對照組比較,CSD組大鼠海馬DG區(qū)TrkB個數(shù)(7.10±0.99個)及面積(883.28±119.71μm2)均明顯減少(均=0.000),減少幅度分別為40.83%及38.45%;而經(jīng)過8周跑臺運動,與CSD組大鼠比較,CSD運動組大鼠海馬DG區(qū)TrkB個數(shù)(9.30±1.94個)及面積(1074.49±223.62μm2)均明顯增多(=0.010,=0.049);與對照組比較,運動組大鼠海馬DG區(qū)TrkB個數(shù)(12.30±2.00個)及面積(1486.24±252.02μm2)均無明顯差異(=0.712,=0.589)。
圖4 對照組(SG)、運動組(EX)、CSD組及CSD運動組(CSD+E)大鼠海馬DG區(qū)BDNF及TrkB比較
Figure 4. Results of BDNF and TrkB Expression in Hippocampus DG among SG, EX, CSD and CSD+E Groups
注:##<0.01,vs SG group;*<0.05,CSD+E vs CSD group。
圖5 冠狀位下海馬DG截面圖(A,箭頭所示)及DG區(qū)BDNF及TrkB陽性神經(jīng)元分布
Figure 5. Coronal Section for Dissection in Hippocampus DG(A, arrow), Distribution of BDNF and TrkB in Hippocampus DG(B-C, 10×10, 10×40)
圖6 海馬DG區(qū)BDNF陽性神經(jīng)元分布的免疫組織化學(xué)圖
Figure 6. The Distribution of BDNF Immunoreactive Neurons in Hippocampus DG
注:1)CSD組大鼠海馬DG區(qū)BDNF(→)表達降低;跑臺運動8周后CSD+E組大鼠BDNF(→)表達增強;2)bar=50μm(6A-6D);A:對照組(SG);B:運動組(EX);C:慢性睡眠剝奪組(CSD);D:睡眠剝奪運動組(CSD+E)。
Figure 7. The Distribution of TrkB Immunoreactive Neurons in Hippocampus DG
注:1)CSD組大鼠海馬DG區(qū)TrkB(→)表達降低;跑臺運動8周后CSD+E組大鼠TrkB(→)表達與CSD組比較顯著增強;2)bar=50μm(7A-7D);A:對照組(SG);B:運動組(EX);C:慢性睡眠剝奪組(CSD);D:睡眠剝奪運動組(CSD+E)。
在全球范圍內(nèi),缺乏睡眠已成為一個重要的健康和公共安全問題。臨床研究表明,長期睡眠不足會導(dǎo)致健康個體出現(xiàn)一般性和特異性焦慮癥狀,并且睡眠剝奪患者70%患焦慮癥(Babson et al.,2010)。Baum等(2014)發(fā)現(xiàn)5天睡眠剝奪(每晚睡眠6.5 h)使青少年的焦慮情緒增加、控制負面情緒的能力下降。另一項研究發(fā)現(xiàn),連續(xù)56 h的睡眠剝奪會導(dǎo)致健康個體出現(xiàn)緊張、躁動等焦慮、抑郁情緒及偏執(zhí)癥狀(Kahn-Greene et al.,2007)。Manchanda等(2018)通過動物睡眠剝奪模型證實,慢性睡眠剝奪21天(每天剝奪18 h)可導(dǎo)致大鼠焦慮樣行為。本研究得到相同結(jié)果,大鼠經(jīng)過8周慢性睡眠剝奪(多平臺水環(huán)境法,每天剝奪18 h),與對照組比較,CSD組大鼠進入開放臂次數(shù)和停留時間顯著減少,焦慮指數(shù)增加,說明長期睡眠不足可導(dǎo)致大鼠焦慮水平升高。然而有些研究與本研究結(jié)果相反,Novati等(2011)研究發(fā)現(xiàn),將幼鼠在旋轉(zhuǎn)滾筒上慢性睡眠剝奪1個月(每天睡眠剝奪20 h)對焦慮樣行為沒有影響。且Wegner等(2014)最近的一項研究表明,連續(xù)3天不完全睡眠剝奪后小鼠表現(xiàn)出類焦慮樣行為,如果被剝奪7天小鼠的焦慮樣行為顯著增強。結(jié)合當前的研究可以認為,慢性睡眠剝奪是否引起焦慮樣行為可能與CSD誘導(dǎo)模型及持續(xù)時間有關(guān)。
