• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroclinic and Traveling Wave Solutions for a SIR Epidemic Model with Nonlocal Response

    2019-06-27 09:58:34WANGZongyi王宗毅
    應(yīng)用數(shù)學(xué) 2019年3期

    WANG Zongyi(王宗毅)

    ( College of Mathematics and Big Data,Huizhou University,Guangdong 516007,China)

    Abstract: The existence of positive heteroclinic solutions is proved for a class of sir epidemic model with nonlocal interaction and non monotone property.Applying the theory of Fredholm operator decomposition and nonlinear perturbation developed by Faria and HUANG(2006),we study a connection between traveling wave solutions for the reaction-diffusion system and heteroclinic solutions of the associated differential equations.Existence and dynamics of wavefront profile are obtained as a consequence.

    Key words: Delay ordinary differential equation; Reaction-diffusion equation; SIR epidemic model; Heteroclinic solution; Traveling wave solution

    1.Introduction

    As we all know,delay differential equations(DDEs) have been extensively used as models in biology and other sciences,with particular emphasis in population dynamics.Such equations serve as models for the growth of a single species population,in ecology problems or in disease modeling[1?3,9?13].Recently,Faria et al.proposed the theory to obtain traveling wave solutions for scalar delay reaction-diffusion equations[4],which can be viewed as perturbations of heteroclinic solutions connecting two hyperbolic equilibria of the associated equation without diffusion.Our study was motivated by the following diffusive population model with stage structure[5]

    whereu1(t,x) andu2(t,x) denote respectively the densities of juvenile,mature individuals at timetand locationx.αu2is a birth function,andγu1,βu22represent respectively the death functions of juvenile and mature individuals.The adult recruitment term iswhere the delayτis the time taken from birth to maturity.Gourley and KUANG[5]study the minimal speed of equations (1.1) atτ=0.They also discuss the relations betweenτand the minimal speed,and the monotonicity of the traveling waves for such given model.

    We note that the spread of disease for species is possibly related to the stage structure.Juveniles have more opportunities to contract some diseases such as measles and mumps,while some other diseases may spread in adults.Thus only the juveniles are assumed to be susceptible to the infection in many SIR epidemic models with stage structure and nonlinear incidence.Furthermore,a general incidence can beU(u)vwith susceptible populationuand infectious populationv.However,we are concerned on the infectious agentsU(u) instead of the nonlinear incidenceU(u)vfor simplicity,and study a SIR epidemic model with stage structure and nonlocal response with the form as follows

    whereu1(t,x),u2(t,x) andu3(t,x) denote the densities of juvenile,susceptible mature and infectious mature individuals at timet ∈R respectively,locationx ∈R,γ,ρ >0 denote the death rate of juvenile and infectious adults respectively,andr >0 denote the recovery rate of infectious adults.HereB(u2)is the birth function,andε∫

    Rfα(x ?y)B(u2(t?τ,y))dyrepresents the recruitment term whereε ∈[0,1],andfα(·)is the kernel function.For instance,we can letandε=e?γτ,coinciding with those of maturation ageτand nonlocal response.We assume that only the mature individuals are susceptible,and the susceptible individuals,once infected by infectious adults,can carry germs and then transmit the infections.Since it act similarly as the infectious agent and thus letU(u2) be the force of infection on the mature population due to a concentration of the susceptible adultsu2.

    The purpose of this paper is to study connections between the traveling wave solutions and heteroclinic solutions for such different type systems.Roughly speaking,by detailed discussion on the dynamics of the corresponding ordinary differential equations,we expect to find the long time behaviors of the epidemic models (1.2).This paper is organized as follows.In Section 2,we introduce some assumptions and establish the well-posedness of nondiffusive system.We show that there is a positive heteroclinic solution connecting two hyperbolic equilibria,provided that one of them is global attractive.In Section 3,we obtain our main results on the existence of the positive heteroclinic solutions for the ordinary differential equations.However,for sufficient largec,the set of all traveling wave solutions propagating at speedcforms aC1-smooth manifold in someC([?τ,0],R)-neighborhood of the heteroclinic solution.As a consequence,the existence of traveling wave solutions for the given SIR epidemic model follows immediately.

    2.Well-Posedness and Positive Heteroclinic Solutions

    LetC(R,R) be the space of continuous functions on R.Let=C([?τ,0],R) be a Banach space,=C([?τ,0],R+).For anyK >0,let [0,K]C={? ∈C(R,R):0≤?(t)≤K,t ∈R}.In the system (1.2),the first and the third equations can be solved independently onceu2(t,x) is determined.Thus,we first consider the equation foru2(t,x)

    The corresponding nondiffusive system is

    Foru ∈C(R,R),define

    We always assume thatB(0)=0,U(0)=0 and

    (H1) There is au?2>0 such thatg(u?2)=0,g(u)>0 foru ∈(0,u?2) andg(u)<0 foru ∈(u?2,∞).

