• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Closed-Form Solutions to the Crack and/or Rigid Line Inclusion in 1D Orthorhombic Quasicrystals

    2019-06-27 10:01:02WANGWenshuai汪文帥YUANHongting袁宏婷
    應(yīng)用數(shù)學(xué) 2019年3期

    WANG Wenshuai(汪文帥),YUAN Hongting(袁宏婷)

    ( School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China)

    Abstract: The problem of the one-dimensional(1D) orthorhombic quasicrystals with a crack and/or rigid line inclusion of antiplane mode is investigated through introducing the generalized complex variable method.For 1D orthorhombic quasicrystals,considering of the periodic (x 1,x 2)-plane of atomic structures with the quasiperiodic directionx 3-axis along which there exists a phason displacement,and the macroscopical crack and/or rigid line inclusion,which is placed on the periodic (x 1,x 2)-plane,we focus on finding out the influence of phason displacement on the related physical quantities.By the generalized complex variable method,these two models are reduced to the Riemann–Hilbert problems,and the closed-form solutions of the phonon and phason fields for antiplane mode are obtained.The explicit solutions of stress intensity factors for phonon field and phason field are obtained respectively,which are very useful in the fields of fracture mechanics and engineering.The results show that the phonon and phason stress intensity factors of crack as well as the factors of rigid line inclusion are not related to the coupling of phonon and phason fields.These imply that,for antiplane mode,there is no influence of phason displacement on both the phonon stress intensity factor (usual stress intensity factor) of crack and the phonon stress field intensity factor of rigid line inclusion.The obtained analytical solutions will provide necessary reference for material design and numerical solutions.

    Key words: Orthorhombic quasicrystal;Crack;Rigid line inclusion;Generalized complex function; Stress intensity factor

    1.Introduction

    Shechtman was awarded the Nobel Prize of Chemistry 2011 due to the discovery of quasicrystals in 1982,which has aroused great interest in the fields of structure and material again[1].As we all know,the field of linear elasticity theory of quasicrystals has been investigated for many years[2?3]and the mathematical elasticity theory of quasicrystals has been developed by FAN and his coworkers[4?5].As a material,quasicrystal is deformable under external loads,thermal loads and certain internal effects,which makes it very sensitive to defects such as cracks.So,finding solutions of dislocations and cracks in quasicrystals is the core of the static and dynamic elasticity theory[6],and the study of defect problem of quasicrystalline materials is meaningful both in theoretical and practical applications.We noticed that there were many high-precision numerical methods in solving defect problems in quasicrystals[7?9].In this paper,we do not investigate the numerical methods but limit ourselves to analytical solutions.As for analytical solutions,some investigators developed various methods to obtain the analytical solutions for defect problems of quasicrystals[6,10],such as Fourier transform method[11],perturbation method[12],complex variable method[13],boundary integral equation method[7],and the method of Green’s functions[14].

    Recently,generalized Hooke’s law of quasicrystals has been derived systematically,which provides a fundamental theory based on the notion of a continuum model to describe the elastic behavior of quasicrystals[4].Therefore,some methods like complex variable method,based on the generalized Hooke’s law,get a new development opportunity.It is well known that the complex variable method,initially developed by Muskhelishvili,is an effective method for solving various elasticity and defect problems[15].It is also developed to solve defect problems of quasicrystals.For 1D hexagonal quasicrystals,many efforts have been made in the fields of the mechanic involving elasticity and defects by the complex variable method[16?18].For instance,the collinear periodic cracks and/or rigid line inclusion of antiplane mode in 1D hexagonal quasicrystals have been studied[19].Considering that the surfaces of the cracks and holes are in limited permeable boundary conditions,the antiplane problem of an elliptical hole with two asymmetrical cracks in 1D hexagonal quasicrystals with piezoelectric effect is investigated by adopting the technique of conformal mapping and the Stroh-type formulism[13].