研究表明,體育鍛煉對改善抑郁、焦慮等心理障礙均有積極作用。Youngstedt等(2006)認為焦慮癥狀改善或許是運動有益于睡眠的可能機制。Pietrelli等(2011)通過高架迷宮實驗證實,跑臺運動使CSD大鼠開放臂時間顯著增加,結(jié)果表明運動鍛練顯著削弱了CSD大鼠的焦慮樣行為。本研究得到相同結(jié)果,經(jīng)過8周中等強度跑臺運動,CSD運動組大鼠焦慮行為顯著削弱,表現(xiàn)為與CSD組大鼠比較,EPM實驗中CSD運動組大鼠開放臂次數(shù)及時間均顯著增加,焦慮指數(shù)下降。然而,Lalanza等(2012)通過高架迷宮行為學(xué)測試發(fā)現(xiàn),11周跑臺運動對CSD小鼠沒有抗焦慮作用,研究結(jié)果的差異可能與物種、運動頻率和運動強度有關(guān)。
睡眠對學(xué)習(xí)記憶能力很重要,在覺醒時被激活的神經(jīng)元,在非快速眼動(NREM)和快速眼動(REM)睡眠中被重新激活,因此,睡眠可能參與了對空間信息的鞏固和編碼(Poe et al.,2000)。而多項研究證實,睡眠剝奪對注意力、工作記憶和其他認知任務(wù)均會產(chǎn)生不良影響,尤其會削弱記憶的保持及鞏固過程。Van等(2003)研究認為,輕度(~3 h/天)和重度(~7 h/天)的睡眠限制持續(xù)1~2周會對注意力和認知能力產(chǎn)生不良影響,而Guzman-Marin等(2007)通過動物實驗研究發(fā)現(xiàn),少于24 h睡眠剝奪不影響海馬神經(jīng)細胞增值,而≧72 h睡眠限制可能會有累積效應(yīng),可降低30%~80% 海馬神經(jīng)細胞增值,最終,通過破壞海馬的可塑性和細胞功能導(dǎo)致認知障礙,結(jié)果提示,睡眠限制對大鼠認知功能損害呈時間依賴性。Alzoubi等(2017)通過八臂迷宮實驗證實,6周慢性睡眠剝奪會損害海馬依賴的短時和長時記憶,并且學(xué)習(xí)之前睡眠剝奪會減少對知識的獲取并損害記憶鞏固功能。且Yoo等(2007)認為,學(xué)習(xí)前睡眠缺失會導(dǎo)致情景記憶編碼過程中海馬活動明顯減弱,導(dǎo)致后期記憶能力下降,圖像識別能力下降19%??傊?,各種形式的睡眠剝奪已被證明會對保留新信息和破壞記憶鞏固能力產(chǎn)生不利影響,本研究采用多平臺水環(huán)境法建立大鼠CSD模型,結(jié)果發(fā)現(xiàn),與對照組比較,CSD組大鼠訓(xùn)練達到標準次數(shù)及總錯誤次數(shù)顯著增多、錯誤潛伏期顯著縮短、第一次錯誤前正確次數(shù)減少,說明慢性睡眠剝奪 8周損害了大鼠海馬依賴的空間學(xué)習(xí)與記憶能力,與前期學(xué)者研究結(jié)果一致。
臨床研究證實,體育鍛煉可改善失眠患者睡眠質(zhì)量,對神經(jīng)功能具有保護作用。且本課題組前期研究證實,4周跑臺運動預(yù)干預(yù)可通過增強前額葉皮質(zhì)氧化應(yīng)激能力改善急性睡眠剝奪(72 h睡眠剝奪)大鼠學(xué)習(xí)記憶能力。Zielinski等(2013)通過水迷宮實驗證實,11周中等強度跑臺運動(1 h/天/6天/周)可改善慢性睡眠剝奪引起的小鼠學(xué)習(xí)記憶障礙。本研究得到相同結(jié)果,與CSD組大鼠比較,經(jīng)過8周跑臺運動,八臂迷宮實驗中CSD運動組大鼠訓(xùn)練達到標準次數(shù)及總錯誤次數(shù)顯著減少、錯誤潛伏期顯著延長、第一次錯誤前正確次數(shù)增多。而且8周跑臺運動對正常大鼠學(xué)習(xí)記憶能力也有較大益處,具體表現(xiàn)為與對照組比較,運動組大鼠訓(xùn)練達到標準次數(shù)及總錯誤次數(shù)均顯著減少,說明跑臺運動對正常大鼠及CSD大鼠學(xué)習(xí)記憶能力均有顯著改善。
