• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    2014-10-14 03:45:16DINGXiaoChunCHENXiuZHOUJianHuaWANGTaoSUNDunHEJianPing
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:南京航空航天大學(xué)建平建華

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping*

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract: Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5(carbon replicated from SBA-15 silica)by NaBH4reduction.X-ray diffraction(XRD)suggests alloy formation between Pt and Ni.X-ray photoelectron spectroscopy(XPS)shows that Pt-Ni/CMK-5(5:1)has more detectable oxidized Ni.More metallic Pt is present on Pt-Ni/CMK-5(5:1)(atomic ratio)than on Pt/CMK-5.Oxidized Ni species,such as NiO,Ni(OH)2,and NiOOH,favor the adsorption of methanol and the dissociation of methanol from the surface of Pt.Cyclic voltammetry shows that Pt-Ni/CMK-5(5:1)has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1.It has more resistance to CO poisoning than Pt/CMK-5.

    Key Words:CMK-5;Pt/CMK-5 catalyst;Pt-Ni/CMK-5 catalyst;Methanol;Electrooxidation

    1 Introduction

    Fuel cells are appealing alternative power sources as they offer high energy density with zero or low emission of pollutants.Among the diverse types of fuel cells,the proton exchange membrane fuel cells(PEMFC)and direct methanol fuel cells(DMFC)are the most suitable candidates for transportation applications,portable electronics,and residential power sources due to their relatively low operating temperature(<100°C)and fast starting-up function.However,the commercial viability of PEMFC and DMFC is still hindered by several drawbacks,including the low catalytic activity of electrodes,the high cost of the Pt-based catalysts,and the poor durability and reliability.One of the main obstacles for the application of PEMFC in vehicles is the long-term durability of the cathodecatalysts,especially when the fuel cells are operated under the cycle duty.Up to now,the carbon-supported Pt is still a conventional electro-catalyst for PEMFC and DMFC.The degradation of Pt/C cathode catalysts results from both the reduction of electrochemical active surface area(EAS)of Pt and the corrosion of carbon support.1The overpotential caused by the highly irreversible oxygen reduction reaction(ORR)and the methanol crossed over from anode poisoning cathode is the major performance limitation for cathode catalyst.2So there are two solutions to the above problems,one is to quest for alternative catalyst supports,such as carbon nanotubes,carbon spheres,graphitic carbon nanofibers,3-7which are beneficial to improve the dispersion of Pt and consequently enhance its electro-catalytic activity.The other approach is to prepare Pt-based alloy,such as Pt-Ru,Pt-Ni,Pt-Co.8-10Based upon bifunctional mechanism,CO-poisoned Pt nanoparticles can be regenerated via the reaction of surface CO with O-type species associated with a second metal yielding CO2.11Over the last two decades,various Pt-based alloy catalysts had been widely investigated,among which Pt-Ni bimetallic catalyst had attracted more interest.12-21Ni can decrease the oxidation activation potential of H2O,which can dissociate into active oxygen species at a lower potential.The formed active Ni-(OH)adscan react with CO into CO2.Besides,various oxidized Ni accelerate the reaction of Pt-CO with oxygen-containing species produced by oxidized Ni,and thus decreasing the CO-poisoning of Pt.Therefore,Pt-Ni alloy catalyst shows improved electrocatalytic activity.17

    In order to enhance the catalytic activity of the Pt-Ni alloy catalyst,the choice of the support plays a very important role in obtaining high-performance catalysts.CMK-5,a carbon replicated from SBA-15 silica,is among promising support candidates due to its large pore volume,high structural stability and large surface area.22,23Based on our previous research work,the electrochemical active surface of Pt/CMK-5 approximately equals to that of Pt/C(E-ETK).24

    In the present work,CMK-5 was applied to support catalyst nanoparticles via the NaBH4-reduction method.With the fixed total Pt-Ni loading,more Pt loading can absorb more methanol,however displaying a lower electrocatalytic activity.Because less Ni loading forms less Ni-(OH)ads,unfavorable for the oxidation activation of methanol.However a lower Pt loading provides less active sites for absorbing methanol.The present work is undertaken to determine the optimum nominal Pt-Ni atomic ratio among 1:1,3:1,5:1,and 7:1.The physical and morphological characteristics of these bimetallic catalysts were systematically investigated.And the electro-catalytic properties of the catalysts for hydrogen and methanol oxidation were evaluated by cyclic voltammetry.Furthermore,the relationship between the structure and the electrochemical performance and the mechanism interpretation for catalysts were investigated in detail.