    As the structure of 1D orthorhombic quasicrystals is more complex than that of 1D hexagonal quasicrystals,it leads to the elasticity and defect problems in 1D orthorhombic quasicrystals having greater difficulties to solve directly with classical elastic method.Note that the elasticity and defect problems for 1D hexagonal quasicrystals have been extensively researched[16?18],but only a few results are on the issue of 1D orthorhombic quasicrystals with defects.By introducing generalized conformal transformation and using complex variable function method,the problem about 1D orthorhombic quasicrystals with an elliptical hole is investigated[20].Under limited conditions,the problem of an elliptical hole degenerates into the problem of a Griffith crack,and the implicit analytical solutions in stress field and the stress field intensity factors are obtained corresponding to the crack problem.By employing a new displacement potential function and using a half-inverse method,YU et al.[21]developed the results obtained in literature[20]through eliminating the dependence on the characteristic root.As an application,the closed-form solutions are obtained for wedge problems or halfplane problems of 1D orthorhombic piezoelectric quasicrystals by introducing four potential functions[2].LI et al.[3]investigated the problem of a functionally graded multilayered 1D orthorhombic quasicrystals plate with simply supported edge conditions.GAO et al.[22]gave the analytical solutions for problems of 1D orthorhombic quasicrystal with semi-infinite crack.In this work,we focus on the analytical solutions of crack and/or rigid line inclusion problems for 1D orthorhombic quasicrystals by generalized complex variable method.Assuming the(x1,x2)-plane of atomic structures is periodical,and the quasiperiodic direction isx3-axis along which there exists a phason displacement,and the macroscopical crack or rigid line inclusion is placed on the periodic (x1,x2)-plane,we work on finding out the influence of phason displacement on the related physical quantities.These two models are reduced to the Riemann-Hilbert problem of generalized complex functions to obtain the closed-form solutions for antiplane mode[23].And exact solutions are obtained by means of generalized complex variable method.The stress intensity factors for phonon field and phason field are obtained respectively,which are very useful in practice.

    2.Basic Mathematical Description

    For 1D orthorhombic quasicrystals,there is a periodic(x1,x2)-plane of atomic structures with the quasiperiodic directionx3-axis along which there exists a phason displacement.There is a crack or rigid line inclusion in the periodic (x1,x2)-plane,and its location is specified by interval[?a,a]onx1-axis.The infinite plane of 1D orthorhombic quasicrystals is subjected to external antiplane stresses of the phonon and phason fields asat infinity(see Fig.1).The fracture analysis of the problem can be expressed through the superposition of two problem solutions.The first solution refers to the elastic problem of infinite plane for 1D orthorhombic quasicrystals under an external antiplane stresses of the phonon and phason fields asat infinity,without crack or rigid line inclusion.The second problem describes the stress distribution of the crack or rigid line inclusion in an infinite plane for 1D orthorhombic quasicrystals,and the external loads are limited to the crack or rigid line inclusion surface traction.These external loads are equal in magnitude and opposite in sign to the obtained stresses in the imaginary crack line or rigid line inclusion as described by the first problem.It is obvious that the solutions to the second problem contain singularities.

    Fig.1 The crack and/or rigid line inclusion on physical plane

    With the help of phonon and phason strains

    wherei,jare the repeated indices denoting summation,εij,uiare the strain and displacement of the phonon field,respectively,wijare the strain of the phason field,and a comma in the subscripts stands for partial differentiation.Then the constitutive equations of 1D orthorhombic quasicrystals can be written as follows[24]

    whereσijare the phonon stresses,which are the same as those in usual crystals,Hijare new and named as the phason stresses with which the movement of atoms through barriers can come true when the quasilattices rearrange,CijandKiare the elastic constants of phonon field and phason field,respectively,andRiare phonon-phason coupling constants.Under antiplane mode,assuming thatu1=u2=0,u3=u3(x1,x2),w3=w3(x1,x2) in the constitutive equation (2.2),we have

    Under the static condition,the phonon and phason stresses should satisfy the following generalized equilibrium equation

    Substituting Eqs.(2.1) and (2.3) into Eq.(2.4) yields the coupled governing equation of 1D orthorhombic quasicrystals

    A potential functionU(x1,x2),which is introduced to solve the coupled governing equation (2.5),has a correlation with the phonon strainsu3and the phason strainsw3