據(jù)報道,睡眠不足會增加免疫功能障礙的風(fēng)險,導(dǎo)致大腦炎癥反映增強(Rico-Rosillo et al.,2018),在炎癥反應(yīng)過程中,小膠質(zhì)細胞被激活,影響細胞因子的釋放(促炎因子增加、抗炎因子減少),而細胞因子水平的不平衡被發(fā)現(xiàn)是導(dǎo)致抑郁及焦慮的主要原因(Braun et al.,2012)。TNF-a、IL-6屬于促炎細胞因子,TNF-a是較早釋放的具有多種生物效應(yīng)的重要促炎細胞因子,可誘發(fā)“次級”炎癥因子的產(chǎn)生,導(dǎo)致神經(jīng)元損傷,使機體學(xué)習(xí)、記憶能力減退(Zhu et al.,2012)。臨床及動物實驗研究發(fā)現(xiàn),睡眠缺失可增加血液及大腦(海馬及前額葉皮質(zhì)等)炎癥標志物IL-6、TNF-α及IL-1β 水平(Manchanda et al.,2018)。前期學(xué)者研究證實,短時間睡眠剝奪(1 h和3 h)對雄性成年小鼠大腦IL-1β,TNF-α和IL-6 mRNA水平無顯著影響];在另一項實驗中,Zielinski等(2013)研究發(fā)現(xiàn),完全睡眠剝奪72 h 大鼠海馬回和基底前腦TNF-α 及IL-6水平顯著升高。而Wisor等(2011)認為,慢性睡眠剝奪結(jié)束后3周海馬體中炎癥因子IL-1、IL-6、TNF-α 仍呈不同程度升高,結(jié)果表明,慢性睡眠剝奪即使在較長時間恢復(fù)后,神經(jīng)炎癥因子對大腦損害仍會持續(xù)。本研究結(jié)果發(fā)現(xiàn),與對照組比較,8周慢性睡眠剝奪使大鼠海馬促炎因子IL-6及TNF-α水平顯著增加。近期學(xué)者研究認為,腦組織IL-1、TNF、及IL-6等炎癥因子水平升高可能與情緒和認知功能障礙有關(guān)(Manchanda et al.,2018)。并且Souza等(2012)研究認為,TNF-a及IL-6水平升高可增加血腦屏障的通透性,產(chǎn)生氧自由基并引起凋亡蛋白 caspase-3和Bax的表達增高,導(dǎo)致海馬神經(jīng)元凋亡率增加,加速神經(jīng)細胞的死亡。海馬被認為是炎癥損傷的大腦區(qū)域之一,與學(xué)習(xí)和記憶密切相關(guān)。因此可以認為,本研究CSD大鼠焦慮行為及海馬依賴的學(xué)習(xí)記憶能力下降可能與睡眠不足引起的海馬神經(jīng)促炎因子水平升高導(dǎo)致大腦抗氧化能力下降、引起細胞凋亡甚至死亡,損害海馬結(jié)構(gòu)和功能,從而導(dǎo)致CSD大鼠學(xué)習(xí)記憶能力下降。有學(xué)者認為,睡眠剝奪作為一種應(yīng)激源可激活HPA軸活性增加糖皮質(zhì)激素過度分泌,在一定程度上可增強促炎因子IL-1、TNF-α及IL-6水平(Rhen et al.,2005)。另外,睡眠剝奪可能會引起大鼠腦不同部位的血腦屏障受到損害尤其是海馬體的血腦屏障更具有滲透性從而使促炎細胞因子更容易進入海馬體,削弱海馬神經(jīng)發(fā)生、損害CSD大鼠認知功能,然而這些指標本實驗均未涉及,需要進一步研究證實。
研究認為,體育鍛煉可通過抗炎作用起到神經(jīng)保護作用。Chennaoui等(2015)研究發(fā)現(xiàn),7周跑臺運動可減少正常睡眠大鼠海馬TNF-α和IL-6蛋白含量,與本研究結(jié)果一致。Wannamethee等(2002)對4252名年齡在60到79歲老年男性進行研究發(fā)現(xiàn),體育鍛煉與促炎因子呈顯著負相關(guān)。Gomes等(2013)研究發(fā)現(xiàn),運動鍛煉可通過降低海馬IL1β/IL10,IL6/IL10及TNFα/IL10 比率降低神經(jīng)炎癥相關(guān)疾病的風(fēng)險。而Chennaoui 等(2015)研究發(fā)現(xiàn),7周跑臺運動預(yù)干預(yù)可減少睡眠剝奪大鼠(24h)海馬TNF-α、IL-6蛋白含量,但是對外周TNF-α含量無顯著影響。然而有氧運動對慢性睡眠剝奪引起的神經(jīng)炎癥方面的作用還沒有得到廣泛的研究。本研究發(fā)現(xiàn),與CSD組比較,CSD運動組大鼠跑臺運動8周海馬促炎因子TNF-α、IL-6水平顯著下降,說明此運動具有一定的抗神經(jīng)炎癥作用。因此本研究海馬抗炎能力增強在一定程度上可能與跑臺運動改善CSD大鼠學(xué)習(xí)記憶能力及焦慮樣行為有關(guān),具體機制需進一步研究。
