• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于Kalman睟P融合的南水北調(diào)高填方渠道滲漏監(jiān)測模型研究

      2018-12-29 10:10:08劉明堂田壯壯齊慧勤耿宏印劉雪梅
      南水北調(diào)與水利科技 2018年5期
      關(guān)鍵詞:BP神經(jīng)網(wǎng)絡(luò)卡爾曼濾波

      劉明堂 田壯壯 齊慧勤 耿宏印 劉雪梅

      摘要:針對目前南水北調(diào)中線工程高填方渠道滲漏監(jiān)測設(shè)備綜合誤差大、不能監(jiān)測渠道斷面間滲漏等問題,設(shè)計了可用于高填方渠道滲漏的可移動無損監(jiān)測系統(tǒng),建立了高填方渠道滲漏狀態(tài)監(jiān)測的KalmanBP融合模型。首先構(gòu)建一種基于無線傳感網(wǎng)的多區(qū)域滲漏信息檢測平臺,將傳感器設(shè)計成便攜式可移動的錐形設(shè)備,對滲漏區(qū)域的溫濕度、土壤含水率、GPS位置信息以及滲流等信息進(jìn)行實時采集,再通過ZigBee和GPRS將多傳感器信息進(jìn)行無線傳輸;并結(jié)合流場滲漏檢測方法,通過試驗?zāi)P秃Y選出與高填方渠道滲流相關(guān)的特征變量;使用卡爾曼(kalman)算法對關(guān)聯(lián)的物理變量進(jìn)行濾波和估值;最后將多傳感器數(shù)據(jù)通過BP神經(jīng)網(wǎng)絡(luò)進(jìn)行滲漏狀態(tài)模式識別,實現(xiàn)滲漏的狀態(tài)預(yù)測,確定坡面滲漏安全級別。試驗結(jié)果表明,基于KalmanBP融合模型的高填方渠道滲漏監(jiān)測模型識別誤差較小,達(dá)到能在整體上實時監(jiān)測高填方渠段的滲流狀態(tài),可實現(xiàn)南水北調(diào)中線工程高填方渠道斷面間的坡面滲流非破壞性在線監(jiān)測功能。

      關(guān)鍵詞:南水北調(diào)中線工程;高填方渠道;滲漏監(jiān)測;卡爾曼濾波;BP神經(jīng)網(wǎng)絡(luò)

      中圖分類號:TV68 文獻(xiàn)標(biāo)志碼:A 文章編號:

      16721683(2018)05017907

      Research on leakage monitoring model for highfilled canal of the Middle Route of SouthtoNorth Water Diversion Project based on KalmanBP fusion network

      LIU Mingtang,TIAN Zhangzhang,QI Huiqin,GENG Hongyin,LIU Xuemei

      Department of Information Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450045,China)

      Abstract:

      To solve the problems of the leakage monitoring equipment for highfilled canals in producing large comprehensive error and being unable to monitor the seepage between canal sections,we designed a movable and nondestructive leakage monitoring system for the highfilled canal of the Middle Route of the SouthtoNorth Water Diversion Project and established a fusion model based on KalmanBP for leakage monitoring of highfilled canals.Firstly,we constructed a multizone leakage information detection platform based on wireless sensor network,and we designed the sensors as portable and movable cone devices that can be inserted into the soil.The information of temperature,humidity,soil water content,seepage,and GPS location was collected in real time and then was transmitted wirelessly through the ZigBee and GPRS.Using the flow field leakage detection method,we selected the characteristic variables that were relevant to highfilled canal leakage through the experimental model.Then,we used Kalman algorithm to filter and valuate the associated physical variables.Finally,we submitted the multisensor data to the BP neural network for leakage state pattern recognition and realized the prediction of slope leakage state and determined the safety level of slope leakage.The experimental results showed that the KalmanBP fusion model has smaller error in recognizing the leakage of the highfill canal,and can monitor in real time the leakage state between the canal sections.It can realize nondestructive online monitoring of the slope seepage of the Middle Route of the SouthtoNorth Water Diversion Project.