    It is readily found that the first formula of Eq.(2.5) is fulfilled from Eq.(2.6).Then,substituting Eq.(2.6)into the second formula of Eq.(2.5),one can obtain the following relation

    where

    The characteristic equation of Eq.(2.7) is

    and the characteristic roots of Eq.(2.7) are

    The multiple harmonic functionU(x1,x2) may be represented as the real part of generalized complex functionsU1(z1) ofz1=x1+μ1x2andU2(z2) ofz2=x1+μ2x2,

    Then,the phonon displacement and stresses as well as the phason displacement and stresses can be expressed by these generalized complex functionsU1(z1) andU2(z2) readily

    3.The Problem of Crack

    Here,the fundamental solution of crack is considered when a pair of equivalent antiplane shear traction of the phonon and phason fields,σ0(x1) andH0(x1),act on the crack surface.Then,the corresponding boundary conditions on the crack surface are imposed

    On the junction surface,the stress-continuity conditions are satisfied

    So,the stresses are continuous alongx1.Considering Eq.(2.12),one can obtain the following relations

    Based on that

    Eq.(3.3) is changed into

    Noting that the left formulas of the above equation are the boundary value of the generalized complex functions whenx2>0,and the right formulas are that whenx2<0,hence,the generalized complex functions are analytic in the whole plane.Furthermore,the complex functions are constants.There is no stress hypothesis at infinity,so the constants are zeros.For this reason,we can achieve the following relations

    Considering Eqs.(3.4) (3.6) and (2.12),we have

    From Eq.(3.1),we get

    Here Eq.(3.8) is changed into new forms for easy calculation

    From Eq.(3.9),we obtain

    where

    Eq.(3.10)is a group of Riemann-Hilbert problems for two generalized complex functions.Referring to the theory of Riemann-Hilbert problems,we obtain the general solutions

    where

    A special case considered here is that the infinite plane of 1D orthorhombic quasicrystals is subjected to antiplane stresses of the phonon and phason fields asat infinity.Then,the equivalent loading on the crack surface for this special case is

    Some marks are introduced as

    Then,in this special case,we have

    Furthermore,we get

    Considering that

    we have

    Single value condition of generalized displacement demands that the displacement should be returned to the initial value after going around the crack for one circle.So,we have

    Hence,Eq.(3.19) is simplified as

    Then,the phonon stresses as well as the phason stresses can be expressed as

    Using Eq.(3.15),one can find that

    Further,the stress formulas (3.22) are deduced by using Eq.(3.23)

    Obviously,for the crack surface,are the pure imaginary,

    whereβ(x1) is a real number function forzk=x1∈(?a,a).

    So,the stress formulas along the crack surface can be expressed as follows

    Further,the stress formulas along the crack surface are deduced through Eq.(3.23)

    It is readily found that the stress formulas Eq.(3.14)are fulfilled along the crack surface.

    Furthermore,the gradual fields around the right crack-tip are analyzed.The discussion is limited in the local coordinate system(r,θ)aroundx1=a.Whenzk→a+,one can obtain thatzk?a=r(cosθ+μksinθ),zk+a=2a,so the gradual form (3.10) can be expressed as follows

    Moreover,the vector stress intensity factor[20]of the crack can be defined as

    whereKσandKHdenote the stress intensity factors of phonon field and phason field,respectively.

    From Eq.(3.28),one can compute the stress intensity factors as follows

    One can get the stress intensity factors as follows from Eqs.(3.23) and (3.30)

    4.The Problem of Rigid Line Inclusion

    Here,the fundamental solution of rigid line inclusion is considered when a pair of equivalent antiplane shear traction of the phonon and phason fields,σ0(x1) andH0(x1),act on the surface of rigid line inclusion.Then,the corresponding boundary conditions on the surface of rigid line inclusion are imposed

    The displacement-continuity conditions are satisfied

    From Eq.(4.1),we have

    So,Eq.(4.3) are fulfilled alongx1.