睡眠在正常的生理功能中起著關(guān)鍵作用,睡眠不足可能會激活機體應(yīng)激系統(tǒng),與焦慮、抑郁及認知功能下降有關(guān)。有證據(jù)表明,BDNF/TrkB信號通路可調(diào)節(jié)REM及NREM,并且在睡眠不足導(dǎo)致的相關(guān)精神障礙發(fā)病機制中起著關(guān)鍵作用(Garner et al.,2018)。BDNF是一種中樞神經(jīng)營養(yǎng)因子,在整個中樞神經(jīng)系統(tǒng)都有表達,海馬表達尤其豐富,并且強有力的證據(jù)表明BDNF在調(diào)節(jié)睡眠中起著重要作用(Faraguna et al.,2008),但是睡眠剝奪對海馬BDNF水平變化的研究存在爭議。Fujihara等(2003)研究發(fā)現(xiàn)短期非選擇性睡眠剝奪可顯著增加海馬BDNFmRNA表達,但對小腦和腦干BDNF表達無顯著影響。而另一項研究發(fā)現(xiàn),8到48 h的睡眠剝奪可導(dǎo)致海馬齒狀回BDNFmRNA水平下降(Alhaider et al.,2010),且本課題組前期研究發(fā)現(xiàn)72 h急性睡眠剝奪可顯著降低前額葉皮質(zhì)及杏仁核BDNF的表達(崔建梅 等,2016)。研究表明,海馬DG區(qū)在突觸可塑性及神經(jīng)元編碼中扮演著關(guān)鍵角色,并且對睡眠剝奪高度敏感。因此本研究聚焦海馬DG 區(qū),通過8周慢性睡眠剝奪(每天睡眠剝奪18 h),結(jié)果發(fā)現(xiàn),與正常大鼠比較,CSD組大鼠海馬齒狀回BDNF及TrkB表達顯著減少。另外有研究發(fā)現(xiàn),慢性睡眠剝奪21天,大鼠血清皮質(zhì)醇水平顯著增加,并表現(xiàn)出焦慮樣行為。而且,Wang等(2018)認為急慢性應(yīng)激可降低海馬DG區(qū)BDNF的表達與應(yīng)激誘導(dǎo)的糖皮質(zhì)激素水平升高有關(guān),因此可以認為本實驗中CSD大鼠焦慮樣行為及學(xué)習(xí)記憶能力下降可能與CSD作為一種應(yīng)激源抑制海馬DG區(qū)BDNF和TrkB表達及抑制TrkB磷酸化有關(guān),表明BDNF-TrkB信號通路參與了慢性睡眠剝奪導(dǎo)致的大鼠學(xué)習(xí)記憶障礙。然而有研究認為,睡眠不足會導(dǎo)致海馬體積減小,而不會引起 HPA軸的激活,并且長時間CSD會導(dǎo)致明顯的學(xué)習(xí)障礙,這些障礙并不能通過切除腎上腺來預(yù)防,這表明CSD大鼠學(xué)習(xí)記憶能力下降可能與應(yīng)激激素?zé)o關(guān)(Novati et al.,2010; Tiba et al.,2010)。因此針對CSD大鼠BDNF及其受體TrkB水平下降機制需進一步研究。
多數(shù)學(xué)者研究認為,運動鍛煉可以增加與可塑性相關(guān)的生長因子的表達,腦源性神經(jīng)營養(yǎng)因子BDNF與其受體TrkB結(jié)合在LTP的誘導(dǎo)及神經(jīng)發(fā)生中發(fā)揮重要作用,被認為是運動改善海馬依賴的認知功能的重要調(diào)節(jié)因子(Cotman et al.,2007)。前期研究表明,跑步、游泳等體育活動均可以增加嚙齒動物大腦BDNF及TrkB的表達(Radak et al.,2006),然而本研究發(fā)現(xiàn),8周跑臺運動顯著增加了正常大鼠海馬DG區(qū)BDNF表達,但對海馬DG區(qū)TrkB表達無顯著影響。Tripp等(2012)通過臨床研究發(fā)現(xiàn),重度抑郁癥患者杏仁核BDNF的表達減少,而TrkB表達無顯著改變,認為BDNF水平變化與其上游及下游通路復(fù)雜整合有關(guān)。因此,本研究跑臺運動對正常大鼠BDNF水平上調(diào)可能與此運動激活BDNF上游通路有關(guān),具體機制需進一步研究。
