陳?曦,金?文,鄔海強(qiáng),李?穎
?
用于海上油膜厚度測(cè)量的激光光強(qiáng)調(diào)節(jié)裝置設(shè)計(jì)
陳?曦1,金?文1,鄔海強(qiáng)2,李?穎3
(1. 天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院,天津 300072;2. 國(guó)家海洋技術(shù)中心,天津 300112; 3.大連海事大學(xué)航海學(xué)院,大連 116026)
針對(duì)海上溢油油膜厚度測(cè)量浮標(biāo)在實(shí)際海試過(guò)程中出現(xiàn)的海水濁度影響測(cè)量結(jié)果的情況,設(shè)計(jì)開(kāi)發(fā)了適用于差分激光三角法油膜厚度測(cè)量的激光光強(qiáng)調(diào)節(jié)裝置. 該裝置的設(shè)計(jì)指標(biāo)為調(diào)節(jié)時(shí)間小于400ms,超調(diào)量小于10%,可應(yīng)用于濁度0~100NTU的水中. 首先基于單色光束在不同濁度水中傳播的衰減規(guī)律,建立了差分激光三角法油膜厚度測(cè)量系統(tǒng)的控制模型. 然后為了保證在不同濁度的海水中電荷耦合元件(CCD)接收到的光強(qiáng)保持穩(wěn)定,提出了一種基于比例積分校正的魯棒激光光強(qiáng)調(diào)節(jié)器設(shè)計(jì)方法. 該方法利用根軌跡根增益與復(fù)平面上點(diǎn)實(shí)部、虛部的關(guān)系來(lái)選擇調(diào)節(jié)器的增益,并利用積分環(huán)節(jié)使得穩(wěn)態(tài)誤差為零. 最后進(jìn)行了仿真實(shí)驗(yàn)和標(biāo)準(zhǔn)濁度液中的實(shí)驗(yàn). 仿真實(shí)驗(yàn)表明:在不同光強(qiáng)衰減率下激光光強(qiáng)調(diào)節(jié)裝置都能使CCD接收到的光強(qiáng)保持穩(wěn)定,且超調(diào)量、調(diào)節(jié)時(shí)間等指標(biāo)都能滿(mǎn)足設(shè)計(jì)要求. 在不同標(biāo)準(zhǔn)濁度液中進(jìn)行的測(cè)量實(shí)驗(yàn)表明,CCD成像質(zhì)量較好且未隨濁度改變而發(fā)生明顯變化,證明了該激光光強(qiáng)調(diào)節(jié)裝置的有效性.
油膜厚度測(cè)量;海水濁度;光強(qiáng)調(diào)節(jié);魯棒根軌跡
海上溢油事故會(huì)對(duì)自然環(huán)境造成極其嚴(yán)重的危害.對(duì)溢油油膜進(jìn)行厚度測(cè)量并結(jié)合遙感等獲取的溢油面積數(shù)據(jù)來(lái)估計(jì)溢油量[1],對(duì)于溢油事故的早期應(yīng)急處理和中長(zhǎng)期海洋生態(tài)修復(fù)[2]具有重要意義.文獻(xiàn)[3-5]提出了利用斜射式激光三角法進(jìn)行油膜厚度非接觸式測(cè)量的方法.文獻(xiàn)[6-7]在文獻(xiàn)[3-5]的基礎(chǔ)上,提出了一種改進(jìn)的直射式上、下雙光路差分激光三角法的方案,并基于該方案研制了海上溢油油膜厚度測(cè)量浮標(biāo)樣機(jī).針對(duì)浮標(biāo)樣機(jī)在實(shí)際海試過(guò)程出現(xiàn)的海水折射率影響測(cè)量精度的問(wèn)題,文獻(xiàn)[8]分析了該問(wèn)題產(chǎn)生的原因,并提出了一種基于二維曲面擬合的誤差補(bǔ)償方法,實(shí)驗(yàn)數(shù)據(jù)說(shuō)明該方法可有效降低因海水折射率不同而產(chǎn)生的測(cè)量誤差.在實(shí)際海試過(guò)程中同時(shí)觀(guān)察到了海水濁度對(duì)測(cè)量過(guò)程產(chǎn)生的影響.在應(yīng)用激光三角法測(cè)量油膜厚度過(guò)程中,由于下光路部分光路位于海水中,激光器發(fā)出的激光會(huì)因海水的作用而衰減,造成光強(qiáng)下降.海水的混濁程度不同,光強(qiáng)的衰減程度也不同.海上溢油油膜厚度測(cè)量浮標(biāo)的標(biāo)定只能在某一確定濁度的水(如在實(shí)驗(yàn)室環(huán)境下的零濁度水)中進(jìn)行,由于測(cè)量環(huán)境海水濁度和標(biāo)定時(shí)濁度不一致,會(huì)造成用于光強(qiáng)接收的CCD傳感器產(chǎn)生飽和現(xiàn)象或信號(hào)信噪比低,進(jìn)而對(duì)測(cè)量產(chǎn)生不利影響.為了減少這種不利影響,提出了一種用于海上溢油油膜厚度測(cè)量的激光光強(qiáng)調(diào)節(jié)裝置,該裝置通過(guò)引入閉環(huán)反饋,即使在海水濁度發(fā)生變化時(shí),調(diào)節(jié)器也能夠自動(dòng)調(diào)節(jié)激光器出光光強(qiáng),使得海上溢油油膜厚度測(cè)量浮標(biāo)在不同濁度的海域中都能可靠、穩(wěn)定工作.
