汪昊藍(lán) 鄭源 孫奧冉 張付林 高成昊 周穎
摘要:為研究導(dǎo)葉開度對(duì)混流式水輪機(jī)壓力脈動(dòng)特性及流動(dòng)誘導(dǎo)噪聲的影響,應(yīng)用CFD和LMS Virtual Lab軟件分別對(duì)混流式水輪機(jī)在三種導(dǎo)葉開度下進(jìn)行非定常流場(chǎng)和聲場(chǎng)數(shù)值計(jì)算。結(jié)果表明:混流式水輪機(jī)內(nèi)壓力脈動(dòng)主要受到葉片通過(guò)頻率(10833 Hz)以及低頻脈動(dòng)(415 Hz)的影響;隨著導(dǎo)葉開度的增大,葉頻對(duì)轉(zhuǎn)輪進(jìn)口和蝸殼內(nèi)壓力脈動(dòng)的影響逐漸增加;外場(chǎng)噪聲的分布與混流式水輪機(jī)的幾何輪廓相吻合;尾水管彎肘段有助于減弱混流式水輪機(jī)流動(dòng)噪聲聲壓;導(dǎo)葉開度越大,混流式水輪機(jī)輻射出的外場(chǎng)噪聲聲壓值越大,偶極子特性越明顯。研究結(jié)果可為混流式水輪機(jī)組的穩(wěn)定運(yùn)行及流動(dòng)誘導(dǎo)噪聲的控制提供參考。
關(guān)鍵詞:混流式水輪機(jī);導(dǎo)葉開度;壓力脈動(dòng);流動(dòng)誘導(dǎo)噪聲;數(shù)值計(jì)算
中圖分類號(hào):TV742 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):
16721683(2018)05018607
The influence of guide vane opening on pressure pulsation characteristics and flowinduced noise in Francis turbine
WANG Haolan1,ZHENG Yuan2,SUN Aoran1,ZHANG Fulin1,GAO Chenghao1,ZHOU Ying1
(
1.College of Water Conservancy and Hydropower,Hohai University,Nanjing 210098,
China;2.Institute of Innovation,Hohai University,Nanjing 210098,China)
Abstract:
In order to study the influence of different guide vane openings on the pressure pulsation characteristics and flowinduced noise in Francis turbine,we used CFD and LMS Virtual Lab software to calculate the unsteady flow field and sound field in a Francis turbine under three guide vane opening degrees.The results showed that the pressure pulsation in the Francis turbine was mainly affected by the rotation frequency of blade (10833 Hz) and the lowfrequency pressurepulse (415 Hz).With the increase of the guide vane opening,the influence of blade frequency on the pressure pulsation in the inlet of the runner and the volute would gradually increase.The distribution of outfield noise accorded with the geometric contour of the Francis turbine.The elbow section of the draft tube was helpful for the attenuation of the flowinduced noise of the Francis turbine.The greater the guide vane opening,the greater the sound pressure of the external noise generated by the Francis turbine,and the more obvious the dipole characteristics.The research results can provide a reference for the stable operation of Francis turbine and the control of flowinduced noise.