    2 Experimental

    2.1 Synthesis of catalyst

    Nano-casting carbon of ordered large pore structure was synthesized via a nanocasting process using SBA-15 as a template,furfuryl alcohol(FA)as a carbon precursor.It was denoted as CMK-5,22,23employed as the catalyst support.The catalyst was obtained via the chemical reduction method by NaBH4.40 mg of CMK-5 was impregnated with 0.038 mol·L-1H2PtCl6in the mixture of water and isopropanol.Then the suspension was constantly stirred to obtain a homogenously dispersed solution,adjusting pH to 9 with NaOH,and subsequently the temperature was increased to 60°C.Afterwards,excessive 0.1 mol·L-1NaBH4solution(31.8 mg NaBH4added into 80 mL of 2 g·L-1NaOH solution)were added dropwise into the suspension under vigorous stirring,followed by 3 h of continuous stirring for the complete reduction of Pt(and Ni).Finally,the resulting material was washed with distilled water several times and dried in a vacuum oven at 80°C,labeled as Pt/CMK-5.The mixture of 0.038 mol·L-1H2PtCl6and 0.01 mol·L-1Ni(NO3)2solution with Pt-Ni atomic ratios of respective 1:1,3:1,5:1,7:1 was used as the Pt-Ni alloy catalyst precursor solution,the following experimental steps were the same as above.And the final samples were signified as Pt-Ni/CMK-5(1:1),Pt-Ni/CMK-5(3:1),Pt-Ni/CMK-5(5:1),and Pt-Ni/CMK-5(7:1),respectively.The metal loading(mass fraction)of all catalysts was 20%.

    2.2 Characterization

    The porous structure of the carbon support was measured by N2adsorption isotherm using Micromeritics ASAP 2010 at 77 K.X-ray diffraction(XRD)patterns of the catalysts were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm).Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and the particle size distribution of all catalysts.The samples for TEM measurement were prepared by ultrasonically suspending the powder in ethanol and placing a drop of the suspension on a carbon film supported by Cu grids.X-ray photoelectron spectroscopy(XPS)analysis was carried out on an ESCALAB 250(Thermo Electron Co.,America)spectrometer with monochromatic Al Kαradiation(150 W,15 kV).The compositions of the samples were analyzed by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Jarrell-Ash 1100).

    An electrochemical interface(Solartron 1287)and a conventional three-electrode system were employed to conduct the cyclic voltammetry of catalysts in 0.5 mol·L-1H2SO4and 1 mol·L-1H2SO4+2 mol·L-1CH3OH solutions.The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(mass fraction)Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied onto the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a platinum foil were used as the referenceelectrode and the counter electrode,respectively.The cyclic voltammograms were collected between-0.22 and 0.98 V in H2SO4system(or between 0 and 1 V in methanol system)versusSCE with a scan rate of 20 mV·s?1at room temperature.From the cyclic voltammetry curve,we can calculate the electrochemical active surface area(EASA)of Pt,which are based on Eq.(1).25,26

    where,QHis the total charge of hydrogen atoms electro-absorpted on the Pt surface,mPtis the mass of Pt andQHrefis assumed to be 0.21 mC·cm-2corresponding to a Pt surface density of 1.3×1015cm-2.

    3 Results and discussion

    3.1 Structural analysis

    Wide-angle XRD,presented in Fig.1,is utilized to characterize the crystalline structure of the catalysts.The wide peak observed at about 24°is associated with C(002)-plane diffraction.27Four diffraction peaks observed at 2θof 39°,46°,67°,and 81°are indexed to(111),(200),(220),and(311)reflections,suggesting the face-centered-cubic(fcc)structure for Pt.Furthermore,compared with pure Pt supported catalyst,there emerges a slight shift of Pt(111)-plane peak toward the higher diffraction angle in Pt-Ni alloy catalysts,indicative of the alloy formation between Pt and Ni.28As can be noted from the diffractograms,no characteristic lines of Ni fcc structure are observed.The absence of lines corresponding to metallic Ni fcc structure(along with Pt lattice)may be due to the metallic grains that are intermixed with amorphous Ni oxides such as NiO,Ni(OH)2,and NiOOH.17

    According to the wide-angle XRD patterns,Table 1 lists the corresponding parameters,including the displacement angle of Pt(111)-plane peak(DA),the mean particle size(D),and the lattice constant values(afcc),wherein,Dis evaluated by the parameters of the Pt(220)peak according to Scherrer′s equation,andafccis calculated on the assumption that the alloy particles are completely homogeneously-dispersed.29,30In Table 1,as the content of Ni in binary catalysts increases,the crystalline structure of Pt changes,showing that the adding of a foreign metal influences the crystalline structure.31It was noted that with the proportion of Ni in the Pt-Ni alloys decreasing,all diffraction peaks were shifted synchronously to lower 2θvalues.The shift is an indication of the reduction in lattice constant.According to Vegard′s law,lattice constant can be used to measure the extent of alloying.afccfor Pt-Ni/CMK-5 presents a decrease monotonically with the Ni content.The reduction ofafccin Pt-Ni/CMK-5 arose primarily from the substitution of platinum at-oms by Ni atoms,which led to the contraction of the fcc lattice,an indication of the formation of Pt-Ni alloys.17