      Key words:

      Middle Route of SouthtoNorth Water Diversion Project;highfilled canal;leakage monitoring;Kalman filter;BP neural network

      南水北調(diào)中線工程線路總長約1 432 km,大部分采用新開挖渠道輸水[1]。其中,高填方渠段1395 km,占總干渠長度的 11%,而且有的高填方渠段最大填方高度達(dá)255 m。由于南水北調(diào)中線工程中高填方渠段分布范圍廣、工程地質(zhì)條件復(fù)雜、天氣變化顯著等原因,其高填方渠道會出現(xiàn)整體或局部沉降、滑坡、凍脹、冰壓等災(zāi)害[2]。這些災(zāi)害均會造成填方襯砌面板開裂,防滲體被拉斷造成滲(漏)水。南水北調(diào)中線工程高填方渠段一旦失事,勢必給渠道兩岸人民生命財產(chǎn)造成嚴(yán)重?fù)p失[3]。

      因此,對高填方渠段進(jìn)行滲漏檢測就具有重大的研究意義和實用價值。然而,南水北調(diào)中線工程目前尚無針對高填方段的專項安全監(jiān)測設(shè)計方案[4]。在南水北調(diào)中線工程施工中,一般安裝了以測壓管和小量程滲壓計為基礎(chǔ)的滲流監(jiān)測設(shè)備,可對渠底揚壓力、監(jiān)測斷面上的滲透壓力分布以及對浸潤線、滲流量、地下水位和防滲墻防滲效果進(jìn)行監(jiān)測[57]。但在已安裝的滲流監(jiān)測設(shè)備中,大都是振弦式滲壓計和測壓管。其存在綜合誤差大等缺陷,一般不適合于南水北調(diào)高填方段總水頭變化較小的滲流監(jiān)測;且現(xiàn)有的滲流監(jiān)測設(shè)備一般分布在監(jiān)測站點的渠底或者渠道斷面上,采用埋入式或半埋入式安裝,不能靈活地實現(xiàn)可移動測量,也不能實現(xiàn)高填方渠道斷面間的坡面滲流監(jiān)測。

      目前,可應(yīng)用于高填方渠道滲漏檢測的地球物理探測方法有電磁法[8]、高密度電阻率法[910]、分布式光纖[11]、翻斗式容積法[12]、溫度場法[13]、示蹤法[14]、電阻法[15]等。無論流場法還是電場法通常都是只適用于現(xiàn)場的臨時勘查,有的檢測方法還需要現(xiàn)場開挖破壞填方渠道。

      本文將建立一種基于無線傳感網(wǎng)的多區(qū)域滲漏信息無損檢測系統(tǒng),將溫濕度傳感器、土壤含水率傳感器以及滲流檢測電路設(shè)計成便攜式設(shè)備,進(jìn)行可移動非開挖方式安裝,再通過ZigBee和GPRS進(jìn)行多傳感器信息采集與傳輸;然后提取與滲漏具有相關(guān)性的環(huán)境變量,進(jìn)行滲漏信息的特征識別;最后建立一種基于KalmanBP融合的南水北調(diào)高填方渠道滲漏監(jiān)測模型,實現(xiàn)渠道斷面間的坡面滲漏狀態(tài)預(yù)測。

      1 數(shù)據(jù)采集及無線傳輸設(shè)計

      1.1 監(jiān)測模型設(shè)計

      為滿足高填方渠段滲流監(jiān)測的便攜測量,同時又不能開挖破壞的設(shè)計原則,本文設(shè)計了基于無線傳感網(wǎng)的多區(qū)域?qū)崟r滲漏信息監(jiān)測系統(tǒng)模型。圖1為高填方段坡面滲流監(jiān)測布置示意圖。ZigBee協(xié)調(diào)器連接五個監(jiān)測子節(jié)點,再通過GPRS網(wǎng)絡(luò)無線傳輸?shù)奖O(jiān)測室。