    Based on that

    the above equation is changed into

    As the left formulas of the above equation are the boundary value of the generalized complex functions whenx2>0,and the right formulas are that whenx2<0,the generalized complex functions are analytic in the whole plane,furthermore,the complex functions are the constants.There is no displacement hypothesis at infinity,so all the constants are zero.For this reason,we can achieve the following equations

    Considering Eqs.(2.13),(4.5) and (4.7),we have

    From Eq.(4.1),we have

    Eq.(4.9) can be changed into new forms for easy calculation

    From Eq.(4.10),we obtain

    where

    Eq.(4.11)is a group of Riemann-Hilbert problems for two generalized complex functions.Referring to the theory of Riemann-Hilbert problems,we obtain the general solutions

    A special case considered here is that the infinite plane of 1D orthorhombic quasicrystals is subjected to antiplane stresses of the phonon and phason fields asat infinity.Then,the equivalent loading on the inclusion surface for this special case is

    Some marks are introduced as

    Then,in this special case,we have

    And,we obtain

    Considering Eq.(3.18),we get

    Single value condition of generalized displacement demands that the displacement should be returned to the initial value after going around the crack for one circle.So,we haveC1=C2=0.Then,Eq.(4.18) is simplified as

    Then,the phonon stresses as well as the phason stresses can be expressed

    Using Eq.(4.15),one can find that

    Further,the stress formulas (4.20) are deduced by using Eq.(4.21)

    Obviously,for the inclusion surface,are the pure imaginary,

    whereβ(x1) is a real number function forzk=x1∈(?a,a).

    So,the stress formulas along the crack surface can be expressed as follows

    Further,the stress formulas along the crack surface are deduced by using Eq.(4.21)

    It is readily found that the stress formulas (4.1) along the inclusion surface are fulfilled.

    Furthermore,gradual fields around the right tip of the inclusion are analyzed.The discussion is limited to the local coordinate system (r,θ) aroundx1=a.Whenzk→a+,one can obtain thatzk?a=r(cosθ+μksinθ),zk+a=2a,so the gradual form (4.22) can be expressed as follows

    The traditional concept of stress intensity factors of crack can be extended to the problem of rigid line inclusion,and they are called as the stress field intensity factors being defined as follows.

    From Eq.(4.26),one can compute stress intensity factors as follows.

    We can list the stress intensity factors as follows from Eqs.(4.21) and (4.28),

    Note that GUO and his co-workers[20]have given the stress intensity factor asKIII=when the quasicrystal is subjected to the shear forcePalong the quasiperiodic direction at infinity,which is derived through solving the problem of an elliptical hole and degenerating into the problem of a Griffith crack by employing a new displacement potential function and using complex variable function method or a half-inverse method.Clearly,as in the analogous classical isotropic elastic situation[25],all the field components have been shown to exhibit acrack-tip behavior,and the present results agree with the solutions given in [20] (when their remote loadingsPare replaced byσ0andH0,respectively).So,it shows that our method is effective.

    5.Conclusion

    The macroscopical crack or rigid line inclusion which is placed on the periodic (x1,x2)-plane is studied for finding out the influence of phason displacement on the related physical quantities.These two models are reduced to the Riemann–Hilbert problem of generalized complex functions to obtain the closed-form solutions for antiplane mode.As a consequence,the explicit solutions of stress intensity factors are derived analytically.From the stress intensity factors with the analytical form for antiplane mode,one can find that the phonon and phason stress intensity factors of crack as well as the phonon and phason stress field intensity factors of rigid line inclusion are not related to the coupling of phonon and phason fields.These mean that there is no influence of phason displacement on both the phonon stress intensity factor of crack and the phonon stress field intensity factor of rigid line inclusion.