研究認為,適度跑臺運動已被證明可以改善睡眠缺失引起的情緒障礙及認知功能下降,而海馬BDNF活性增加可能介導(dǎo)這些效應(yīng),有助于維持大腦健康和突觸可塑性(Zagaar et al.,2013)。Saadati等(2014)發(fā)現(xiàn)規(guī)律跑臺運動可能通過誘導(dǎo)海馬BDNF表達而對去卵巢睡眠剝奪大鼠海馬相關(guān)功能起保護作用。Zagaar等(2013)研究發(fā)現(xiàn),跑臺運動預(yù)干預(yù)4周,可通過上調(diào)海馬BDNF及P-CREB(環(huán)磷腺苷結(jié)合蛋白)水平防止24 h完全睡眠剝奪引起的短期記憶和E-LTP損害。本研究結(jié)果發(fā)現(xiàn),與CSD組大鼠比較,CSD運動組大鼠海馬DG區(qū)BDNF 及TrkB表達顯著增多。BDNF可以保護中樞神經(jīng)元免受損傷,通過強迫游泳實驗證實,腦室內(nèi)注射BDNF和TrkB受體激動劑可降低習(xí)得性無助大鼠海馬CA3及DG的損傷,從而改善大鼠抑郁樣行為;此外,當BDNF表達或TrkB信號中斷時,抗抑郁藥物的療效會顯著降低甚至消失,提示BDNF-TrkB信號通路對抗抑郁藥物的治療效果至關(guān)重要(Liu et al., 2010);Zheng等(2018)研究發(fā)現(xiàn),多奈哌齊可通過激活BDNF/TrkB信號通路改善阿爾茨海默氏癥引起的認知障礙。因此,本實驗中跑臺運動改善CSD大鼠學(xué)習(xí)記憶能力可能與此運動激活海馬DG區(qū)BDNF/TrkB信號通路有關(guān),BDNF與TrkB結(jié)合可以誘導(dǎo)大量突觸可塑性相關(guān)基因的表達,這些基因可能在結(jié)構(gòu)和功能上啟動突觸,調(diào)節(jié)突觸穩(wěn)定性,參與學(xué)習(xí)記憶的調(diào)節(jié),從而增強CSD大鼠的學(xué)習(xí)記憶能力(Song et al.,2013)。研究證明,促炎細胞因子可抑制腦內(nèi)BDNF的表達,大鼠腦室內(nèi)注射TNF-α可抑制大腦皮層及海馬BDNF的表達,并且腦室內(nèi)注射IL-1β可增強海馬TNF-α表達,同時會抑制BDNF表達(Zielinski et al.,2014)。Yang等(2017)研究發(fā)現(xiàn),糖尿病大鼠海馬環(huán)氧酶-2表達增強(其產(chǎn)物前列腺素E是重要的炎癥介質(zhì))可導(dǎo)致海馬慢性炎癥損害海馬BDNF-TrkB信號通路,與糖尿病大鼠的記憶缺失有關(guān)。此外,Xu等(2017)研究認為BDNF預(yù)處理可抑制腦膜炎大鼠海馬TNF-α、IL-1β及IL-6水平,增加抗炎因子IL-10的表達,從而認為BDNF治療可能是細菌性腦膜炎的一種潛在的治療策略。以上研究表明,神經(jīng)炎癥與BDNF-TrkB信號通路相互影響可能在認知功能及情緒障礙的病理發(fā)展中發(fā)揮重要作用。因此可以推測,跑臺運動增強CSD大鼠學(xué)習(xí)記憶能力及改善焦慮樣行為可能與此運動增強海馬抗炎能力、激活海馬DG區(qū)BDNF-TrkB信號通路從而糾正慢性睡眠剝奪誘導(dǎo)的海馬功能紊亂起到腦保護作用有關(guān),而神經(jīng)炎癥是否介導(dǎo)了跑臺運動對CSD大鼠海馬DG區(qū)BDNF-TrkB信號通路的激活,需要進一步研究證實。
1)8周CSD可導(dǎo)致大鼠焦慮樣行為及認知功能下降,海馬神經(jīng)炎癥反應(yīng)加深,海馬DG區(qū)BDNF及TrkB表達下降。提示,海馬可能是CSD引起大鼠行為學(xué)改變的作用腦區(qū)之一,且這一作用可能是由海馬炎癥反應(yīng)加強、海馬DG區(qū)BDNF-TrkB信號通路下調(diào)共同介導(dǎo)的。
跑臺運動增強CSD大鼠學(xué)習(xí)記憶能力及改善焦慮樣行為可能與此運動增強海馬抗炎能力、激活海馬DG區(qū)BDNF-TrkB信號通路從而糾正慢性睡眠剝奪誘導(dǎo)的海馬功能紊亂起到腦保護作用有關(guān)。
崔建梅, 郭燕蘭, 趙行瑞, 等. 2016. 運動預(yù)干預(yù)通過增強杏仁核抗氧化能力及BDNF表達改善睡眠剝奪大鼠焦慮行為[J]. 沈陽體育學(xué)院學(xué)報, 35(3):79-84.
ABROUS D N, KOEHL M, LE Moal M. 2005. Adult neurogenesis: from precursors to network and physiology[J]. Physiol Rev, 85(2): 523-69.
AIMONE J B, DENG W, GAGE F H, 2011. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation[J]. Neuron,70(4):589-96.