    According to the assumption (H1),(2.2) has a unique positive equilibriau?2.Thus (1.2)has two spatially unform equilibriaE0(0,0,0) andE?(u?1,u?2,u?3),whereu?1,u?2,u?3>0 and satisfy

    In addition to (H1),we need more assumptions as follows

    (H2)B(u) is differentiable and 0< |B′(u)| ≤k1foru ∈[0,u?2] withk1>0;B′(u?2)<0;B′(0)u ?ρ1u1+ν1≤B(u)≤B′(0)uforu ∈[0,u?2] with someν1∈(0,1],ρ1>0;

    (H3)U(u) is differentiable and 0< U′(u)≤k2foru ∈[0,u?2] withk2>0;U′(0)u ≤U(u)≤U′(0)u+ρ2u1+ν2foru ∈[0,u?2] with someν2∈(0,1],ρ2>0;

    (H4)εB′(0)?U′(0)>d.

    Notice that the conditions (H2)-(H4) imposed on functionsB(u) andU(u) are natural,and they are not more restrictive conditions.For example,we take population growth rateB(u)=pue?auwith two positive constantsp,a>0,thenB′(u)=pe?au(1?au),B′(0)=pandB(u)≤B′(0)uforu ∈[0,1].If we takeU(u)=δu,thenU(u) satisfies the assumption(H3).However,it also follows thatprovidedthusB(u) is an nonmonotone function and satisfies the assumption (H2).

    Sinceg(?)=?d?(0)+εB(?(?τ))?U(?(0)) and the assumptions (H1)-(H3),for anyL ≥u?2,gis global Lipschitz continuous and quasi-monotone on [0,K]Cin the sense that

    for all?1,?2∈[0,K]Cwith?1≥?2.

    In fact,it follows that

    Hence,for anyh>0 with 1>h(d+k2),we have

    from which (2.4) follows.

    For (2.2),define the differential operatorL

    For the linearized equation of (2.2) about zero,

    The characteristic equation is

    Lemma 2.1Letλ1be the unique real root of (2.6),for? ∈(0,λ1) sufficiently small,we have

    (i) ForM=M(?) sufficiently large,the function

    witht1=?(logM)/?,is a lower solution of(2.2),i.e.,??: R→R is continuous,differentiable almost everywhere on R,and satisfiesL??≤0 a.e.t ∈R.

    (ii) Moreover,0≤??≤u?2.

    ProofLetM ≥1.Fort>t1,we haveL??(t)=?εB(??(t ?τ))≤0.Consider nowt ≤t1.It is easy to see that 0≤1?Me?t<1 and 0<1?Me?(t?τ)<1 fort ≤t1.Since(H2),(H3) and (2.6) hold,we obtain

    whereρ?:=ρ1+ρ2,and we use the inequality eλ1(1+νi)s≤e(λ1+?)sfor anys<0 andi=1,2 provided that?>0 is sufficiently small.Since ?(λ1+?)>0,hence we obtain thatL??(t)≤0 ifM=M(?) is chosen so thatM ≥1 andM ≥?(λ1+?)?1ρ?.This proves (i).

    Lett0be suchSince?′?(t0)=0,we haveλ1=M(λ1+?)e?t0,and therefore for 0

    According to (2.3) and (2.4),gis quasi-monotone on [0,K]C.However,we can choose sufficiently largeh >0 such thathφ(s)+g(φ(·)) is non-decreasing function forφ ∈[0,K]C.Thus,we can define the operatorT:C(R,R)→C(R,R) by

    Clearly,a positive functionφ(t)is a global bounded solution of(2.2)if and only ifφ=Tφ,t ∈R.Our goal in the remainder of the section is to show thatTis completely continuous on a suitable convex,closed set of a Banach space,in which we shall apply Schauder’s fixed point theorem to find a fixed point ofTsatisfying

    withK=u?2.

    Definet0=(logK)/λ1.Using the assumptions (H2) and (H3),we have the following results.

    Lemma 2.2For allφ ∈C(R,R),φnon-negative,thenTφis bounded and differentiable,with

    Moreover,ifφ ∈C(R,R) with 0≤φ(t)≤eλ1t,t ≤t0,then for some positive constantk,0≤Tφ(t)≤keλ1t,t ≤t0,whereλ1is the unique positive real root of (2.6).

    ProofRecall thathφ(s)+g(φ(·))is non-decreasing function.Consider any non-negativeφ ∈[0,K]C.Then,fort ∈R,

    and (Tφ)′(t)=?hTφ(t)+hφ(t)+g(φ(·?τ)).It follows that|(Tφ)′(t)|≤hK.This proves(2.9).

    From (H2),(H3) and the definition ofg,forφ ≥0,we have

    withh′:=h+d+k2.Then,from (2.8),(2.9) and (2.10),we obtain

    This completes the proof.