    Table 1 Lattice parameters,particle sizes of catalysts calculated based upon XRD patterns

    X-ray photoelectron spectroscopy(XPS)analysis is performed to investigate the oxidation states of Pt and Ni.As shown in Fig.2(a),there emerges a doublet at 71.2 eV/74.6 eV indicative of metallic Pt.In Fig.2(b),Pt 4fregion of the spectrum can be deconvoluted into three pairs of doublets,which are signature of Pt(0),Pt(II)and Pt(IV),respectively.The Ni 2p3/2spectrum shows a corresponding complex structure and different nickel species,including Ni,NiO,Ni(OH)2,and NiOOH with the binding energies located at 852.6,853.78,855.5 and 857.3 eV,respectively.28Furthermore,the relative quantitative analysis can be measured by the integrated intensities of the deconvoluted XPS signals.As shown in Table 2,the Pt-Ni alloy presents a much enhanced enrichment of metallic Pt on the surface as compared with pure Pt catalyst,probably because of the electron transfer from a lower electronegativity of Ni(1.19)to a higher electronegativity of Pt(2.28),which is consistent with the abundant amorphous Ni oxides detectable in Fig.2(c).32

    The micrometric morphology of supported catalysts is generally characterized by the TEM images.In Fig.3(b),the Pt-Ni catalyst with the atomic ratio of 5:1 is small-sized and uniformly anchored onto CMK-5.Comparatively,in Fig.3(c),pure Pt catalyst presents a slight agglomeration,with some relatively large-sized nanoparticles in several regions of carbon support.Besides,as for Pt-Ni(1:1)catalyst,there appears large-area agglomeration phenomenon for alloy nanoparticles,showing the most severe agglomeration among such three alloy nanoparticles.It is known that,given a similar size,the metal having a lower sublimation tends to surface segregate in binary alloys.The heats of vaporization of Pt and Ni are 509.6 and 370.3 kJ·mol-1,respectively.28Therefore,Ni is enriched on the surface,resulting in the most severe alloy catalyst segregation among such three catalysts.Conclusively,appropriate Ni in Pt-Ni alloy catalyst facilitates dispersing nanoparticles on the support.

    Table 2 Valance states,binding energy(EB),and atomic ratios(AR)of integrated intensity of pure Pt in Pt/CMK-5,as well as Pt-Ni and Ni in Pt-Ni/CMK-5(5:1)

    3.2 Electro-catalytic performances

    To evaluate the electro-catalytic properties of supported Pt,CV curves are generally referred to as a means of electrocatalytic characterization.25,26The CV curves for different catalysts in 0.5 mol·L-1H2SO4solution are shown in Fig.4.The reversible hydrogen adsorption/desorption and preoxidation/reduction doublet peaks of Pt are clearly seen for all catalysts except for Pt-Ni/CMK-5(1:1),suggesting that excessive alloy metal is unfavorable to the formation of uniformly-dispersed catalyst particles,and thus resulting in the relative poor electro-catalytic property.

    The electrochemical active surface area(EASA)of metal nanoparticles is one most important parameter in the evaluation of hydrogen electro-oxidation properties.25,26As listed in Table 3,among the as-prepared catalysts,the EASA of Pt-Ni/CMK-5(5:1)reaches a peak value of 63.9 m2·g?1,higher than that reported in literatures(56 m2·g-1).27Compared with Pt/CMK-5,the adding of appropriate Ni can significantly increase the EASA.

    Table 3 Electrochemical active surface area of different catalysts

    Methanol electro-oxidation of all catalysts is showed in Fig.5.The Pt-Ni/CMK-5(5:1)catalyst exhibits better performance than Pt/CMK-5.As the generally accepted interpretation of bifunctional mechanism explained,33metallic Pt facilitates the adsorption/dissociation process of methanol anchored on the surface of Pt.More oxidative Ni can remove the intermediary products derived from the oxidation of methanol,and release more active sites provided by metallic Pt,28as is confirmed by the above XPS analysis.Moreover,the enhanced activity of Pt-Ni/CMK-5(5:1)catalyst can be attributed to optimized electronic properties in Pt 4fwhen it is alloyed with Ni.Electron transfer from Ni to Pt can be explained by the electronegativities of Ni(1.91)and Pt(2.28).The shift indelectron density from Ni to Pt would be expected to lower the density of states(DOS)at the Fermi level and to reduce the bond energy of Pt and CO as a byproduct of methanol electrooxidation.It has already been pointed out that Ni(hydro)oxides on the Pt/Ni nanoparticles could promote methanol oxidationviaa surface redox process.These two contributions to enhancing methanol electrooxidation would exist in the Pt/Ni based electrodes.34