上光路全部位于空氣中,光強(qiáng)不會(huì)受到環(huán)境的顯著影響,而下光路650nm的激光光源經(jīng)過(guò)海水介質(zhì)照射到油膜下表面,海水會(huì)對(duì)光強(qiáng)產(chǎn)生衰減作用.根據(jù)朗伯定律,單色光束在水中傳播的衰減規(guī)律符合
???(2)
???(3)
???(4)
圖2?激光光強(qiáng)與光斑形狀
???(5)
圖3?差分激光三角法油膜厚度測(cè)量系統(tǒng)的控制模型
Fig.3 Control model of oil film thickness measurement based on differential laser trigonometry
圖4?半導(dǎo)體激光器電流源驅(qū)動(dòng)裝置與電路
?????(6)
根據(jù)式(6),對(duì)圖3所示控制模型進(jìn)行簡(jiǎn)化,如圖5所示.
圖5 簡(jiǎn)化的差分激光三角法油膜厚度測(cè)量系統(tǒng)的控制模型
步驟1計(jì)算開(kāi)環(huán)增益.根據(jù)調(diào)節(jié)器設(shè)計(jì)性能指標(biāo)要求“在階躍信號(hào)作用下,穩(wěn)態(tài)誤差為零”,選擇基于PI控制器的串聯(lián)校正,PI控制器為
???(7)
???(8)
???(9)
???(10)
好學(xué)校的前提是有先進(jìn)的辦學(xué)理念。衡量辦學(xué)理念是否先進(jìn),主要有4個(gè)維度:一是人人發(fā)展;二是全面發(fā)展;三是個(gè)性發(fā)展;四是終身發(fā)展。只有4個(gè)維度統(tǒng)籌兼顧,才是高質(zhì)量的學(xué)校。我對(duì)教育的看法比較通俗,就是按人的成長(zhǎng)規(guī)律對(duì)受教育對(duì)象給予幫助,包括幫助他掌握知識(shí)、培養(yǎng)能力、提升性情。所以,我提出“讓每一位學(xué)生能找到自己卓越的領(lǐng)域” 的辦學(xué)宗旨,就是讓每位學(xué)生知道自己的潛能,建立起自信,讓每個(gè)孩子展示出他最閃亮的一面,這對(duì)他們今后的人生是很重要的。廣州五中既培養(yǎng)出了大批考上重點(diǎn)大學(xué)、成為社會(huì)各界英才的學(xué)生,也培養(yǎng)出了中國(guó)首位加入西班牙皇馬俱樂(lè)部的現(xiàn)役國(guó)青足球隊(duì)前鋒林良銘,這就是很好的例證。
???(11)
根據(jù)期望的加入調(diào)節(jié)器后的閉環(huán)主導(dǎo)極點(diǎn)計(jì)算公式
???(12)
期望閉環(huán)主導(dǎo)極點(diǎn)應(yīng)滿(mǎn)足根軌跡相角條件,即
?????(13)
由此得到
圖6?k與Re s、Im s的關(guān)系
圖7?原始系統(tǒng)和加入PI調(diào)節(jié)器后系統(tǒng)的比較
???(14)
圖8?不同值下的階躍響應(yīng)比較
表1?超調(diào)量和調(diào)節(jié)時(shí)間
Tab.1?Overshoot and the settling time
為了檢驗(yàn)激光光強(qiáng)調(diào)節(jié)裝置在不同濁度水中的控制效果,進(jìn)行了標(biāo)準(zhǔn)濁度液中的測(cè)量實(shí)驗(yàn).該實(shí)驗(yàn)在天津大學(xué)萬(wàn)級(jí)超凈間無(wú)光環(huán)境下進(jìn)行,在沒(méi)有光源的情況下,超靜間內(nèi)雜散光照度小于或等于1lx.實(shí)驗(yàn)裝置如圖9所示.首先在樣品池內(nèi)注入標(biāo)準(zhǔn)濁度液,然后在濁度液表面布放原油.標(biāo)準(zhǔn)濁度液的濁度分別為0、10、30、50、80、100NTU.使用包含7450個(gè)像素的線(xiàn)掃描CCD采集光斑圖像.