    伊人久久精品亚洲午夜| 蜜桃久久精品国产亚洲av| 亚洲av免费高清在线观看| 一区二区三区四区激情视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av成人精品| 成人漫画全彩无遮挡| 各种免费的搞黄视频| 婷婷色综合大香蕉| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区黑人 | 美女xxoo啪啪120秒动态图| 日韩中文字幕视频在线看片| 色婷婷av一区二区三区视频| 草草在线视频免费看| 亚洲精品日韩av片在线观看| 亚洲av中文av极速乱| 久久久亚洲精品成人影院| 国产女主播在线喷水免费视频网站| 色网站视频免费| 国产精品.久久久| 欧美日本中文国产一区发布| 欧美激情 高清一区二区三区| 国产成人精品一,二区| 丝瓜视频免费看黄片| 国产欧美日韩一区二区三区在线 | 男女啪啪激烈高潮av片| 免费观看av网站的网址| 成人亚洲欧美一区二区av| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜添av毛片| 国产成人午夜福利电影在线观看| 日韩一区二区视频免费看| 午夜福利视频在线观看免费| 亚洲国产精品国产精品| 高清毛片免费看| 超碰97精品在线观看| 三级国产精品片| 在线观看www视频免费| 欧美xxxx性猛交bbbb| 亚洲精品日本国产第一区| av不卡在线播放| 精品久久久精品久久久| 国产成人免费无遮挡视频| 亚洲情色 制服丝袜| 成人18禁高潮啪啪吃奶动态图 | 精品久久久精品久久久| 好男人视频免费观看在线| 久久韩国三级中文字幕| 日韩成人av中文字幕在线观看| 久久久精品94久久精品| 国产视频首页在线观看| 伦理电影免费视频| 激情五月婷婷亚洲| 久久ye,这里只有精品| 美女xxoo啪啪120秒动态图| 亚洲综合色网址| 日韩中文字幕视频在线看片| 免费久久久久久久精品成人欧美视频 | 日韩一区二区三区影片| 一边摸一边做爽爽视频免费| 久久精品国产亚洲网站| 妹子高潮喷水视频| 超碰97精品在线观看| 国产精品久久久久久久久免| 亚洲国产欧美日韩在线播放| 超碰97精品在线观看| 国产一级毛片在线| 国产一级毛片在线| 国产爽快片一区二区三区| 特大巨黑吊av在线直播| 亚洲美女搞黄在线观看| 亚洲精品456在线播放app| 妹子高潮喷水视频| 中文字幕制服av| 亚洲精品国产av蜜桃| 晚上一个人看的免费电影| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久噜噜老黄| 一区在线观看完整版| 欧美日韩视频精品一区| 精品久久久久久久久亚洲| 视频区图区小说| 国产成人91sexporn| 一级毛片 在线播放| 大码成人一级视频| 国产精品免费大片| 日韩av免费高清视频| 一边亲一边摸免费视频| 久久久国产一区二区| 色哟哟·www| 男女国产视频网站| 人人澡人人妻人| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 午夜福利视频精品| 黄色毛片三级朝国网站| 在线观看免费高清a一片| av国产久精品久网站免费入址| 亚洲高清免费不卡视频| 美女内射精品一级片tv| 国产亚洲精品久久久com| 国产精品一区www在线观看| 亚洲国产色片| 日本黄色片子视频| 国产精品久久久久久久久免| 久久精品国产鲁丝片午夜精品| 在线观看人妻少妇| 精品一品国产午夜福利视频| 熟女av电影| 五月开心婷婷网| 最近中文字幕2019免费版| 久久99一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产午夜精品久久久久久一区二区三区| 日韩伦理黄色片| 极品人妻少妇av视频| 亚洲综合色网址| 91久久精品国产一区二区三区| 18禁在线播放成人免费| 最后的刺客免费高清国语| 日本欧美国产在线视频| 少妇 在线观看| 妹子高潮喷水视频| 黑人巨大精品欧美一区二区蜜桃 | 高清毛片免费看| 免费人成在线观看视频色| 亚洲性久久影院| 人人妻人人澡人人爽人人夜夜| 国产免费福利视频在线观看| 久久热精品热| 国产精品一国产av| 菩萨蛮人人尽说江南好唐韦庄| 18禁裸乳无遮挡动漫免费视频| 欧美另类一区| 校园人妻丝袜中文字幕| 99九九在线精品视频| 在现免费观看毛片| 久久精品国产亚洲网站| 亚洲国产精品国产精品| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 国产白丝娇喘喷水9色精品| 夜夜看夜夜爽夜夜摸| 22中文网久久字幕| 亚洲精品日韩av片在线观看| 国产精品秋霞免费鲁丝片| 18禁裸乳无遮挡动漫免费视频| 久久久精品94久久精品| 校园人妻丝袜中文字幕| videossex国产| 欧美xxxx性猛交bbbb| 中文字幕制服av| 精品一区二区三卡| 国产在线视频一区二区| av.