    The ratio of the forward anodic peak current(If)to the backward anodic peak current(Ib)is commonly used to determine the tolerance of catalysts to carbonaceous species accumulation.35Ordinarily,a higherIf/Ibvalue implies more tolerant toward CO-poisoning.In our experiments,the ratio(listed in Table 3)was estimated to be higher for bimetallic catalyst(except Pt-Ni/CMK-5(1:1))than the pure Pt catalyst.A highIf/Ibindicates that most of the intermediate carbonaceous species were oxidized to CO2in the forward scan,further suggesting that the presence of Ni oxides(detectable in XPS)in the catalyst provides an oxygen source for CO oxidation at lower potential.9,18Therefore,Pt-Ni alloy catalyst exhibits an improved resistance to CO poisoning.TheIf/Ibvalue of Pt-Ni/CMK-5(1:1)catalyst is lowest,probably due to the poorly-dispersed Pt nanoparticles.

    4 Conclusions

    In this paper,pure Pt and Pt-Ni alloy catalysts are supported on CMK-5 by chemical reduction method.Based on XRD and XPS results,it is hypothesized that Ni is present in an oxide/hydroxid amorphous form,as confirmed by the XPS.The physical characterization shows that Pt-Ni with the atomic ratio of 5:1 possesses the best dispersity,and provides far more metallic Pt.Due to the favorable structural property,Pt-Ni/CMK-5(5:1)offers the best electro-chemical performance amongst all the as-prepared catalysts.Conclusively,the research work of doping Ni into the lattice of Pt,undoubtedly,is meaningful in solving the problems encountered by fuel cells.

    (1) Liu,X.;Chen,J.;Liu,G.;Zhang,L.;Zhang,H.M.;Yi,B.L.J.Power Sources2010,195,4098.

    (2)Li,W.Z.;Zhou,W.J.;Li,H.Q.;Zhou,Z.H.;Zhou,B.;Sun,G.Q.;Xin,Q.Electrochim.Acta2004,49,1045.

    (3)Yang,C.W.;Wang,D.L.;Hu,X.G.;Dai,C.S.;Liang,Z.J.Alloy.Compd.2008,448,109.

    (4) Wang,X.M.;Li,N.;Pfefferle,L.D.;Haller,G.L.J.Phys.Chem.,C2010,114,16996.

    (5)Tang,H.;Chen,J.H.;Nie,L.H.;Liu,D.Y.;Deng,W.;Kuang,Y.F.;Yao,S.Z.J.Colloid Interface Sci.2004,269,26.

    (6) Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Nanosci.Nanotechnol.2003,3,247.

    (7)Yen,C.H.;Shimizu,K.;Lin,Y.Y.;Bailey,F.;Cheng,I.F.;Wai,C.M.Energy Fuels2007,21,2268.

    (8)Shimazaki,Y.;Hayasaka,S.;Koyama,T.;Nagao,D.;Kobayashi,Y.;Konno,M.J.Colloid Interface Sci.2010,350,580.

    (9) Zhao,Y.;E,Y.F.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52,5873.

    (10) Do,J.S.;Chen,Y.T.;Lee,M.H.J.Power Sources2007,172,623.

    (11) Choi,J.H.;Park,K.W.;Kwon,B.K.;Sung,Y.E.J.Electrochem.Soc.2003,150,773.

    (12) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.

    (13) Jeon,T.Y.;Yoo,S.J.;Cho,Y.H.;Lee,K.S.;Kang,S.H.;Sung,Y.E.J.Phys.Chem.C2009,113,19732.

    (14)Jiang,S.J.;Ma,Y.W.;Tao,H.S.;Jian,G.Q.;Wang,X.Z.;Fan,Y.N.;Zhu,J.M.;Hu,Z.J.Nanosci.Nanotechnol.2010,10,3895.

    (15)Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe,M.Langmuir2007,23,6438.

    (16) He,C.Z.;Kunz,H.R.;Fenton,J.M.J.Electrochem.Soc.2003,150,A1071.

    (17)Mathiyarasu,J.;Remona,A.M.;Mani,A.;Phani,K.L.N.;Yegnaraman,V.J.Solid State Electrochem.2004,8,968.

    (18)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B 2004,108,8234.

    (19) Wang,Z.B.;Yin,G.P.;Shi,P.F.J.Electrochem.Soc.2005,153,A2406.

    (20) Park,K.W.;Choi,J.H.;Ahn,K.S.;Sung,Y.E.J.Phys.Chem.B 2004,108,5989.

    (21) Sun,D.;He,J.P.;Zhou,J.H.;Wang,T.;Di,Z.Y.;Ding,X.C.Acta Phys.-Chim.Sin.2010,26,1219.[孫 盾,何建平,周建華,王 濤,狄志勇,丁曉春.物理化學(xué)學(xué)報,2010,26,1219.]