      其中圖1中1為高填方渠頂;2為渠坡;3為渠底;4為監(jiān)測室;5為ZigBee監(jiān)測點1;6為ZigBee監(jiān)測子節(jié)點2;7為ZigBee監(jiān)測子節(jié)點3;8為 GPRS監(jiān)測節(jié)點;9為ZigBee監(jiān)測子節(jié)點4;10為ZigBee監(jiān)測子節(jié)點5。

      1.2 信息采集節(jié)點設(shè)計

      圖2為基于ZigBee子節(jié)點的信息采集單元示意圖。其傳感器輸入量有五個:滲流電場的電極A和電極B、溫度場、土壤含水率和GPS位置信息。這五個輸入量還需要通過數(shù)據(jù)融合處理,根據(jù)多傳感器檢測量定性判斷滲漏情況[16]。

      圖2中,1為金屬保護(hù)殼;2為電源模塊;3為GPS模塊;4為ZigBee模塊;5為溫度模塊;6為滲流電阻;7為金屬保護(hù)殼錐形尖部。金屬保護(hù)殼錐形尖部可以很方便地插入到渠道坡面土壤里面或者安裝在渠道交叉建筑物上,實現(xiàn)了便攜、可移動、無損檢測功能。

      1.3 無線傳輸設(shè)計

      高填方渠段滲流監(jiān)測平臺的無線傳輸部分按照物聯(lián)網(wǎng)架構(gòu)設(shè)計,利用ZigBee無線通信網(wǎng)絡(luò)實現(xiàn)近距離無線傳輸,[HJ2.15mm]然后將數(shù)據(jù)再通過GPRS網(wǎng)絡(luò)上傳到web服務(wù)器端,實現(xiàn)數(shù)據(jù)的遠(yuǎn)程傳輸和存儲。圖3是一個區(qū)域的滲漏監(jiān)測系統(tǒng)整體示意圖。每個測點間距可設(shè)置50 m左右,這些測點負(fù)責(zé)采集測點區(qū)域內(nèi)和滲漏相關(guān)的傳感器信息。各個獨立的測點終端和協(xié)調(diào)器網(wǎng)關(guān)設(shè)備組成ZigBee無線網(wǎng)絡(luò);ZigBee無線網(wǎng)絡(luò)選用CC 2530芯片實現(xiàn)各個傳感器信息的讀取,同時進(jìn)行卡爾曼(Kalman)濾波等數(shù)據(jù)預(yù)處理工作。每個ZigBee測點終端要采集溫濕度、電流、含水率四類傳感器,應(yīng)用太陽能板供電。ZigBee無線網(wǎng)絡(luò)中要布置一個協(xié)調(diào)器,其主要接收和集中ZigBee網(wǎng)絡(luò)中其他節(jié)點上傳的數(shù)據(jù),同時其還需要將數(shù)據(jù)通過GPRS網(wǎng)絡(luò)上傳至遠(yuǎn)端服務(wù)器。故此協(xié)調(diào)器還要加上GPRS模塊。GPRS模塊選用SIM800C,其實現(xiàn)了數(shù)據(jù)的無線遠(yuǎn)程傳輸。

      2 KalmanBP融合模型建立

      2.1 Kalman數(shù)據(jù)預(yù)處理

      數(shù)據(jù)預(yù)處理分為三部分:異常值的剔除、卡爾曼濾波和歸一化處理,前兩部分是為了提高數(shù)據(jù)的準(zhǔn)確性,后一部分是為BP神經(jīng)網(wǎng)絡(luò)輸入樣本值做預(yù)處理[17]。試驗過程中由于測量儀器的干擾,導(dǎo)致測量數(shù)據(jù)出現(xiàn)一些明顯的異常,剔除這些異常值便是首要任務(wù)。本文應(yīng)用3σ準(zhǔn)則剔除異常值,然后使用卡爾曼濾波算法對數(shù)據(jù)進(jìn)行濾波,得出相對估計值[18]。由于Kalman算法具有實時性濾波特點,其可在ZigBee芯片上直接運行,實現(xiàn)了采集系統(tǒng)的實時性要求。