    Let??be as in (2.7),with?>0 andM ≥1 chosen in Lemma 2.1.Then we have

    Lemma 2.3The following statements hold.

    (i)T??(t)≥??(t),for allt ∈R;

    (ii) forφ ∈C(R,R) satisfying??(t)≤φ(t)≤K,t ∈R,then??(t)≤Tφ(t),t ∈R.

    ProofDefine?1:=T??.We have

    Letw(t)=?1(t)???(t).Since (2.11) and??is a lower solution of (2.2),it follows that

    andr(t) is continuous and bounded from Lemma 2.2.We obtain

    for some constantc ∈R.On the other hand,w(t) is bounded on R,implying thatc=0.Hencew(t)≥0 fort ∈R.This completes the proof of (i).

    Notice thathφ+g(φ(·?τ)) is non-decreasing for anyφ ∈C(R,R).For??(t)≤φ(t)≤K,t ∈R,by (i) we obtain

    and (ii) follows immediately.

    Define

    We equipped the spaceC(R,R) with the norm whereρ ∈(0,min{λ1,h}).Thus (C(R,R),||·||) is a Banach space.

    Lemma 2.4The setSis||·||ρ-closed,convex and non-empty.

    ProofFrom Lemma 2.1,we have??(t)≤eλ1tand??(t)≤u?2(t),t ∈R,thus??(t)∈S.It is clear thatSis convex and||φ||ρ≤Kforφ ∈S.Since the||φ||ρconvergence implies the uniform convergence in any compact set of R,it follows thatSis||·||ρ-closed.

    Lemma 2.5Consider the spaceC(R,R),equipped with the norm|| · ||ρ.Then,T:S →C(R,R) is lipschitz continuous.

    ProofConsiderφ,ψ ∈S.Fort ≤τ,

    With a simple computation,we have

    Fort>τ,

    Hence we have

    Lemma 2.6ForSdefined in (2.12),the setT(S) is relatively compact in (C(R,R),||·||ρ).

    ProofFor any compact intervalI ∈Sandφn∈I,letψn=Tφn,n ∈N.From Lemma 2.2,(ψn) is uniformly bounded on R and equicontinuous.By Ascoli-Arzel`a theorem,there is a subsequence of (ψn) which converges uniformly onIto someψI∈C(I,R).DenoteIk=[?k,k],k ∈N.We take a convergent subsequences (ψαk(n)) such that (ψαk(n)) is a subsequences of (ψα(k?1)(n)) andαk: N→N is increasing.It follows thatψαk(n)→ψkuniformly onIkandψk+1|Ik=ψkfork ≥1.Define? ∈C(R,R) by?(t)=ψk(t) for|t|≤k,t ∈R.

    Now we show that the“diagonal”subsequence(ψαn(n))convergence to?(t)with respect to the norm||·||ρ.Let? >0 be given.Choosen0∈N such that e?ρn0≤?/K.By Lemma 2.2,0≤ψαn(n),?(t)≤K,thus if|t|≥n0we have

    On the other hand,ψαn(n)→?(t) uniformly on [?n0,n0].Consequently,there existsn1≥n0such that

    forn ≥n1and|t|≤n0.Hence|ψαn(n)??(t)|e?ρ|t|→0.This completes the proof.

    Theorem 2.1Assume that conditions(H1)-(H4)are satisfied.Then,there is a positive solutionu(t) of (2.2),defined on R and satisfyingu(?∞)=0 andu(t)=O(eλ1t)ast →?∞,whereλ1is the positive root of (2.6).Furthermore,if there exists a globally attractive equilibriumu?∈(0,u?2],there is a positive heteroclinic solution of (2.1) connecting 0 tou?.

    ProofConsiderSas in (2.12).From Lemmas 2.1-2.3,T(S)?S.From Lemma 2.4 and Lemma 2.5,T:S →Sis||·||ρcompletely continuous.Lemma 2.6 allows us to use the Schauder’s fixed-point theorem to conclude that there isu ∈Ssuch thatTu=u.Thus,u(t)is a positive global solution of (2.2) satisfying??(t)≤u(t)≤eλ1tfort ≤t0.Moreover,ifu?(t) is globally attractive,it follows that limt→∞u(t)=u?(t).This complete the proof.

    We need another lemma which is cited from [6].

    Lemma 2.7[6]Assume that (i) the functionalV:C([?τ,0],Rn)→R is continuous,V(0)=0;

    (ii) there exist nonnegative and continuous functionsu(s) andv(s) such thatu(s)→∞(s →∞),v(0)=0;

    (iii)u(|?(0)|)≤ V(?) for? ∈C;

    (iv) ˙V(?)≤ ?v(|?(0)|) for? ∈C,where

    Then all solutions of (2.2) are bounded and the zero solution of (2.2) is stable.If in addition,v(s) is positive definite,then the all solutions of (2.2) tend to zero ast →+∞.