    (22)Lu,A.H.;Li,W.C.;Schmidt,W.G.;Schuth,F.Microporous Mesoporous Mat.2005,80,117.

    (23) Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal.Chem.2005,580,145.

    (24)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.;Mei,T.Q.Electrochem.Solid-State Lett.2007,10,B191.

    (25) Pozio,A.;Francesco,D.M.;Cemmi,A.J.Power Sources 2002,105,13.

    (26)Yang,R.Z.;Liu,X.P.;Zhang,H.R.Carbon 2005,43,11.

    (27)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.Electrochem.Solid-State Lett.2007,10,B191.

    (28)Park,K.W.;Choi,J.H.;Kwon,B.K.;Lee,S.A.;Sung,Y.E.J.Phys.Chem.B 2002,106,1869.

    (29) Gojkovic,S.L.;Vidakovic,T.R.;Durovic,D.R.Electrochim.Acta 2003,48,3607.

    (30) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154,98.

    (31)Geng,D.S.;Lu,G.X.J.Phys.Chem.C 2007,111,11897.

    (32) Liu,F.;Lee,J.Y.;Zhou,W.J.Small 2006,2,121.

    (33)Watanabe,M.;Uchida,M.;Motoo,S.J.Electroanal.Chem.1987,229,395.

    (34) Park,K.W.;Choi,J.H.;Sung,Y.E.J.Phys.Chem.B 2003,107,5851.

    (35)Lin,Y.;Cui,X.;Yen,C.;Wai,C.M.J.Phys.Chem.B 2005,109,14410.

    CMK-5負載Pt-Ni合金催化劑及其甲醇電化學(xué)氧化性能

    丁曉春 陳 秀 周建華 王 濤 孫 盾 何建平*

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京210016)

    采用NaBH4還原法將不同原子比的鉑鎳負載于CMK-5(由SBA-15模板所得的碳載體)表面.X射線衍射(XRD)和X射線光電子能譜(XPS)測試結(jié)果表明,所得催化劑是以鉑鎳合金的形式存在,相對于Pt/CMK-5而言,這種合金化的催化劑中Pt表現(xiàn)出更多的金屬態(tài).電化學(xué)測試結(jié)果顯示,在催化劑中主要以化合態(tài)存在的鎳(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化產(chǎn)物從催化劑表面的脫附.另外,從循環(huán)伏安測試結(jié)果可知,Pt-Ni/CMK-5(5:1)(原子比)具有較大的比表面活性,其電化學(xué)活性面積高達63.9 m2·g-1,且與Pt/CMK-5相比抗CO中毒能力有明顯改善.

    CMK-5;Pt/CMK-5催化劑;Pt-Ni/CMK-5催化劑; 甲醇; 電化學(xué)氧化

    O646

    Received:October 27,2010;Revised:January 10,2011;Published on Web:February 16,2011.

    ?Corresponding author.Email:jianph@nuaa.edu.cn;Tel:+86-25-52112900;Fax:+86-25-52112626.The project was supported by the National Natural Science Foundation of China(50871053).