      卡爾曼(Kalman)濾波其實是一個最優(yōu)狀態(tài)篩選的過程,可以實現(xiàn)監(jiān)測數(shù)據(jù)實時在線處理[19]。Kalman方程式[HJ2.05mm]根據(jù)下面的五條Kalman最優(yōu)濾波的基本公式進(jìn)行描述(狀態(tài)控制量為0)[20]:

      2.2 BP網(wǎng)絡(luò)的滲漏信息特征提取

      本文應(yīng)用了BP 神經(jīng)網(wǎng)絡(luò),用于滲漏信息的函數(shù)逼近、模式識別、分類等功能[22]。BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)過程是由前向計算過程和誤差反向傳播過程組成。這兩個過程反復(fù)進(jìn)行,不斷調(diào)整各層的權(quán)值和閾值,使得網(wǎng)絡(luò)誤差最小平方和或達(dá)到人們期望的要求,學(xué)習(xí)過程結(jié)束[23]。BP神經(jīng)網(wǎng)絡(luò)非線性映射可用下面公式描述:

      本文將滲流電場的兩路電極信息、溫度場信息和土壤含水率信息進(jìn)行狀態(tài)編碼,然后作為BP神經(jīng)網(wǎng)絡(luò)的四維輸入量,再利用BP神經(jīng)網(wǎng)絡(luò)的映射能力,進(jìn)行滲漏信息的特征提取與數(shù)據(jù)融合處理,根據(jù)多傳感器檢測量來實現(xiàn)定性判斷滲漏情況。BP神經(jīng)網(wǎng)的網(wǎng)絡(luò)拓?fù)湟妶D5。

      實測工程中,系統(tǒng)將滲漏發(fā)生的整個過程分為三個時間段:第一階段記為Y=[0,0],這個階段模 型狀態(tài)正常沒有滲漏發(fā)生;第二階段記為Y=[0,1],此階段開始發(fā)生滲漏但不明顯;第三階段記為Y=[1,1],這一階段滲漏現(xiàn)象很明顯能夠直接觀察到。這樣網(wǎng)絡(luò)的輸出是一個二維向量。隱藏層神經(jīng)元數(shù)目可以根據(jù)經(jīng)驗選定15個。

      2.3 kalmanBP融合模型

      kalmanBP融合模型由卡爾曼濾波器和BP神經(jīng)網(wǎng)絡(luò)組成,如圖6是模型的結(jié)構(gòu)圖。傳感器輸出值通過卡爾曼濾波器的入口Z([WTB1X]k[WTBZ])進(jìn)入模型,最終從BP神經(jīng)網(wǎng)絡(luò)的輸出端Y2輸出。經(jīng)卡爾曼濾波器處理后的序列估計值作為BP神經(jīng)網(wǎng)絡(luò)的一個輸入神經(jīng)元,對神經(jīng)網(wǎng)絡(luò)訓(xùn)練、檢測,實現(xiàn)優(yōu)化處理數(shù)據(jù)的效果。

      3 結(jié)果分析

      3.1 傳感器信息關(guān)聯(lián)分析

      理論上,當(dāng)測點區(qū)域發(fā)生滲漏時,區(qū)域內(nèi)電場發(fā)生變化電流強度會增強,溫度場也會發(fā)生有升高趨勢,同時土壤含水率變化明顯。本文進(jìn)行了滲流電場同溫度場、土壤含水率等進(jìn)行了關(guān)聯(lián)分析試驗,來驗證它們間的關(guān)聯(lián)關(guān)系,見圖7。

      為了在同一坐標(biāo)軸上表現(xiàn)關(guān)聯(lián)特征量的變化趨勢,這里對原始值做了歸一化處理,從圖7中可以看出四個特征量的整體變化趨勢有明顯的關(guān)聯(lián)性。因此選取測點的電流強度、溫度變化量和測點土壤含水率作為模型的監(jiān)測量將有效地監(jiān)測渠道滲漏狀態(tài),更具有可行性。