    Using Lemma 2.7,we can prove the existence of positive heteroclinic solutions of the given model.

    Theorem 2.2Assume that (H1)-(H3) hold.Furthermore,if there exists a positive constantksatisfying

    then equation (2.2) has a heteroclinic solutionu?such that

    ProofConsider the initial problem

    whereλ0is the positive real root ofΛ1(λ)=0.Express the solution of (2.17) and (2.18) asuT(t),t ∈R.For allT ∈(?∞,0],we obtain a set of functions{uT(t)}T∈(?∞,0].Define

    Thenu?(t) satisfies the following Properties.

    (1o)u?(t) is a solution of (2.2);

    (2o)

    Hence{uT(t)}T∈(?∞,0]is equi-continuous on R.For anyN >0,{uT(t)}T∈(?∞,0]has subsequence (without loss of generality,we may assume that it is{uT(t)}T∈(?∞,0]itself) which is uniformly convergent on [?N,N].Suppose that the limit function isu?(t).SinceNis arbitrary,noting the definition of{uT(t)}T∈(?∞,0],we claim thatu?(t) is defined on R,and is a solution of (2.2).

    For any?>0,choosingT <0,if|T|is large enough andt

    Therefore,we obtain

    Letx(t)=u(t)?u?(t),t ∈R.Then the equation forxis

    Define a functional

    Then we have

    Calculating the right derivative along the solutions of (2.21),we obtain

    wher eζ(t) is betweenx(t)+u?(t) andu?(t) fort ∈R.From (2.15),we haveandk >12.Noting that 0

    Defineu(s) :=s2,andv(s) :=[(2k ?1)?k22]s2.Then

    andv(s) is positive definite.On the other hand,we obtain from (2.23) that

    Therefore,by Lemma 2.7,we know that any solutionu(t)=x(t)+u?(t) of (2.2) tends tou?(t) ast →∞.Thus (2o) holds.

    We conclude from (1o) and (2o) thatu?(t) is a solution of (2.2) satisfying (2.16).This completes the proof.

    3.Existence of Traveling Wave Solution

    Now we are in a position to study traveling wave solutions for the reaction-diffusive SIR model(2.1).To the end we shall use the method developed in[4].The results obtained in the paper tell us if the nondiffusive equation has a heteroclinic connection betweenE1andE2,then the diffusive system has a family of traveling wavefronts fromE1toE2with large speed.For convenience of discussion,we denote two positive equilibria byE1=0,E2=u?2(t),respectively.We have the following results.

    Lemma 3.1E1is hyperbolic.

    ProofConsider the characteristic equationΛ1(λ)=0 of (2.1) atE1,where

    Since

    We know thatΛ1(λ) is an increasing function with respect toλ,andΛ1(λ)=0 has a positive real rootλ0>0.Therefore the unstable manifold associated withE1is at least one dimensional.Note that the equationΛ1(λ)=0 has only finite rootsλwith Reλ >0.ThusΛ1(λ)=0 has exactm(m ≥1) roots with positive real parts.SinceΛ1(iβ)=0 (β >0) is equivalent to

    which leads to

    We obtain from (3.1) thatβτis in the first quarter,and

    wheren ∈N0:={0}∪N.LetIf 0≤τ <τ′,thenE1is hyperbolic.

    LetΛ2(λ)=λ+d+U′(u?2)?εB′(u?2)e?λτ,andλ=α+iβ,then we have the following result.

    Lemma 3.2All roots ofΛ2(λ)=0 have negative real parts.

    ProofFromΛ2(λ)=0,we have

    If|εB′(u?2)|≤d+U′(u?2),the the first equation in (3.2) can not have nonnegative solutionα.In fact,if there isα>0 such that (3.2) holds,then we have

    which is a contradiction.Ifα=0,then we haved+U′(u?2)=e?ατB′(u?2)cosβτ,which can not hold either forβ >0 orβ=0.Thus all zeros ofΛ2(λ) have negative real parts.

    IfεB′(u?2)|>d+U′(u?2),we can also show that Reλ<0 for all roots ofΛ2(λ)=0 whileτis sufficiently small.However,ifτ=0,we haveα+d+U′(u?2)=εB′(u?2),which leads toα<0.Letα=0,β >0,then (3.2) leads to

    We obtain from (3.3) and (H1) thatβτis in the second quarter,and

    wheren ∈N0.LetTherefore if 0≤ τ < τ′′,then all roots ofΛ2(λ)=0 have negative real parts.This completes the proof.

    Summarizing the above discussion,we obtain the following results.

    Theorem 3.1Assume that (H1),(H2) and (H3) hold.Then as either|εB′(u?2)| ≤d+U′(u?2),0≤τ < τ′,or|εB′(u?2)| > d+U′(u?2),0≤τ < τ′′,ifτ?:=min{τ′,τ′′},(H2)and (H3) of Theorem 1.1 in [4] are satisfied for (2.2).