    國家自然科學(xué)基金(50871053)資助項目

    猜你喜歡
    南京航空航天大學(xué)建平建華
    Her dream came true她的夢想成真了
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    国产精品久久久久成人av| 精品视频人人做人人爽| 男女午夜视频在线观看| 99re在线观看精品视频| 久久狼人影院| 19禁男女啪啪无遮挡网站| 俄罗斯特黄特色一大片| 99国产综合亚洲精品| 一级,二级,三级黄色视频| 久久亚洲真实| 欧美日韩一级在线毛片| 欧美日韩视频精品一区| 欧美乱妇无乱码| 国产成人av教育| 色婷婷av一区二区三区视频| 午夜老司机福利片| 女人精品久久久久毛片| 操美女的视频在线观看| 美女扒开内裤让男人捅视频| 国产高清国产精品国产三级| 久久国产亚洲av麻豆专区| 一本大道久久a久久精品| 手机成人av网站| 97人妻天天添夜夜摸| 丰满饥渴人妻一区二区三| 亚洲伊人色综图| 亚洲精品久久成人aⅴ小说| 精品久久久久久久毛片微露脸| 久久香蕉激情| 热re99久久国产66热| 国产精品久久久久久精品古装| 久久精品国产清高在天天线| 两性夫妻黄色片| 国产精品 欧美亚洲| 成年版毛片免费区| 欧美在线黄色| a级毛片在线看网站| 国产亚洲欧美精品永久| 亚洲色图av天堂| 日韩 欧美 亚洲 中文字幕| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 国产精品乱码一区二三区的特点 | 免费av中文字幕在线| 欧美精品啪啪一区二区三区| 欧美黑人精品巨大| 久久久久久久精品吃奶| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 国产精品久久久人人做人人爽| 欧美精品人与动牲交sv欧美| 久久热在线av| 悠悠久久av| 十八禁网站免费在线| 啪啪无遮挡十八禁网站| 最新美女视频免费是黄的| 精品久久久精品久久久| 国产淫语在线视频| 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 欧美黑人精品巨大| 又大又爽又粗| 人妻丰满熟妇av一区二区三区 | 欧美精品人与动牲交sv欧美| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看. | 日本欧美视频一区| 在线观看免费视频网站a站| 欧美不卡视频在线免费观看 | 国产免费男女视频| 18禁黄网站禁片午夜丰满| 亚洲一卡2卡3卡4卡5卡精品中文| 熟女少妇亚洲综合色aaa.| 窝窝影院91人妻| 亚洲精品成人av观看孕妇| 精品久久久久久,| 人妻一区二区av| 欧美在线一区亚洲| 国产av又大| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| 丝袜美足系列| 777久久人妻少妇嫩草av网站| 亚洲熟女毛片儿| 久久精品国产a三级三级三级| 男女午夜视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品国产精品久久久不卡| 国产男女超爽视频在线观看| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区精品| 18禁裸乳无遮挡动漫免费视频| 黄色丝袜av网址大全| 国产精品电影一区二区三区 | 免费在线观看完整版高清| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 欧美黑人欧美精品刺激| 久久中文字幕人妻熟女| 老鸭窝网址在线观看| 两性夫妻黄色片| 午夜老司机福利片| svipshipincom国产片| 免费一级毛片在线播放高清视频 | 久久99一区二区三区| 成年人黄色毛片网站| 操美女的视频在线观看| 黄片播放在线免费| 韩国av一区二区三区四区| 国产视频一区二区在线看| 国产男靠女视频免费网站| 人妻一区二区av| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 99热只有精品国产| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 一本一本久久a久久精品综合妖精| av福利片在线| 亚洲色图av天堂| 99热只有精品国产| 久久久国产成人精品二区 | 午夜福利乱码中文字幕| 麻豆国产av国片精品| 美女福利国产在线| 啦啦啦免费观看视频1| av网站免费在线观看视频| 成人影院久久| 国产精品久久久久久精品古装| 91成年电影在线观看| 久久久国产成人精品二区 | 久久精品国产清高在天天线| 欧美日韩视频精品一区| 老司机亚洲免费影院| 国产av一区二区精品久久| 午夜精品在线福利| 欧美人与性动交α欧美软件| 少妇被粗大的猛进出69影院| 黄色片一级片一级黄色片| 搡老熟女国产l中国老女人| 国产淫语在线视频| 国产国语露脸激情在线看| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 搡老熟女国产l中国老女人| 成年动漫av网址| 男人的好看免费观看在线视频 | 自线自在国产av| 免费观看人在逋| 午夜成年电影在线免费观看| 天堂俺去俺来也www色官网| 国产精品九九99| 可以免费在线观看a视频的电影网站| 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲 | 亚洲男人天堂网一区| bbb黄色大片| 超碰成人久久| 一二三四社区在线视频社区8| 亚洲av欧美aⅴ国产| 欧美黄色淫秽网站| 丝袜在线中文字幕| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 嫩草影视91久久| 日韩熟女老妇一区二区性免费视频| 欧美日韩福利视频一区二区| 搡老乐熟女国产| 美国免费a级毛片| 亚洲中文字幕日韩| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 日本a在线网址| 亚洲一区高清亚洲精品| 国产成人免费无遮挡视频| 99热只有精品国产| 亚洲中文av在线| 国产黄色免费在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片 | 欧美人与性动交α欧美软件| 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 亚洲成国产人片在线观看| 在线国产一区二区在线| 欧美亚洲日本最大视频资源| 