      3.2 KalmanBP訓(xùn)練模型效果分析

      高填方滲漏渠道滲漏監(jiān)測模型系統(tǒng)具有可行性,其檢測的電流強度、溫度變化量和測點含水率等特征量數(shù)據(jù)通過訓(xùn)練好的BP神經(jīng)之后,能夠較好地識別系統(tǒng)預(yù)先定義的滲漏狀態(tài)模式。將實測所得的2 557組數(shù)據(jù)經(jīng)過預(yù)處理之后按照約6∶1的比例分為訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集。通過試驗嘗試建立均方誤差小的BP神經(jīng)網(wǎng)絡(luò),圖8是神經(jīng)網(wǎng)絡(luò)訓(xùn)練效果圖,在設(shè)定訓(xùn)練誤差值為0005的情況下,2 198組訓(xùn)練樣本在18 090次訓(xùn)練之后達(dá)到預(yù)期誤差值,說明建立的BP神經(jīng)網(wǎng)絡(luò)符合要求。當(dāng)BP神經(jīng)網(wǎng)絡(luò)在上位機上訓(xùn)練好后,其就可以進(jìn)行相應(yīng)現(xiàn)場的滲漏預(yù)測工作,能達(dá)到高填方渠道滲漏實時性要求。

      3.3 KalmanBP滲漏預(yù)測誤差分析

      KalmanBP融合模型建立好之后,利用359組測試樣本對網(wǎng)絡(luò)進(jìn)行測試,驗證其預(yù)測和識別的準(zhǔn)確性。歸一化之后的測試樣本值在經(jīng)過BP神經(jīng)網(wǎng)絡(luò)輸出的狀態(tài)向量Y,都能很好接近期望值,其中Y=[y1,y2]。雖然有個別輸出和期望輸出偏差稍大,但是通過模糊聚類的知識依然可以將其歸入正確的狀態(tài)模式中。從整體上來說,KalmanBP融合模型的實際輸出值都能很好接近期望值,實現(xiàn)了高填方渠道滲漏實時監(jiān)測功能。表1為KalmanBP滲漏預(yù)測誤差分析表,其中,6組樣本是從359組測試樣本中選取的,其中,各個傳感器數(shù)據(jù)是已經(jīng)歸一化到[0,1]之間的數(shù)值。

      4 結(jié)論

      本文研究和設(shè)計了可用于南水北調(diào)中線工程高填方渠道滲漏實時監(jiān)測模型,首先結(jié)合流場法滲漏檢測原理,建立一種基于無線傳感網(wǎng)的多傳感器滲漏信息無損檢測系統(tǒng),進(jìn)行數(shù)據(jù)采集和無線傳輸;然后使用卡爾曼(kalman)算法對關(guān)聯(lián)的物理變量進(jìn)行濾波和估值;最后將多傳感器數(shù)據(jù)通過BP神經(jīng)網(wǎng)絡(luò)進(jìn)行滲漏狀態(tài)模式識別。試驗和實測結(jié)果表明, kalmanBP融合模型實現(xiàn)了高填方渠道滲漏實時監(jiān)測功能,并能對[HJ1.9mm]監(jiān)測區(qū)域的滲漏狀態(tài)進(jìn)行定性判斷,達(dá)到能在整體上實時監(jiān)測高填方渠段的滲流狀態(tài),可實現(xiàn)南水北調(diào)中線工程高填方渠道斷面間的坡面滲流非破壞性在線監(jiān)測功能。

      參考文獻(xiàn)(References):

      [1] 汪易森.南水北調(diào)中線工程幾個技術(shù)問題的解決與思考[J].水利水電技術(shù),2015,46(6):7986.(WANG Y S.Consideration and solution of several technical problems of the Middle Route of the SouthtoNorth Water Diversion Project[J].Water Resources and Hydropower Engineering,2015,46(6):7986.(in Chinese)) DOI:10000860(2015) 06007908.