圖9?激光光強(qiáng)調(diào)節(jié)裝置
考慮到像素點(diǎn)上接收光強(qiáng)超過(guò)閾值就會(huì)出現(xiàn)飽和現(xiàn)象,所以取一幀圖像中的強(qiáng)度最大值為輸出量,即如果強(qiáng)度最大值小于給定閾值,那么其余像素點(diǎn)的光強(qiáng)也必然小于給定閾值,這樣就不會(huì)出現(xiàn)飽和現(xiàn)象.實(shí)測(cè)的CCD圖形如圖10所示,圖中橫坐標(biāo)是線(xiàn)掃描相機(jī)的像素點(diǎn),縱坐標(biāo)是經(jīng)模數(shù)轉(zhuǎn)換器轉(zhuǎn)換的8位二進(jìn)制數(shù)字量形式的光強(qiáng)值,從圖中可以直觀(guān)地看出在不同濁度下的光強(qiáng)值都穩(wěn)定在預(yù)設(shè)值200附近,達(dá)到調(diào)節(jié)器設(shè)計(jì)要求.隨著濁度增大,光斑圖像的毛刺增多,這是因?yàn)殡S著水的濁度增大,水中粒子數(shù)量增多,粒子對(duì)光的散射作用增大,從而造成毛刺增多.此外由圖可見(jiàn)光斑直徑也呈增大趨勢(shì),由于該測(cè)量系統(tǒng)采用直射式差分激光三角法,CCD上接收到的是散射光,隨著濁度增大,粒子對(duì)光的散射作用增大且散射光方向各不相同,這些散射光經(jīng)透鏡匯聚后在CCD上成像,造成光斑直徑變大.
圖10?不同濁度液中使用激光光強(qiáng)調(diào)節(jié)裝置后的CCD圖像
作為對(duì)比,對(duì)未采用激光光強(qiáng)調(diào)節(jié)裝置的系統(tǒng)也進(jìn)行了測(cè)量實(shí)驗(yàn),實(shí)測(cè)的CCD圖形如圖11所示,由圖可知,由于沒(méi)有采用閉環(huán)反饋,所以濁度液對(duì)激光光源產(chǎn)生了嚴(yán)重的衰減作用,以100NTU濁度液為例,其光強(qiáng)僅為0濁度液中的1/4.
圖11?不同濁度液中未使用激光光強(qiáng)調(diào)節(jié)裝置后的CCD圖像
在應(yīng)用激光三角法進(jìn)行海上溢油油膜厚度測(cè)量過(guò)程中,激光器的激光光能會(huì)因海水濁度的差異而產(chǎn)生不同程度的衰減,使得CCD出現(xiàn)產(chǎn)生飽和現(xiàn)象或信號(hào)信噪比低的情況,進(jìn)而影響測(cè)量結(jié)果.有鑒于此,設(shè)計(jì)了一種可有效克服海水濁度影響的魯棒激光光強(qiáng)調(diào)節(jié)裝置.在設(shè)計(jì)過(guò)程中,基于單色光束在不同濁度水中傳播的衰減規(guī)律和CCD成像原理建立了被控對(duì)象模型.利用復(fù)平面上根軌跡增益與開(kāi)環(huán)極點(diǎn)實(shí)、虛部間的二元函數(shù)關(guān)系確定比例-積分控制器中的相關(guān)系數(shù).仿真實(shí)驗(yàn)和在標(biāo)準(zhǔn)濁度液中的實(shí)驗(yàn)都證明了該方法的有效性.濁度改變必然會(huì)引起折射率的改變,將本文所提算法與折射率補(bǔ)償算法相結(jié)合,進(jìn)一步提高海上溢油油膜厚度測(cè)量精度,是今后要開(kāi)展的研究工作.
[1] 盧文玉,祝寶忠,賈曉強(qiáng). 處理高黏度溢油的溢油分散劑的制備及優(yōu)化[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2019,52(1):26-32.
Lu Wenyu,Zhu Baozhong,Jiao Xiaoqiang. Development and optimization of oil spill dispersant for high viscosity oil spill[J]. Journal of Tianjin University:Science and Technology,2019,52(1):26-32(in Chinese).
[2] 周一兵. 基于沙蠶多功能群匹配的濕地微宇宙對(duì)石油烴去除效果研究[D]. 大連:大連海洋大學(xué),2015.
Zhou Yibing. Research on the Oil Removal Capacity of Polychaete-Microrganism-Plant Combined Bioremediation System Using Microcosm Method[D]. Dalian: Dalian Ocean University,2015(in Chinese).