在线天堂| 亚洲激情五月婷婷啪啪| 看非洲黑人一级黄片| 亚州av有码| 成人漫画全彩无遮挡| 99九九在线精品视频| 欧美精品亚洲一区二区| 性色av一级| 日本91视频免费播放| 尾随美女入室| 永久网站在线| 男人操女人黄网站| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 亚洲,一卡二卡三卡| 免费日韩欧美在线观看| 婷婷色av中文字幕| 欧美一级a爱片免费观看看| 色5月婷婷丁香| 精品国产露脸久久av麻豆| 91久久精品电影网| 制服诱惑二区| 久久久国产一区二区| 天美传媒精品一区二区| 中文乱码字字幕精品一区二区三区| 香蕉精品网在线| 一级毛片aaaaaa免费看小| 一区二区三区免费毛片| 国产在视频线精品| 韩国av在线不卡| 自线自在国产av| 熟女av电影| 肉色欧美久久久久久久蜜桃| 亚洲精品久久久久久婷婷小说| 一区二区av电影网| 狂野欧美激情性xxxx在线观看| 一二三四中文在线观看免费高清| 午夜激情av网站| 内地一区二区视频在线| 精品一区二区三卡| 亚洲成色77777| 欧美亚洲 丝袜 人妻 在线| 国产欧美另类精品又又久久亚洲欧美| 久久99热这里只频精品6学生| 下体分泌物呈黄色| 亚洲精品乱码久久久v下载方式| 精品一区二区三卡| 性高湖久久久久久久久免费观看| 18在线观看网站| 日韩大片免费观看网站| 18禁在线播放成人免费| 国产精品熟女久久久久浪| 婷婷色av中文字幕| av专区在线播放| 国产精品一区二区三区四区免费观看| 91久久精品电影网| 我的女老师完整版在线观看| 久久青草综合色| 国产精品一区www在线观看| 中文字幕制服av| 18+在线观看网站| 熟女电影av网| 国产精品一国产av| 国产精品欧美亚洲77777| 大片免费播放器 马上看| 欧美丝袜亚洲另类| 国产免费又黄又爽又色| 久久久国产精品麻豆| 大香蕉久久成人网| 色哟哟·www| 最后的刺客免费高清国语| 飞空精品影院首页| 亚洲丝袜综合中文字幕| 99精国产麻豆久久婷婷| 亚洲色图 男人天堂 中文字幕 | 中文天堂在线官网| 亚洲av.av天堂| xxxhd国产人妻xxx| 亚洲人与动物交配视频| 免费少妇av软件| 五月开心婷婷网| 国产精品成人在线| 爱豆传媒免费全集在线观看| 中文字幕av电影在线播放| 一级黄片播放器| 午夜免费观看性视频| 波野结衣二区三区在线| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 久久国内精品自在自线图片| 纯流量卡能插随身wifi吗| 熟女av电影| 母亲3免费完整高清在线观看 | 最后的刺客免费高清国语| 免费看av在线观看网站| 久久这里有精品视频免费| 免费av不卡在线播放| 欧美人与性动交α欧美精品济南到 | 69精品国产乱码久久久| 大码成人一级视频| 亚洲婷婷狠狠爱综合网| 飞空精品影院首页| 日韩成人伦理影院| 人成视频在线观看免费观看| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 欧美少妇被猛烈插入视频| 亚洲av免费高清在线观看| 亚洲av在线观看美女高潮| 免费看光身美女| 亚洲精品,欧美精品| 国产精品免费大片| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| 在线精品无人区一区二区三| 免费高清在线观看视频在线观看| 九色成人免费人妻av| 精品国产国语对白av| 亚洲精品国产av蜜桃| www.av在线官网国产| 制服诱惑二区| 久久综合国产亚洲精品| 韩国av在线不卡| kizo精华| 免费人妻精品一区二区三区视频| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 久久精品国产鲁丝片午夜精品| 精品国产一区二区三区久久久樱花| 哪个播放器可以免费观看大片| 成人18禁高潮啪啪吃奶动态图 | 久久狼人影院| 寂寞人妻少妇视频99o| 黑人高潮一二区| 91久久精品国产一区二区成人| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院 | 久久久久久久亚洲中文字幕| 国产av码专区亚洲av| 精品一区二区免费观看| 啦啦啦中文免费视频观看日本| 狂野欧美白嫩少妇大欣赏| 欧美一级a爱片免费观看看| 日本黄大片高清| av又黄又爽大尺度在线免费看| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美 | 在线观看国产h片| 国产精品99久久99久久久不卡 | 国产精品麻豆人妻色哟哟久久| 成人亚洲欧美一区二区av| 久久久久久伊人网av| 精品少妇内射三级| 高清毛片免费看| 大香蕉久久网| 26uuu在线亚洲综合色| 少妇猛男粗大的猛烈进出视频| 妹子高潮喷水视频| 色5月婷婷丁香| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 国产精品.