    Theorem 3.2Assume the assumptions (H1)-(H4) hold.Letτ?=min{τ′,τ′′},where

    Then as either|εB′(u?2)|≤d+U′(u?2),0≤τ <τ?,or|εB′(u?2)| ≥d+U′(u?2),0≤τ < τ?,there exists a constantc?>0,such that for everyc > c?,the equation (2.1) has a traveling wave,which connects the trivial equilibriumE1to the positive equilibriumE2.

    ProofNotice that if there is no diffusion,the equation (2.1) reduces to (2.2).From Lemma 3.1,Lemma 3.2,Theorem 3.1,we know that the equilibriaE1andE2are hyperbolic,and,in particular,all the eigenvalues toE2have negative real parts.From Theorem 3.2,the equation (2.2) has a heteroclinic connection.Thus if 0≤ τ < τ?,the conditions (H1),(H2) and (H3) of Theorem 1.1 in [4] are satisfied.In fact,for our kernel functionfα(x),for instance,it is easy to see that

    So all conditions of Theorem 1.1 in[4]are satisfied.Hence by Theorem 1.1 in[4],we conclude that there exists a constantc?>0 so that for anyc > c?,the equation (2.1) has a traveling wave solution which connectsE1toE2.This completes the proof.

    Remark 3.1In fact,as a consequence of Theorem 1.1 in [4],for eachc>c?,the set of all traveling wave solutions of (2.1) connecting zero toE2and propagating at speedcforms aC1-smoothM-dimensional manifold in someC([?τ,0],R)-neighborhood of the heteroclinic solution in Theorem 3.2.

    Now we return to study the first and the third equations of the given SIR model (1.2),

    Lets=x+ctandφ(s)=u2(x+ct) be the traveling wave solution of (2.1).Define?(z) :=u1(x+ct) andψ(z) :=u3(x+ct).We have wave profile equations for (1.2)

    where

    It is easy to see that equations (3.5) are independent DDEs with boundary value such that

    and

    whereu?2is the unique positive root ofg(u)=0.Thus,we have the following result.

    Theorem 3.3Let the conditions (H1)-(H4) hold.Then there exists a constantc?>0,such that for everyc>c?,the equations(1.2)have traveling wave solution(φ(s),?(s),ψ(s))connecting the trivial equilibriumE0(0,0,0) to the positive equilibriumE?(u?1,u?2,u?3) withs=x+ctandφ(·)∈[0,K]C.