ALHAIDER I A, ALEISA A M, TRAN T T, et al.,2010. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus[J]. Eur Neurosci, 31:1368-76.
ALTERMAN T, LUCKHAUPT S E, DAHLHAMER J M, et al.,2013. Prevalence rates of work organization characteristics among workers in the US: data from the 2010 National Health Interview Survey[J]. Am J Ind Med, 56:647-659.
ALZOUBI K H, KHABOUR O F, ALBAWAANA A S, et al.,2016. Tempol prevents chronic sleep -deprivation induced memory impairment[J]. Brain Res Bull, 120:144-50.
ALZOUBI K H, MAYYAS F A, KHABOUR O F, et al.,2016. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation[J]. Mol Neurobiol, 53(5): 3439-3447.
ALZOUBI K H, RABABA'H A M, OWAISI A, et al.,2017. L-carnitine prevents memory impairment induced by?chronic REM-sleep deprivation[J]. Brain Res Bull, 131:176-182.
BABSON K A, TRAINOR C D, FELDNER M T, et al.,2010. A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: an experimental extension[J]. J Behav Ther Exp Psychiatry, 41(3):297-303.
BAUM K T, DESAI A, FIELD J, et al.,2014. Sleep restriction worsens mood and emotion regulation in adolescents[J]. J Child Psychol Psychiatry, 55(2):180-90.
BESEDOVSKY L, LANGE T, BORN J. 2012. Sleep and immune function[J]. Plug Arch Eur J Physiol, 463(1):121-137.
BRAUN T P, GROSSBERG A J, VELEVA-ROTSE B O, et al.,2012. Expression of myeloid differentiation factor 88 in neurons is not requisite for the induction of sickness behavior by interleukin-1β[J]. J Neuroinflammation, 9:229.
CHEN X, WANG X, TANG L, et al.,2017. Nhe5 deficiency enhances learning and memory via upregulating Bdnf/TrkB signaling in mice[J]. Am J Med Genet B Neuropsychiatr Genet, 174 (8):828-838.
CHENNAOUI M, GOMEZ-Merino D, DROGOU C, et al.,2015. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats[J]. Inflamm, 12 (1):1-10.
COTMAN C W, BERCHTOLD N C, CHRISTIE L A. 2007. Exercise builds brain health: an interplay of central and peripheral factors[J]. Trends Neurosci,30:467-471.
DE SOUZA L, SMAILI S S, URESHINO R P, et al.,2012. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals[J]. Prog Neuropsychopharmacol Biol Psychiatry, 39(1):23-30.
FARAGUNA U, VYAZOVSKIY V V, Nelson A B, et al.,2008. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep[J]. Neurosci, 28(15):4088-95.
FUJIHARA H, SEI H, MORITA Y, et al.,2003. Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor[J]. J Mol Neurosci, 21(3):223-32.
GARNER J M, CHAMBERS J, BARNES A K, et al.,2018. Changes in Brain-Derived Neurotrophic Factor Expression Influence Sleep-Wake Activity and Homeostatic Regulation of Rapid Eye Movement Sleep[J]. Sleep, 41(2): zsx194.
GOMES DA SILVA S, SIM?ES P S, MORTARA R A, et al.,2013. Exercise-induced hippocampal anti-inflammatory response in aged rats[J]. J Neuroinflammation, 10(1):61.
GUZMAN-Marin R, BASHIR T, SUNTSOVA N, et al.,2007. Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat[J]. Neuroscience, 148(1):325-33.
HURTADO-ALVARADO G, PavóN L, CASTILLO-GARCía S A, et al.,2013. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations[J]. Clin Dev Immunol:801341.
KAHN-GREENE E T, KILLGORE D B, KAMIMORI G H, et al.,2007. The effects of sleep deprivation on symptoms of psychopathology in healthy adults[J]. Sleep Med, 8(3):215-21.
KLINE R, WONG E, HAILE M, et al.,2016. Peri-Operative Inflammatory Cytokines in Plasma of the Elderly Correlate in Prospective Study with Postoperative Changes in Cognitive Test Scores[J]. Int J Anesthesiol Res, 4(8):313-321.
KRISHNAN H C, NOAKES E J, LYONS L C, 2016. Chronic sleep deprivation differentially affects short and long-term operant memory in Aplysia[J].Neurobiol Learn Mem, 134 Pt B:349-59.
LALANZA J F, SANCHEZ-ROIGE S, GAGLIANO H, et al.,2012. Physiological and behavioural consequences of long-term moderate treadmill exercise[J]. Psychoneuroendocrinology, 7(11):1745-54.
LEKANDER M, ANDREASSON A N, KECKLUND G, et al.,2013. Subjective health perception in healthy young men changes in response to experimentally restricted sleep and subsequent recovery sleep[J]. Brain Behav Immun, 34(11):43-46.