久久久| www.色视频.com| 亚洲国产精品一区三区| 久久精品久久久久久久性| 国产精品99久久久久久久久| 男人操女人黄网站| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| 26uuu在线亚洲综合色| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 久久国产亚洲av麻豆专区| 999精品在线视频| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 91精品伊人久久大香线蕉| 国产乱人偷精品视频| 成年美女黄网站色视频大全免费 | 亚洲国产成人一精品久久久| 国产在线免费精品| 精品一区二区免费观看| 婷婷色综合www| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 黄片播放在线免费| 国产精品蜜桃在线观看| 国产白丝娇喘喷水9色精品| 少妇丰满av| av国产久精品久网站免费入址| 国产亚洲精品第一综合不卡 | 国产熟女欧美一区二区| 女人精品久久久久毛片| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 国产黄频视频在线观看| 啦啦啦视频在线资源免费观看| 高清毛片免费看| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 国产成人午夜福利电影在线观看| 91aial.com中文字幕在线观看| 中文字幕av电影在线播放| 老女人水多毛片| 我的老师免费观看完整版| 免费av中文字幕在线| 热re99久久精品国产66热6| 大香蕉久久网| av免费在线看不卡| 中文乱码字字幕精品一区二区三区| 久久毛片免费看一区二区三区| 街头女战士在线观看网站| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 国产av码专区亚洲av| 九色成人免费人妻av| 丰满饥渴人妻一区二区三| 国产极品粉嫩免费观看在线 | 欧美日韩视频高清一区二区三区二| 飞空精品影院首页| 黑丝袜美女国产一区| 欧美精品国产亚洲| av不卡在线播放| 国产精品人妻久久久影院| 欧美日韩精品成人综合77777| 久久人人爽av亚洲精品天堂| 丝瓜视频免费看黄片| 亚洲中文av在线| 最近中文字幕高清免费大全6| av在线app专区| 18在线观看网站| 少妇人妻精品综合一区二区| 亚洲精品aⅴ在线观看| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 毛片一级片免费看久久久久| 久久久久国产网址| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 精品久久国产蜜桃| 美女中出高潮动态图| 国产一区亚洲一区在线观看| 男女无遮挡免费网站观看| 国产成人精品婷婷| 久久这里有精品视频免费| 一级a做视频免费观看| 精品一品国产午夜福利视频| 日韩强制内射视频| 99国产精品免费福利视频| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 人人澡人人妻人| 国产精品不卡视频一区二区| 国产黄片视频在线免费观看| 女性生殖器流出的白浆| 成人无遮挡网站| 国产高清不卡午夜福利| 99久国产av精品国产电影| 三级国产精品欧美在线观看| 欧美精品亚洲一区二区| 18在线观看网站| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| 国产爽快片一区二区三区| 日本wwww免费看| 精品亚洲成国产av| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 日韩强制内射视频| 一个人看视频在线观看www免费| 综合色丁香网| 色94色欧美一区二区| 人妻人人澡人人爽人人| 永久免费av网站大全| 亚洲人与动物交配视频| 如日韩欧美国产精品一区二区三区 | 乱码一卡2卡4卡精品| 爱豆传媒免费全集在线观看| 国产午夜精品一二区理论片| 欧美日韩视频高清一区二区三区二| 十八禁网站网址无遮挡| 99九九在线精品视频| 日日摸夜夜添夜夜爱| 国国产精品蜜臀av免费| 久久久久网色| 国产成人午夜福利电影在线观看| 久久久午夜欧美精品| 黄片播放在线免费| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 精品少妇内射三级| 人妻 亚洲 视频| www.色视频.com| 国产一级毛片在线| 国产av码专区亚洲av| 一级a做视频免费观看| 一级二级三级毛片免费看| 晚上一个人看的免费电影| av.