      [2] 李斌,楊斌,韋國虎,等.碾壓施工質(zhì)量實時監(jiān)控系統(tǒng)在南水北調(diào)工程中的應(yīng)用[J].[JP+2]南水北調(diào)與水利科技,2012,10(2):3033.(LI B,YANG B,WEI G H,et al.Application of realtime monitoring system of roller compaction construction quality in SouthtoNorth Water diversion project[J].SouthtoNorth Water diversion and Water Science&Technology;,2012,10(2):3033.(in Chinese)) DOI:10.3724/SP.I.1201.2012.0 2030.

      [3] 屈志剛,申黎平,李明新,等.南水北調(diào)中線工程高填方渠道加強措施探討[J].人民長江,2013,44(16):6366.(QU Z G,SHEN L P,LI M X,et al.Effective reinforcement measures for highfilled canal of Middle Route Project of SouthtoNorth Water Diversion[J].Yangtze River,2013,44(16):6366.(in Chinese)) DOI:10.16232/j.cnki.1001179.2013.16.025.

      [4] 崔崗,陳俊生,王麗麗.南水北調(diào)高填方段滲流監(jiān)測設(shè)計方案[J].西部探礦工程,2013,25(2):3941.(CU G,CHEN J S,WANG L L.Design scheme of seepage monitoring in high fill segment of SouthtoNorth Water Transfer Project[J].Western Exploration Engineering,2013,25(2):3941.(in Chinese)) DOI:10045716(2013)0200390.

      [5] 趙遜,蘭卿良,王永亮.南水北調(diào)中線工程安全監(jiān)測專業(yè)化管理研究[J].南水北調(diào)與水利科技,2008,6(1):334336.(ZHAO X,LAN Q L,WANG Y L.Study on specialized management to engineering safety monitoring in the Middle Route of the SouthtoNorth Water Diversion Project[J].SouthtoNorth Water Diversion and Water Science&Technology;,2008,6(1):334336.In Chinese)) DOI:10.13476/j.cnki.nsbdqk.2008.01.085.

      [6] 吳少華,焦康,薛偉.南水北調(diào)中線干線工程安全監(jiān)測自動化系統(tǒng)[J].中國農(nóng)村水利水電,2012 (9):140143.(WU S H,JIAO K,XUE W.A simple analysis of the monitoring automation system of SouthtoNorth Water Diversion Middle Route Project safety[J].China Rural Water and Hydropower,2012 (9):140143.(in Chinese)) DOI:10072284 (2012)09014004.

      [7] 陳俊生,劉春征.南水北調(diào)中線一期工程總干渠第 Ⅳ 渠段第 4 設(shè)計單元安全監(jiān)測設(shè)計[J].西北水電,2011 (B09):1518.(CHEN J S,LIU C Z.Safety monitor design of the fourth unit of HuanghebeiYouhebei section of the middle route of southtonorth water diverion project.[J].Northwest Hydropower,2011 (B09):1518.(in Chinese)) DOI:10062610(2011)D1001504.

      [8] 蔡運勝,張寶華.幾種電法儀器在地質(zhì)勘查中的應(yīng)用[J].地質(zhì)與勘探,2006,42(5):7278.(CAI Y S,ZHANG B H.The application of a few electrical method instruments in geologic prospecting[J].Geology and Prospecting,2006,42(5):7278.(in Chinese)) DOI:04955331(2006)05007207.

      [9] 胡雄武,張平松,江曉益.并行電法在快速檢測水壩滲漏通道中的應(yīng)用[J].水利水電技術(shù),2012,43(11):5154.(HU X W,ZHANG P S,JIANG X Y.Application of parallel electric survey to quick detection of seepage passage through reservoir dam[J].Water Resource and Hydropower Engineering,2012,43(11):5154.(in Chinese)) DOI:10.13928/j.cnki.wrahe.2012.11.016.