    狂野欧美激情性bbbbbb| 两性夫妻黄色片 | 国产乱人偷精品视频| 男女午夜视频在线观看 | 久久人人爽人人爽人人片va| 欧美少妇被猛烈插入视频| 久久青草综合色| 国产精品免费大片| 久久影院123| 亚洲精品国产色婷婷电影| 久久午夜福利片| 大片免费播放器 马上看| 熟女人妻精品中文字幕| 91成人精品电影| 看十八女毛片水多多多| 伊人亚洲综合成人网| 天天躁夜夜躁狠狠久久av| 亚洲av日韩在线播放| 国产男女超爽视频在线观看| 母亲3免费完整高清在线观看 | 成人午夜精彩视频在线观看| 国产精品.久久久| 黑丝袜美女国产一区| 男女啪啪激烈高潮av片| 亚洲一级一片aⅴ在线观看| 欧美另类一区| 亚洲,一卡二卡三卡| 老司机影院成人| 蜜桃国产av成人99| av视频免费观看在线观看| 国产一区二区三区综合在线观看 | 99久久精品国产国产毛片| 水蜜桃什么品种好| 国产爽快片一区二区三区| av线在线观看网站| 亚洲国产精品成人久久小说| 校园人妻丝袜中文字幕| 七月丁香在线播放| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 亚洲一区二区三区欧美精品| 免费女性裸体啪啪无遮挡网站| 欧美老熟妇乱子伦牲交| 女性生殖器流出的白浆| av福利片在线| 国产成人91sexporn| 亚洲精品,欧美精品| 中国三级夫妇交换| 99久久综合免费| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 亚洲国产色片| 亚洲欧美一区二区三区国产| 久久久久网色| av女优亚洲男人天堂| 热re99久久国产66热| av女优亚洲男人天堂| 2018国产大陆天天弄谢| 哪个播放器可以免费观看大片| 日本免费在线观看一区| 欧美3d第一页| 欧美日韩亚洲高清精品| 下体分泌物呈黄色| 9热在线视频观看99| av不卡在线播放| 成人国产av品久久久| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 国产免费视频播放在线视频| 熟妇人妻不卡中文字幕| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 婷婷色综合大香蕉| xxx大片免费视频| 中文字幕av电影在线播放| 国产黄色视频一区二区在线观看| 免费看av在线观看网站| 黑人巨大精品欧美一区二区蜜桃 | 岛国毛片在线播放| 一级片免费观看大全| 一级a做视频免费观看| 人人澡人人妻人| 国语对白做爰xxxⅹ性视频网站| 久久午夜综合久久蜜桃| 人妻少妇偷人精品九色| av在线播放精品| 美女内射精品一级片tv| 亚洲精品第二区| 国产片特级美女逼逼视频| 中文字幕亚洲精品专区| 高清在线视频一区二区三区| 亚洲精品一区蜜桃| 免费日韩欧美在线观看| 午夜激情av网站| 新久久久久国产一级毛片| 熟妇人妻不卡中文字幕| 天堂俺去俺来也www色官网| 韩国高清视频一区二区三区| 熟妇人妻不卡中文字幕| h视频一区二区三区| 国产精品国产av在线观看| 乱码一卡2卡4卡精品| 国产成人欧美| 男人舔女人的私密视频| 色网站视频免费| 亚洲国产av新网站| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 国产成人精品在线电影| 99热国产这里只有精品6| 制服人妻中文乱码| 男女下面插进去视频免费观看 | 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 久久99一区二区三区| 一级毛片 在线播放| 狂野欧美激情性xxxx在线观看| 亚洲欧美一区二区三区国产| 国产精品人妻久久久久久| 国产极品天堂在线| 人人妻人人添人人爽欧美一区卜| 成人二区视频| 国产av精品麻豆| 日本wwww免费看| 丰满迷人的少妇在线观看| 午夜福利视频精品| 视频中文字幕在线观看| 男女边吃奶边做爰视频| 久久热在线av| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 丁香六月天网| 美女脱内裤让男人舔精品视频| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 天堂8中文在线网| 内地一区二区视频在线| 亚洲成人av在线免费| 日本午夜av视频| 国产成人免费无遮挡视频| 亚洲精品456在线播放app| 久久久久国产网址| 夫妻性生交免费视频一级片| 久久国产精品男人的天堂亚洲 | 婷婷色麻豆天堂久久| 有码 亚洲区| 性色avwww在线观看| 国产在线一区二区三区精| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 咕卡用的链子| 久久久久久久亚洲中文字幕| 高清黄色对白视频在线免费看| 国产欧美另类精品又又久久亚洲欧美| 国产视频首页在线观看| 国产福利在线免费观看视频| 久久精品国产亚洲av天美| 亚洲精品久久成人aⅴ小说| 高清毛片免费看| 高清在线视频一区二区三区| 少妇被粗大的猛进出69影院 | 97超碰精品成人国产| 美女大奶头黄色视频| 两性夫妻黄色片 | 国产精品麻豆人妻色哟哟久久| 一级爰片在线观看| 久久精品国产亚洲av涩爱| 欧美人与善性xxx| 极品人妻少妇av视频| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 国产免费福利视频在线观看| 777米奇影视久久| 欧美日韩av久久| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 乱码一卡2卡4卡精品| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品古装| 九九爱精品视频在线观看| 中文字幕人妻丝袜制服| 精品久久国产蜜桃| 香蕉精品网在线| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品成人久久小说| 伦精品一区二区三区| 色吧在线观看| 久久久久网色| 亚洲欧美成人精品一区二区| av免费在线看不卡| 久久久久国产精品人妻一区二区| 久久久久久久久久久免费av| 日韩av免费高清视频| 水蜜桃什么品种好| 女性生殖器流出的白浆| 18禁裸乳无遮挡动漫免费视频| 99热全是精品| 欧美激情极品国产一区二区三区 | 建设人人有责人人尽责人人享有的| 三上悠亚av全集在线观看| 国产成人欧美| 一区二区av电影网| 18禁国产床啪视频网站| 高清黄色对白视频在线免费看| 免费看不卡的av| 欧美日本中文国产一区发布| 亚洲欧美成人精品一区二区| 赤兔流量卡办理| 亚洲,欧美精品.