亚洲欧美色中文字幕在线| 天天添夜夜摸| 国产精品偷伦视频观看了| av天堂久久9| 又黄又爽又免费观看的视频| 亚洲成人免费av在线播放| 午夜福利免费观看在线| 久久精品91无色码中文字幕| 中出人妻视频一区二区| 国产精品电影一区二区三区 | 免费高清在线观看日韩| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 久久国产精品男人的天堂亚洲| 欧美日韩视频精品一区| 侵犯人妻中文字幕一二三四区| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看| 成年动漫av网址| 国产成人av教育| 亚洲五月色婷婷综合| 色94色欧美一区二区| 国产高清videossex| 韩国精品一区二区三区| 国产精品成人在线| 免费日韩欧美在线观看| 99国产综合亚洲精品| 黄片播放在线免费| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 好男人电影高清在线观看| 男女下面插进去视频免费观看| 国产成人免费无遮挡视频| 黄色女人牲交| 首页视频小说图片口味搜索| 伊人久久大香线蕉亚洲五| 电影成人av| 国产成人精品久久二区二区免费| 99国产精品免费福利视频| 高清av免费在线| 日韩欧美国产一区二区入口| 久9热在线精品视频| 欧美日韩瑟瑟在线播放| 叶爱在线成人免费视频播放| 热re99久久国产66热| 久久中文看片网| 精品午夜福利视频在线观看一区| 国产在线一区二区三区精| 久久精品亚洲av国产电影网| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频| 一区二区三区国产精品乱码| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 欧美成人午夜精品| 色精品久久人妻99蜜桃| www日本在线高清视频| 久久香蕉国产精品| 国产精品一区二区免费欧美| av视频免费观看在线观看| 国产精品亚洲av一区麻豆| 亚洲国产欧美日韩在线播放| 欧美日韩成人在线一区二区| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 一级毛片女人18水好多| 午夜福利一区二区在线看| 十分钟在线观看高清视频www| 老司机靠b影院| 久久久久久久久久久久大奶| 亚洲va日本ⅴa欧美va伊人久久| 女人久久www免费人成看片| 正在播放国产对白刺激| avwww免费| 操美女的视频在线观看| 乱人伦中国视频| tocl精华| 日本黄色视频三级网站网址 | 婷婷成人精品国产| 老鸭窝网址在线观看| 一本综合久久免费| 精品久久久久久久毛片微露脸| 我的亚洲天堂| 黄片小视频在线播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 老司机靠b影院| 日韩大码丰满熟妇| 亚洲五月色婷婷综合| 69av精品久久久久久| 国产在视频线精品| 91av网站免费观看| 中文字幕精品免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 淫妇啪啪啪对白视频| 欧美黑人精品巨大| 午夜成年电影在线免费观看| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 男人操女人黄网站| 国产精品久久久久久精品古装| 久久精品成人免费网站| 九色亚洲精品在线播放| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 一夜夜www| 免费av中文字幕在线| 十八禁高潮呻吟视频| 成人手机av| 国精品久久久久久国模美| 两个人免费观看高清视频| 成熟少妇高潮喷水视频| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 日本一区二区免费在线视频| 精品福利观看| 久久人妻福利社区极品人妻图片| 国产精品一区二区免费欧美| 一a级毛片在线观看| 99热国产这里只有精品6| 麻豆乱淫一区二区| 51午夜福利影视在线观看| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 波多野结衣av一区二区av| 操出白浆在线播放| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 久热爱精品视频在线9| 一夜夜www| 亚洲国产欧美网| 18禁国产床啪视频网站| 法律面前人人平等表现在哪些方面| videos熟女内射| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 9191精品国产免费久久| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 午夜福利一区二区在线看| 大码成人一级视频| 丁香欧美五月| 极品人妻少妇av视频| 老汉色∧v一级毛片| 久久精品成人免费网站| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 99精品欧美一区二区三区四区| 国产精品久久电影中文字幕 | 亚洲av第一区精品v没综合| 热re99久久国产66热| 深夜精品福利| 淫妇啪啪啪对白视频| 精品国产美女av久久久久小说| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 久久婷婷成人综合色麻豆| 18在线观看网站| 老熟妇乱子伦视频在线观看| 亚洲熟妇熟女久久| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看| av一本久久久久| tube8黄色片| 两人在一起打扑克的视频| 老汉色∧v一级毛片| 欧美日韩成人在线一区二区| 久久久久国产精品人妻aⅴ院 | 久久热在线av| 欧美黄色片欧美黄色片| 一级毛片女人18水好多| 五月开心婷婷网| 亚洲色图综合在线观看| 久久久国产精品麻豆| 一级毛片女人18水好多| 国产一区二区三区综合在线观看| 最近最新中文字幕大全电影3 | 久久精品国产a三级三级三级| 久9热在线精品视频| 天堂俺去俺来也www色官网| cao死你这个sao货| 老司机亚洲免费影院| 国产成人精品无人区| 激情在线观看视频在线高清 | 每晚都被弄得嗷嗷叫到高潮| 欧美成狂野欧美在线观看| 黄色 视频免费看| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩综合在线一区二区| 老司机靠b影院| a在线观看视频网站| 