      [10] 馬若龍,毋光榮,周錫芳.高密度電法和自然電位法在某水庫大壩滲漏探測中的應(yīng)用[J].大壩與安全,2015 (6):5558.(MA R L,WU G R,ZHOU X F.Application of highdensity resistivity method and spontaneous electric field method in leakage detection of a dam[J].Dam and Safety,2015 (6):5558.(in Chinese)) DOI:16711092(2015)06005504.

      [11] 蔣力,周柏兵,徐國龍,等.基于分布式光纖技術(shù)的滲流監(jiān)測試驗探論[J].大壩與安全,2015 (5):3236.(JIANG L,ZHOU B B,XU G L,et al.Research of seepage monitoring test based on distributed optical fiber temperature sensing technology[J].Dam and Safety.2015 (5):3236.(in Chinese)) DOI:16711092(2015)05003205.

      [12] 唐智德,王紹旭,文春龍.青獅潭水庫大壩滲漏觀測分析及評價[J].2016,(11):107111.(TANG Z D,WANG S X,WEN C L.Analysis and evaluation of dam leakage in Qingshitan Reservoir[J].Water Resources Planning and Design,2016,(11):107111.(in Chinese)) DOI:10.3969/j.issn.16722469.2016.I 1.035.

      [13] 付長靜,李國英,陳亮,等.利用溫度場計算滲透流速的數(shù)學(xué)模型[J].水利水運工程學(xué)報,2015 (6):8893.(FU C J,LI G Y,CHEN L,et al.A mathematical model for calculating penetration velocity using temperature field[J].HydroScience and Engineering,2015(6):8893.(in Chinese)) DOI:10.16198 /j.cnki.1009640X.2015.06.013.

      [14] 張茜,陳建生,董海洲,等.示蹤法測定井中滲透流速的廣義稀釋模型研究[J].長江科學(xué)院院報,2016,33(10):126130.(ZHANG X,CHEN J S,DONG H Z.Research for determining permeability velocity in wells in generalized dilution moedl by tracer method[J].Journal of Yangtze River Scientific Research Institute.2016,33(10):126130.(in Chinese)) DOI:10.11988 /ckyyb.20150662.

      [15] HIMI M,CASADO I,SENDROS A,et al.Using the resistivity method for leakage detection at sant lloren de montgai embankment (Lleida,NE Spain)[C]//Near Surface Geoscience 201622nd European Meeting of Environmental and Engineering Geophysics,2016.DOI:10.3997/22144609.201601925.

      [16] KHALEGHI B,KHAMIS A,KARRAY F O,et al.Multisensor data fusion:A review of the stateoftheart[J].Information Fusion,2013,14(1):2844.DOI:10.1016/j.inffus.2011.08.001.

      [17] SHIVASHANKARAPPA N,ADIGA S,AVINASH R A,et al.Kalman filter based multiple sensor data fusion in systems with time delayed state[C]//Signal Processing and Integrated Networks (SPIN),2016 3rd International Conference on.IEEE,2016:375382.DOI:10.1109/SPIN.2016.7566723.

      [18] 汪華斌,徐瑞春.神經(jīng)網(wǎng)絡(luò)在魚洞河滑坡穩(wěn)定性評價中的應(yīng)用[J].長江科學(xué)院院報,2002,19(4):6265.(WANG H B,XU R C.Application of BP artificial neutral network son stability evaluation of Yudongde landslide[J].Journal of Yangtze River Scientific Research Institute,2002,19(4):6265.In Chinese)) DOI:10015485(2002)04006203.

      [19] 劉佳佳,彭鵬.基于Kalman濾波融合算法的某壩基水平位移分析[J].鄭州大學(xué)學(xué)報(工學(xué)版),2010,31(3):110114.(LIU J J,PENG P.Analysis of dam foundation horizontal displacement based on kalman filter fusion algorithm[J].Journal of Zhengzhou University (Science Engineering Science),2010,31(3):110114.(in Chinese)) DOI:16716833(2010)03011005.

      [20] SISWANTORO J,PRABUWONO A S,ABDULLAH A,et al.A linear model based on Kalman filter for improving neural network classification performance[J].Expert Systems with Applications,2016,49:112122.(in Chinese)) DOI:10.1016/j.eswa.2015.12.012.