LIU X, CHAN C B, JANG S W, et al.,2010. A synthetic7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect[J]. J Med Chem, 53(23):8274-86.
MANCHANDA S, SINGH H, KAUR T, et al.,2018. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments[J]. Mol Cell Biochem, 449(1-2):63-72.
MARKS CA, WAYNER M J, 2005. Effects of sleep disruption on rat dentate granule cell LTP in vivo[J]. Brain Res Bull, 66(2):114-119.
MAZOR A, MATAR M A, KAPLAN Z, et al.,2009. Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns[J]. World J Biol Psychiatry, 10:856-869.
MONJE M L, TODA H, PALMER T D, 2003. Inflammatory blockade restores adult hippocampal neurogenesis[J]. Science, 302 (5651): 1760-1765.
NOVATI A, HULSHOF H J, KOOKHAAS J M, et al.,2011. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis[J]. Neuroscience, 190(36):145-55.
NOVATI H J, HULSHOF J M, KOOLHA A S, et al.,2011. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis[J]. Neuroscience, 190:145-55.
PIETRELLI A, LOPEZ-COSTA J J, GONI R, et al.,2011. Effects of moderate and chronic exercise on the nitrergic system and behavioral parameters in rats[J]. Brain Research, 1389(10):71-82.
POE G R, NITZ D A, MCNAUGHTON B L, et al.,2000. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep[J]. Brain Res, 855(1):176-80.
RADAK Z, TOLDY A, SZABO Z, et al.,2006. The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain[J]. Neurochem Int, 49(4):387-92.
RHEN T, CIDLOWSKI J A, 2005. Antiinflammatory action of glucocorti coids-newmechan- isms for old drugs[J]. N Engl J Med, 353:1711-1723.
RICO-ROSILLO M G, VEGA-ROBLEDO G B, 2018. Sleep and immune system[J]. Rev Alerg Mex, 65(2):160-170.
RIMES R R, de SOUZA MOURA A M, LAMEGO M K, et al.,2015. Effects of Exercise on Physical and Mental Health, and Cognitive and Brain Functions in Schizophrenia: Clinical and Experimental Evidence[J]. CNS Neurol Disord Drug Targets, 14(10):1244-54.
RINGEL B L, SZUBA M P, 2001. Potential mechanisms of the sleep therapies for depression[J]. Depress Anxiety, 14(1):29-36.
SAADATI H, SHEIBANI V, ESMAEILI-MAHANI S, et al.,2014. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats[J]. Regul Pept, (194-195): 11-5.
SONG C, ZHANG Y, DONG Y, 2013. Acute and subacute IL-1beta administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration[J]. J Neuroinflammation, 10:59.
TIBA P A, OLIVEIRA M G, ROSSI V C, et al.,2008. Glucocorticoids are not responsible for paradoxical sleep deprivation-induced memory impairments[J]. Sleep, 31:505-515.
TRIPP A, OH H, GUILLOUX J P, et al.,2012. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder[J]. Am J Psychiatry, 169(11):1194-202.
VAN DONGEN H P, MAISLIN G, MULLINGTON J M, et al.,2003. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation[J]. Sleep, 26(2):117-26.
VOLLERT C, ZAGAAR M, HOVATTA I, et al.,2011. Exercise prevents sleep deprivation -associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms[J]. Behav Brain Res, 224(2):233-40.
WANG C, GAN D, WU J, et al.,2018. Honokiol Exerts Antidepressant Effects in Rats Exposed to Chronic Unpredictable Mild Stress by Regulating Brain Derived Neurotrophic Factor Level and Hypothalamus-Pituitary-Adrenal Axis Activity[J]. Neurochem Res, 43(8):1519 -1528.
WANNAMETHEE S G, LOWE G D, WHINCUP P H, et al.,2002. Physical activity and hemostatic and inflammatory variables in elderly men[J]. Circulation, 105 (15):1785-1790.
WEGNER M, HELMICH I, MACHADO S, et al.,2014. Effects of exercise on anxiety and depression disorders: review of meta- analyses and neurobiological mechanisms[J]. CNS Neurol Disord Drug Targets, 13(6):1002-14.
WISOR J P, SCHMIDT M A, CLEGERN W C, 2011. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss[J]. Sleep, 34(3):261-2.
XU D, LIAN D, WU J, et al.,2017. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis[J]. J Neuroi -nflammation, 14(1):156.
YANG Y, GAO L, 2017. Celecoxib Alleviates Memory Deficits by Downregulation of COX-2 Expression and Upregulation of the BDNF-TrkB Signaling Pathway in a Diabetic Rat Model[J]. J Mol Neurosci, 62(2):188-198.
YEHUDA S, SREDNI B, CARRASSO R L, et al.,2009. REM sleep deprivation in rats results in inflammation and interleukin-17 elevation[J]. JInterferon Cytokine Res, 29(7):393-8.