[3] Lü Qieni,Lu Lin,Ge Baozhen,et al. Differential laser trigonometry for measuring the oil film thickness on water[J]. Journal of Modern Optics,2012,29(11):947-953.
[4] Lü Qieni,Wu Hao,Wu Di. Experimental determination of the system parameter of oil thickness measurement[C]// Proceedings of SPIE the International Society for Optical Engineering. Beijing,China,2010:7850.
[5] Lü Qieni,Ge Baozhen,Yao Wenda,et al. A method for measuring the thickness of transparent oil film on water surface with laser trigonometry[J]. Optics and Lasers in Engineering,2011,49(1):13-15.
[6] Wu Di,Lü Qieni,Lu Lin,et al. Laserimage spot processing for sea oil film thickness measurement[J]. Optics and Lasers in Engineering,2014,61(8):676-682.
[7] Ge Baozhen,Sun Jingbin,Liu Pengcheng,et al. Designing an optical set-up of differential laser triangulation for oil filmthickness measurement on water[J]. Review of Scientific Instruments,2013,84:013105.
[8] 耿云飛,陳?曦,金?文,等. 海水折射率對(duì)差分激光三角法油膜厚度測(cè)量精度的影響[J]. 中國(guó)激光,2015,42(4):0408004.
Geng Yunfei,Chen Xi,Jin Wen,et al. Influence of seawater refractive index on the precision of oil film thickness measurement by differential laser triangulation[J]. Chinese Journal of Lasers,2015,42(4):0408004(in Chinese).
[9] Rodier F. Adaptive Optics in Astronomy[M]. Cambridge:Cambridge University Press,1999.
[10] Barmish B R,Tempo R. The robust root locus[J]. Automatica,1990,26(2):283-292.
[11] Hwang Chyi,Yang Shih-Feng. Characterization and computation of robust root loci for systems having parametric uncertainties[J]. Journal of the Chinese Institute of Engineers,2011,34(5):695-710.
[12] Hwang Chyi,Yang Shih-Feng. Plotting robust root locus for polynomial families of multilinear parameter dependence based on zero inclusion/exclusion tests[J]. Asian Journal of Control,2003,5(2):293-300.
[13] Kostov K,Karlova V,Todorov A. Robustroot locus application in design and analysis of typical industrial control system model[J]. Cybernetics and Information Technologies,2008,8(1):25-33.
[14] Tong Yuhuan,Siha N K. Design of controller for robots using the robust root locus of descrete time systems[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Xi’an,China,1992:78-82.
[15] Nakhmani A,Zeheb E,Lichtsinder M. Robust controller design based on generalized bode envelopes[J]. IMA Journal of Mathematical Control and Information,2012,29(2):171-198.
Regulator of Laser Luminous Intensity for the Measurement of Sea Oil Film Thickness
Chen Xi1,Jin Wen1,Wu Haiqiang2,Li Ying3
(1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China; 2. National Ocean Technology Center,Tianjin 300112,China; 3. Navigation College,Dalian Maritime University,Dalian 116026,China)
Ocean turbidity has been found to affect the measurement of sea oil film thickness during the marine test of buoys. To mitigate the inaccuracy introduced by turbidity,a regulator of laser luminous intensity was developed as the light source of the instrument on the basis of the vertical incidence differential laser trigonometry. The regulator can be utilized in water of 0—100NTU,the settling time is less than 400ms,and the overshoot is less than 10%. A model for control system was set up by utilizing both the depression law of the spreading of the monochromatic light and the imaging principle of charge-coupled device(CCD). A proportional-integral-based robust regulator was presented to ensure that the CCD can capture a stable light energy. The gain of the robust regulator was calculated by using the relationship between the root locus gain and the real part and the imaginary part of poles on a complex plane. Meanwhile,the integral part of the regulator minimized the steady-state error to zero. A simulation and experiments in calibration turbidity standard were conducted. The simulations show that the robust regulator can stabilize the laser luminous intensity regardless of turbidity,and criteria such as overshoot and settling time meet the requirement of the measurement of sea oil film thickness. The experiments in different kinds of turbid water also show that the CCD image quality does not significantly vary with change of turbidity.
measurement of sea oil film thickness;ocean turbidity;regulation of luminous intensity;robust root locus
10.11784/tdxbz201807014
TK448.21
A
0493-2137(2019)06-0576-09
2018-07-07;
2018-11-26.
陳?曦(1980—??),男,博士,講師.
陳?曦,chenxi@tju.edu.cn.
海洋公益性行業(yè)科研專(zhuān)項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(201305002).
the Scientific Research Project of Oceanic Public Welfare Profession of China by State Oceanic Administration(No.201305002).
(責(zé)任編輯:孫立華)