日韩欧美在线二视频 | 国产精品影院久久| 久久香蕉激情| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 一二三四社区在线视频社区8| 久久人妻av系列| 啦啦啦免费观看视频1| 中文字幕色久视频| 精品久久久久久,| 久久精品国产99精品国产亚洲性色 | av视频免费观看在线观看| 欧美国产精品一级二级三级| 天天影视国产精品| 中文字幕色久视频| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 热re99久久国产66热| 天堂动漫精品| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 性少妇av在线| 久久香蕉精品热| 这个男人来自地球电影免费观看| 色老头精品视频在线观看| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 国产极品粉嫩免费观看在线| 999久久久精品免费观看国产| 1024视频免费在线观看| 亚洲九九香蕉| а√天堂www在线а√下载 | 久久久水蜜桃国产精品网| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 水蜜桃什么品种好| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 欧美色视频一区免费| 日韩制服丝袜自拍偷拍| 老司机福利观看| 日韩欧美一区二区三区在线观看 | 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 精品久久久精品久久久| 一级,二级,三级黄色视频| 亚洲精品中文字幕在线视频| 国产区一区二久久| 久久精品熟女亚洲av麻豆精品| 国产高清国产精品国产三级| 国产免费现黄频在线看| 亚洲国产精品合色在线| 国产黄色免费在线视频| 亚洲 国产 在线| 久久草成人影院| 国产av一区二区精品久久| xxxhd国产人妻xxx| 国产伦人伦偷精品视频| 少妇 在线观看| 波多野结衣一区麻豆| 精品亚洲成a人片在线观看| 午夜成年电影在线免费观看| 啦啦啦 在线观看视频| 国产成+人综合+亚洲专区| 国产精品久久视频播放| 国产高清视频在线播放一区| 欧美一级毛片孕妇| 人人妻人人爽人人添夜夜欢视频| 搡老熟女国产l中国老女人| 国产精品 国内视频| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜福利在线观看视频| 国产一卡二卡三卡精品| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 久久久久久人人人人人| 少妇的丰满在线观看| 宅男免费午夜| 丝袜美足系列| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 国产日韩欧美亚洲二区| 校园春色视频在线观看| 亚洲久久久国产精品| av电影中文网址| 又大又爽又粗| 亚洲伊人色综图| 色尼玛亚洲综合影院| 国产欧美亚洲国产| 又黄又爽又免费观看的视频| 麻豆国产av国片精品| 欧美精品高潮呻吟av久久| 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜| 岛国在线观看网站| 一级作爱视频免费观看| 欧美最黄视频在线播放免费 | 18禁裸乳无遮挡免费网站照片 | 在线观看日韩欧美| 精品国产一区二区三区四区第35| 人妻丰满熟妇av一区二区三区 | 99国产精品99久久久久| 电影成人av| 国产精品综合久久久久久久免费 | 一级片免费观看大全| 三上悠亚av全集在线观看| 成熟少妇高潮喷水视频| 啦啦啦 在线观看视频| 岛国在线观看网站| 色精品久久人妻99蜜桃| 国产亚洲精品久久久久久毛片 | 午夜精品在线福利| 热99国产精品久久久久久7| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| 在线免费观看的www视频| av网站在线播放免费| 精品久久久久久,| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 国产麻豆69| 日韩制服丝袜自拍偷拍| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 69精品国产乱码久久久| 美女视频免费永久观看网站| 成人手机av| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 天堂俺去俺来也www色官网| 欧美乱妇无乱码| 男人舔女人的私密视频| 亚洲成a人片在线一区二区| 欧美在线黄色| 亚洲精品国产色婷婷电影| 欧美老熟妇乱子伦牲交| 精品国内亚洲2022精品成人 | 久久久久国内视频| 超碰97精品在线观看| 99热国产这里只有精品6| 新久久久久国产一级毛片| 亚洲精品乱久久久久久| 国产高清激情床上av| 两个人看的免费小视频| 99re6热这里在线精品视频| 91精品国产国语对白视频| 亚洲九九香蕉| 老熟妇乱子伦视频在线观看| 日韩大码丰满熟妇| 久久久久久久国产电影| 欧美黄色淫秽网站| 国产高清激情床上av| 久久人人爽av亚洲精品天堂| 大香蕉久久网| 亚洲专区字幕在线| 交换朋友夫妻互换小说| 亚洲熟女毛片儿| 在线观看日韩欧美| videos熟女内射| 亚洲精品国产色婷婷电影| 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 男女免费视频国产| 中文亚洲av片在线观看爽 | 嫩草影视91久久| 久久草成人影院| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 天堂√8在线中文| 男男h啪啪无遮挡| 色94色欧美一区二区| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 在线观看www视频免费| 无人区码免费观看不卡| 免费黄频网站在线观看国产| 黄色怎么调成土黄色| 久久亚洲真实| 国产日韩欧美亚洲二区| 精品国内亚洲2022精品成人 | 99国产精品一区二区三区| 日韩有码中文字幕| 亚洲视频免费观看视频| 亚洲va日本ⅴa欧美va伊人久久| 国产国语露脸激情在线看| 宅男免费午夜| 久久久久国产精品人妻aⅴ院 | 久久久精品免费免费高清| 午夜福利影视在线免费观看| 99香蕉大伊视频| av视频免费观看在线观看| 中文字幕精品免费在线观看视频| 操出白浆在线播放| 免费在线观看完整版高清|