在线天堂| 天堂8中文在线网| 婷婷色av中文字幕| 中文字幕人妻丝袜制服| 亚洲欧美日韩卡通动漫| 精品一品国产午夜福利视频| 精品国产一区二区久久| 99热6这里只有精品| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 免费高清在线观看日韩| 在现免费观看毛片| 蜜臀久久99精品久久宅男| 妹子高潮喷水视频| 成人国产麻豆网| 又黄又爽又刺激的免费视频.| 国产精品三级大全| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 在线观看www视频免费| 少妇丰满av| tube8黄色片| 777米奇影视久久| 亚洲无线观看免费| 王馨瑶露胸无遮挡在线观看| 永久免费av网站大全| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 成人18禁高潮啪啪吃奶动态图 | 亚洲怡红院男人天堂| 自线自在国产av| 日本av免费视频播放| 在线 av 中文字幕| 国产欧美亚洲国产| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 91久久精品国产一区二区成人| 少妇被粗大的猛进出69影院 | 一个人免费看片子| 亚洲欧美一区二区三区黑人 | 男女高潮啪啪啪动态图| 黄色配什么色好看| 99久国产av精品国产电影| 日本与韩国留学比较| 国产深夜福利视频在线观看| 2018国产大陆天天弄谢| 99re6热这里在线精品视频| 国产免费一区二区三区四区乱码| 国产69精品久久久久777片| 欧美bdsm另类| 黄色欧美视频在线观看| 国产综合精华液| 色网站视频免费| 最近的中文字幕免费完整| 看非洲黑人一级黄片| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 天天操日日干夜夜撸| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 性色avwww在线观看| 大香蕉久久网| 欧美三级亚洲精品| 久久97久久精品| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级国产av玫瑰| 十八禁高潮呻吟视频| 成人国产麻豆网| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 少妇人妻 视频| 秋霞伦理黄片| 嫩草影院入口| 美女大奶头黄色视频| 妹子高潮喷水视频| 中文精品一卡2卡3卡4更新| 亚洲精品美女久久av网站| 久久国内精品自在自线图片| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 亚洲,一卡二卡三卡| 久久99一区二区三区| 特大巨黑吊av在线直播| 久久久国产一区二区| 久久鲁丝午夜福利片| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 国产成人av激情在线播放 | 午夜激情av网站| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久国产电影| 国产国语露脸激情在线看| 纯流量卡能插随身wifi吗| 国产一区二区三区av在线| 啦啦啦啦在线视频资源| 欧美精品一区二区免费开放| 欧美亚洲日本最大视频资源| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 久久人人爽人人片av| 欧美精品一区二区免费开放| 特大巨黑吊av在线直播| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线免费精品| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 午夜福利视频精品| 只有这里有精品99| 精品一区二区三卡| 热re99久久国产66热| 只有这里有精品99| 国产免费又黄又爽又色| 精品少妇内射三级| 日本与韩国留学比较| 亚洲三级黄色毛片| 国产成人a∨麻豆精品| 超色免费av| 亚洲欧美色中文字幕在线| 卡戴珊不雅视频在线播放| 这个男人来自地球电影免费观看 | 99九九线精品视频在线观看视频| 大话2 男鬼变身卡| 丝瓜视频免费看黄片| 久久人人爽av亚洲精品天堂| 亚洲精品aⅴ在线观看| 日日啪夜夜爽| 18禁在线播放成人免费| 边亲边吃奶的免费视频| 97在线人人人人妻| 欧美日韩视频高清一区二区三区二| 中文天堂在线官网| 午夜精品国产一区二区电影| 桃花免费在线播放| 精品视频人人做人人爽| 亚洲欧美精品自产自拍| 人妻人人澡人人爽人人| 亚洲av国产av综合av卡| 91精品国产九色| 我的女老师完整版在线观看| 18+在线观看网站|