      [21] 蔣恩松,李孟超,孫劉杰.一種基于神經(jīng)網(wǎng)絡(luò)的卡爾曼濾波改進(jìn)方法[J].電子與信息學(xué)報,2007,29(9):46.(JIANG E S,LI M C,SUN L J.An improved method of kalman filter based on neural network[J].Journal of Electronics and Information Technology,2007,29(9):46.(in Chinese)) DOI:1009589 6 (2007) 09207304.

      [22] HE W,WILLIARD N,CHEN C,et al.State of charge estimation for Liion batteries using neural network modeling and unscented Kalman filterbased error cancellation[J].International Journal of Electrical Power & Energy Systems,2014,62:783791.DOI:10.016/j.ijepes.2014.04.059.

      [23] 陳善廣,鮑勇.BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法研究[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,1995,3(4):437442.(CHEN S G,BAO Y.Studies on learning algorithms for BP Net[J].Journal of Basic Scienceand Engineering,1995,3(4):437442.(in Chinese)) DOI:10.16058 /j.issn.10050930.1995.04.012.

      [24] 張群,許強,吳禮舟,等.南江滑坡群體積的BP神經(jīng)網(wǎng)絡(luò)模型與預(yù)測[J].水文地質(zhì)工程地質(zhì),2015,42(1):134139.(ZHANG Q,XU Q,WU L Z,et al.BP neural network model for forecasting volume of landslide group in Nanjing[J].Hydrogeology & Engineering Geology 2015,42(1):134139.(in Chinese)) DOI:10.16030/j.cnki.issn.10003665.2015.01.23.

      [25] 李朋麗,田偉平,李家春.基于 BP 神經(jīng)網(wǎng)絡(luò)的滑坡穩(wěn)定性分析[J].廣西大學(xué)學(xué)報,2013,38(4):905911.(LI P L,TIAN W P,LI J C.Analysis of landslide stability based on BP neural[J].Journal of Guangxi University,2013,38(4):905911.(in Chinese)) DOI:10.13624/j.cnki.issn.10017445.2013.04.003.

      猜你喜歡
      BP神經(jīng)網(wǎng)絡(luò)卡爾曼濾波
      改進(jìn)的擴展卡爾曼濾波算法研究
      基于遞推更新卡爾曼濾波的磁偶極子目標(biāo)跟蹤
      就bp神經(jīng)網(wǎng)絡(luò)銀行選址模型的相關(guān)研究
      基于DEA—GA—BP的建設(shè)工程評標(biāo)方法研究
      價值工程(2016年30期)2016-11-24 13:17:31
      基于BP神經(jīng)網(wǎng)絡(luò)的旅行社發(fā)展方向研究
      商情(2016年39期)2016-11-21 09:30:36
      復(fù)雜背景下的手勢識別方法
      BP神經(jīng)網(wǎng)絡(luò)在軟件質(zhì)量評價中的應(yīng)用研究 
      BP神經(jīng)網(wǎng)絡(luò)算法在數(shù)值預(yù)報產(chǎn)品釋用中的應(yīng)用
      科技視界(2016年20期)2016-09-29 14:15:12
      基于模糊卡爾曼濾波算法的動力電池SOC估計
      基于擴展卡爾曼濾波的PMSM無位置傳感器控制
      永年县| 萍乡市| 云林县| 九龙坡区| 奇台县| 昭平县| 馆陶县| 麻江县| 民乐县| 军事| 东莞市| 揭西县| 莱西市| 揭阳市| 分宜县| 卓尼县| 库尔勒市| 永康市| 长兴县| 卢氏县| 黄大仙区| 长阳| 墨竹工卡县| 连云港市| 平安县| 寻乌县| 南投市| 博罗县| 大名县| 聂拉木县| 容城县| 介休市| 如东县| 盐城市| 百色市| 沙河市| 靖西县| 德钦县| 墨脱县| 张家口市| 潮安县|