| 欧美精品一区二区大全| 看非洲黑人一级黄片| 91精品国产国语对白视频| 97在线人人人人妻| 国产精品无大码| 夜夜骑夜夜射夜夜干| 18+在线观看网站| 午夜日本视频在线| 咕卡用的链子| 亚洲精品一二三| 精品熟女少妇av免费看| 国产一区二区在线观看日韩| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 国产亚洲最大av| 成年av动漫网址| 1024视频免费在线观看| 99九九在线精品视频| 秋霞伦理黄片| 午夜日本视频在线| 国产黄频视频在线观看| 香蕉丝袜av| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 亚洲高清免费不卡视频| 亚洲成人一二三区av| 国产精品人妻久久久久久| 欧美xxⅹ黑人| 国产精品国产三级国产av玫瑰| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 亚洲精品一二三| 中国三级夫妇交换| 波野结衣二区三区在线| 大码成人一级视频| 亚洲欧美一区二区三区国产| 亚洲第一av免费看| 国产乱人偷精品视频| 老司机影院毛片| 色哟哟·www| 亚洲欧美清纯卡通| 亚洲精品乱久久久久久| 两个人看的免费小视频| 久久久久精品久久久久真实原创| 人妻一区二区av| 成人综合一区亚洲| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| 男女边摸边吃奶| 亚洲欧美成人综合另类久久久| 国产av国产精品国产| 晚上一个人看的免费电影| 国产一级毛片在线| 美女视频免费永久观看网站| 黄色配什么色好看| 欧美人与性动交α欧美精品济南到 | 熟妇人妻不卡中文字幕| 在线观看免费视频网站a站| 熟女电影av网| av片东京热男人的天堂| 亚洲精品456在线播放app| 国产精品.久久久| 高清av免费在线| 亚洲国产成人一精品久久久| 少妇高潮的动态图| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频 | 欧美日韩视频精品一区| 日韩中文字幕视频在线看片| 男人舔女人的私密视频| 欧美精品高潮呻吟av久久| 亚洲精品乱码久久久久久按摩| 精品少妇内射三级| 伦精品一区二区三区| av免费在线看不卡| 三级国产精品片| 成人毛片a级毛片在线播放| 亚洲欧美日韩卡通动漫| 亚洲国产看品久久| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 久热这里只有精品99| 最新中文字幕久久久久| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 最近中文字幕高清免费大全6| 久久久国产欧美日韩av| 国产精品成人在线| av女优亚洲男人天堂| 全区人妻精品视频| 男男h啪啪无遮挡| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 日韩欧美精品免费久久| 亚洲少妇的诱惑av| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 超色免费av| av一本久久久久| 久久精品国产亚洲av天美| 亚洲国产精品一区二区三区在线| 中国国产av一级| 在线观看人妻少妇| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 国产亚洲一区二区精品| 国产精品 国内视频| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 成人国产av品久久久| 国产成人精品久久久久久| 久久99蜜桃精品久久| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 色视频在线一区二区三区| 少妇熟女欧美另类| 久久久久久久久久久久大奶| a级毛片黄视频| 国产白丝娇喘喷水9色精品| 在线观看国产h片| 精品国产一区二区三区四区第35| 国产精品一国产av| 侵犯人妻中文字幕一二三四区| 欧美日本中文国产一区发布| 国产精品 国内视频| 久久这里有精品视频免费| 精品人妻熟女毛片av久久网站| 一区二区av电影网| 老司机亚洲免费影院| 成人午夜精彩视频在线观看| 免费在线观看黄色视频的| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 成年av动漫网址| 成年女人在线观看亚洲视频| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 免费黄色在线免费观看| 18+在线观看网站| 日本午夜av视频| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 婷婷色综合大香蕉| 久久久久网色| 亚洲第一av免费看| 男女下面插进去视频免费观看 | 色吧在线观看| 晚上一个人看的免费电影| 91午夜精品亚洲一区二区三区| 美女国产高潮福利片在线看| 日韩熟女老妇一区二区性免费视频| 亚洲在久久综合| 成年美女黄网站色视频大全免费| 成人国产麻豆网| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看| 2022亚洲国产成人精品| 国产成人精品福利久久| av免费观看日本| 免费av中文字幕在线| 青春草国产在线视频| 亚洲国产日韩一区二区| 日韩中字成人| 亚洲综合色网址| 久热久热在线精品观看| 天天躁夜夜躁狠狠久久av| 成年美女黄网站色视频大全免费| 精品一区二区三区四区五区乱码 | 亚洲精品日韩在线中文字幕| 色视频在线一区二区三区| 久久久久久久亚洲中文字幕| 波多野结衣一区麻豆| 欧美日韩av久久| 波野结衣二区三区在线| 两个人看的免费小视频| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 国产精品人妻久久久久久| 大香蕉久久成人网| 久久午夜福利片| av视频免费观看在线观看| 香蕉国产在线看| 婷婷色综合www| 色5月婷婷丁香| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| a级毛片在线看网站| 