YOO S S, HU P T, GUJAR N, et al.,2007. A deficit in the ability to form new human memories without sleep[J]. Nat Neurosci, 10:385-392.
YOUNGSTEDT S D, KLINE C E, 2006. Epidemiology of exercise and sleep[J]. Sleep and Biological Rhythms, (3):215-221.
ZAGAAR M, DAO A, ALHAIDER I, et al.,2013. Regular treadmill exercise prevents sleep deprivation-induced disruption of synaptic plasticity and associated signaling cascade in the dentate gyrus[J]. Mol Cell Neurosci, 56:375-83.
ZAGAAR M, DAO A, LEVINE A, et al.,2013. Regular exercise prevents sleep deprivation associated impairment of long-term memory and synaptic plasticity in the CA1 area of the hippocampus[J]. Sleep, 36(5):751-61.
ZHENG H, NIU S, ZHAO H, et al.,2018. Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer's disease induced by amyloid-β1-40 via activating the BDNF/TrkB signal pathway[J]. Metab Brain Dis, 33(6):1961-1974.
ZHU B, DONG Y, XU Z, et al.,2012. Sleep disturbance induces neuroinflammation and impairment of learning and memory[J]. Neurobiol Dis, 48(3):348-55.
ZIELINSKI M R, DAVISB J M, FADEL J R, et al.,2013. Influence of chronic moderate sleep restriction and exercise on inflammation and carcinogenesis in mice[J]. Behavioural Brain Research, 250: 74-80.
ZIELINSKI M R, KIM Y, KARPOVA S A, et al.,2014. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression[J]. Neurosci Lett, 580:27-31.
ZIELINSKI M R, KRUEGER J M, 2011. Sleep and innate immunity[J]. Front Biosci (Schol Ed), 3:632-642.
Effects of Treadmill Exercise on Behavior Changes, Hippocampal Inflammation and BDNF/TrkB Pathway in the Hippocampus Dentate Gyrus ofChronic Sleep Deprived Rats
CUI Jianmei1*, GUO Yanlan1, LI Zhonghua1, Yangjie1, YU Fang1, LI Hongtao2, SU Xiaoyun3
: Physical exercise is known to improve the cognitive function decline and emotional disorders induced by chronic sleep deprivation (CSD). Therefore, the aim of this study was to examine the effects of 8 weeks treadmill exercise on CSD induced spatial memory and anxiety-like behavior by measuring hippocampus inflammatory biomarkers levels (IL-6 and TNF-α) and hippocampus DG (dentate gyrus) BDNF and TrkB expression levels.: 44 rats were randomly allocated into either a sedentary control group (SG), an exercise group (EX), a chronic sleep deprived group (CSD), or a CSD+exercise group (CSD+E). The sleep deprivation was induced by using modified multiple platform method (18 h/day, for 8 weeks) in CSD and CSD+E groups. Simultaneously, the rats in EX and CSD+E groups were conducted treadmill exercise training for 8 weeks (1 h/day, 6 d/week). Thereafter, the anxiety-related behavior was assessed with the elevated-plus maze (EPM), and the spatial learning and memory were assessed by using the eight arm maze test (ERM). Additionally, the hippocampus inflammatory biomarkers (IL-6 and TNF-α) and hippocampus DG BDNF and TrkB expression levels were measured.: 1) Compared to the sedentary control rats, the latency of memory error was shorted in CSD rats, the numbers of achieving training standard and total memory errors were significantly increased (<0.01, respectively); in addition, the correct numbers before the first error was decreased (<0.05) in the ERM test. In the EPM test, the time and entries of open arm was significantly decreased in CSD rats by comparing with SG group, and the anxiety index was increased (<0.01, respectively); the TNF-α and IL-6 concentrations in hippocampus were increased (<0.01), and the expression levels of BNDF and TrkB in hippocampus DG were decreased (<0.01). 2) 8 week treadmill exercise training was significantly attenuated anxiety-related behavior and prevented spatial learning and memory impairment; the levels of IL-6 and TNF-α in hippocampus were decreased; moreover, the expression levels of BDNF and TrkB in hippocampus DG were significantly increased after exercise training.: Moderate-intensity treadmill exercise improved the learning and memory ability and attenuate anxiety like behavior in the CSD rats. The possible mechanisms might be related to the exercise preventing pro-inflammatory responses in hippocampus, and increasing BDNF and TrkB expression in hippocampus DG and improving the nerve protective effect via BDNF/TrkB pathway.
2018-11-07;
2019-06-06
山西省自然科學(xué)基金項目(2014011041-6)
崔建梅(1972-),女,副教授,碩士,主要研究方向為運動與慢性病, E-mail: cuijm224@qq.com。
G840.7
A
1000-677X(2019)06-0062-11
10.16469/j.css.201906008