国产在视频线精品| 久久久久国产网址| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 国产免费一区二区三区四区乱码| 成年美女黄网站色视频大全免费| 亚洲人与动物交配视频| 免费人妻精品一区二区三区视频| 女的被弄到高潮叫床怎么办| av片东京热男人的天堂| 国产xxxxx性猛交| 亚洲欧洲日产国产| 亚洲久久久国产精品| 国产av国产精品国产| 90打野战视频偷拍视频| 国产精品熟女久久久久浪| 22中文网久久字幕| 亚洲成人一二三区av| 又大又黄又爽视频免费| av在线老鸭窝| 午夜久久久在线观看| kizo精华| 天美传媒精品一区二区| 亚洲人成77777在线视频| 一区二区三区乱码不卡18| 高清黄色对白视频在线免费看| 51国产日韩欧美| 最新的欧美精品一区二区| 另类精品久久| 亚洲美女视频黄频| 国产免费又黄又爽又色| 中国国产av一级| 在线天堂中文资源库| 高清不卡的av网站| 国产av精品麻豆| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 美女视频免费永久观看网站| www.色视频.com| av在线老鸭窝| 午夜激情久久久久久久| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| 亚洲成色77777| 国内精品宾馆在线| 超色免费av| 在线亚洲精品国产二区图片欧美| 日日撸夜夜添| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 久久久精品免费免费高清| 七月丁香在线播放| 久久久久久久国产电影| 国产成人精品无人区| 国产精品嫩草影院av在线观看| 肉色欧美久久久久久久蜜桃| 国产亚洲精品久久久com| 日本黄大片高清| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 成年人午夜在线观看视频| 男女下面插进去视频免费观看 | 久久久久久久亚洲中文字幕| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 一级黄片播放器| 欧美精品一区二区大全| 久久国内精品自在自线图片| 亚洲av电影在线进入| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 国产成人91sexporn| 九九爱精品视频在线观看| 超色免费av| 侵犯人妻中文字幕一二三四区| 一区在线观看完整版| 精品亚洲成a人片在线观看| 欧美国产精品一级二级三级| 岛国毛片在线播放| www日本在线高清视频| 两性夫妻黄色片 | 两性夫妻黄色片 | 午夜av观看不卡| 精品亚洲成国产av| av天堂久久9| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 美女主播在线视频| 国产日韩欧美在线精品| 观看美女的网站| 黑丝袜美女国产一区| 最近2019中文字幕mv第一页| 日韩精品有码人妻一区| 在线观看免费视频网站a站| 免费观看性生交大片5| av.在线天堂| 建设人人有责人人尽责人人享有的| 精品一区二区免费观看| 日韩一区二区视频免费看| 一区二区三区四区激情视频| 天堂中文最新版在线下载| 欧美xxxx性猛交bbbb| 久久精品国产自在天天线| videos熟女内射| 亚洲欧洲精品一区二区精品久久久 | 插逼视频在线观看| 最近的中文字幕免费完整| 26uuu在线亚洲综合色| 在线观看一区二区三区激情| 视频中文字幕在线观看| 日本免费在线观看一区| 性色av一级| 日韩大片免费观看网站| 欧美激情 高清一区二区三区| 咕卡用的链子| 欧美亚洲 丝袜 人妻 在线| 高清在线视频一区二区三区| 中文字幕最新亚洲高清| 99精国产麻豆久久婷婷| 男人爽女人下面视频在线观看| 日本av免费视频播放| 精品亚洲成a人片在线观看| 国产精品人妻久久久影院| 久久精品aⅴ一区二区三区四区 | 免费高清在线观看视频在线观看| 亚洲精品456在线播放app| 国产 一区精品| 国产精品久久久久久精品古装| av在线观看视频网站免费| 欧美 日韩 精品 国产| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 草草在线视频免费看| 男人添女人高潮全过程视频| 欧美日韩视频高清一区二区三区二| 免费高清在线观看日韩| 熟女人妻精品中文字幕| 亚洲天堂av无毛| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 国产色婷婷99| 在线观看美女被高潮喷水网站| 99国产精品免费福利视频| 青春草亚洲视频在线观看| 97在线人人人人妻| 深夜精品福利| 91久久精品国产一区二区三区| 久久精品aⅴ一区二区三区四区 | 色婷婷久久久亚洲欧美| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 91精品伊人久久大香线蕉| 寂寞人妻少妇视频99o| 国产亚洲一区二区精品| 精品一区二区三区四区五区乱码 | 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 99香蕉大伊视频| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 国产精品久久久久久精品古装| 国产精品无大码| 国产精品久久久久久精品古装| 两性夫妻黄色片 | videos熟女内射| av免费在线看不卡| 国产在线一区二区三区精| 婷婷色综合大香蕉| 欧美3d第一页| 亚洲国产av影院在线观看| h视频一区二区三区| 亚洲,一卡二卡三卡| 你懂的网址亚洲精品在线观看| 国产乱来视频区| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 亚洲精品久久午夜乱码| 边亲边吃奶的免费视频| 久久久久久久国产电影| 亚洲国产欧美在线一区| 捣出白浆h1v1| 久久久久网色| 欧美人与性动交α欧美精品济南到 | 亚洲国产av新网站| 亚洲精华国产精华液的使用体验| 亚洲四区av| 日韩不卡一区二区三区视频在线| 尾随美女入室| 亚洲国产精品成人久久小说| 久久这里只有精品19| 欧美激情国产日韩精品一区| 国产 精品1| 99热网站在线观看| 亚洲精品美女久久av网站| 51国产日韩欧美| 精品久久蜜臀av无|