Key words:
francis turbine;guide vane opening;pressure pulsation;flowinduced noise;numerical calculation
混流式水輪機(jī)由于應(yīng)用水頭廣、運(yùn)行穩(wěn)定效率高,被廣泛應(yīng)用[1]。隨著國(guó)家水電開發(fā)技術(shù)日益成熟,對(duì)水能資源利用的最大化,水力機(jī)組容量迅速增大,水力設(shè)備的運(yùn)行穩(wěn)定性成為水電事業(yè)發(fā)展的阻礙,如機(jī)組運(yùn)行過(guò)程中的壓力脈動(dòng)、振動(dòng)、噪聲現(xiàn)象[27]。
國(guó)內(nèi)外學(xué)者對(duì)水輪機(jī)壓力脈動(dòng)進(jìn)行了相關(guān)研究。劉樹紅等[8]采用數(shù)值模擬與模型試驗(yàn)相結(jié)合的方法,分析了混流式水輪機(jī)內(nèi)部非定常流動(dòng),結(jié)果表明轉(zhuǎn)輪與活動(dòng)導(dǎo)葉間的動(dòng)靜干擾以及尾水管內(nèi)渦帶是產(chǎn)生壓力脈動(dòng)的兩個(gè)主要脈動(dòng)源,并在整個(gè)水輪機(jī)流道內(nèi)傳播;季斌等[9]采用三維非定常湍流模擬的方法,探討壓力脈動(dòng)在轉(zhuǎn)輪內(nèi)的傳播規(guī)律,結(jié)果表明葉片表面的低頻脈動(dòng)由葉片出口到進(jìn)口逐漸衰減,而高頻脈動(dòng)由葉片進(jìn)口到出口逐漸衰減。文獻(xiàn)[1014]通過(guò)數(shù)值模擬技術(shù)對(duì)水輪機(jī)尾水管渦帶進(jìn)行探討,結(jié)果表明隨著導(dǎo)葉開度由小變大,尾水管渦帶經(jīng)歷了由雙螺旋到單螺旋再到柱狀渦的變化過(guò)程,加長(zhǎng)泄水錐、在尾水管內(nèi)安裝阻尼柵或者導(dǎo)流板等措施均可在一定程度上消除尾水渦帶。鄭源[15]等對(duì)混流泵進(jìn)行非定常數(shù)值計(jì)算,結(jié)果表明混流泵產(chǎn)生流動(dòng)誘導(dǎo)噪聲的主要原因是葉輪和蝸殼之間的動(dòng)靜干涉,壓力脈動(dòng)的主頻和泵體的固有頻率決定了流動(dòng)誘導(dǎo)噪聲的主頻。文獻(xiàn)[1623]等對(duì)軸流泵、離心泵進(jìn)行流動(dòng)噪聲數(shù)值模擬,提出降低噪聲的措施。
上述針對(duì)混流式水輪機(jī)的研究主要集中于壓力脈動(dòng)特性分析和尾水管渦帶及其改善措施,鮮有對(duì)其流動(dòng)誘導(dǎo)噪聲的研究, 對(duì)于噪聲的研究以泵為主。本文以某混流式水輪機(jī)為研究對(duì)象,應(yīng)用CFD和LMS Virtual Lab軟件對(duì)其在三種導(dǎo)葉開度下分別進(jìn)行非定常流場(chǎng)和聲場(chǎng)數(shù)值計(jì)算,研究導(dǎo)葉開度對(duì)壓力脈動(dòng)及流動(dòng)誘導(dǎo)噪聲的影響,以期為混流式水輪機(jī)組的穩(wěn)定運(yùn)行及流動(dòng)誘導(dǎo)噪聲的控制提供參考。
1 計(jì)算模型及方法
混流式水輪機(jī)數(shù)值模擬計(jì)算模型見圖1,包括蝸殼、導(dǎo)水機(jī)構(gòu)、轉(zhuǎn)輪以及尾水管。水輪機(jī)轉(zhuǎn)輪直徑D1=780 mm,葉片數(shù)Z=13,固定導(dǎo)葉數(shù)Zc=9,活動(dòng)導(dǎo)葉數(shù)Z0=16,額定流量Q=442 m3/s,額定水頭H=27 m,額定轉(zhuǎn)速n=500 r/min,轉(zhuǎn)頻fr=833 Hz,葉片通過(guò)頻率(以下簡(jiǎn)稱葉頻)為10833Hz。選取135°、225°和315°三個(gè)導(dǎo)葉開度進(jìn)行對(duì)比研究,分別代表小開度工況、額定開度工況和大開度工況。
1.1 流場(chǎng)計(jì)算
應(yīng)用ICEM CFD對(duì)計(jì)算模型進(jìn)行非結(jié)構(gòu)化網(wǎng)格劃分,并對(duì)活動(dòng)導(dǎo)葉和轉(zhuǎn)輪進(jìn)行局部網(wǎng)格加密。為驗(yàn)證網(wǎng)格無(wú)關(guān)性,以額定工況為例,如表1所示對(duì)流道進(jìn)行不同數(shù)目的網(wǎng)格劃分。
經(jīng)過(guò)網(wǎng)格無(wú)關(guān)性驗(yàn)證后可知,當(dāng)網(wǎng)格數(shù)目達(dá)到一定量級(jí)之后,再增加網(wǎng)格數(shù)對(duì)計(jì)算結(jié)果并沒有顯著影響,效率的相對(duì)差值在1%以內(nèi),而增加網(wǎng)格的數(shù)目,對(duì)計(jì)算機(jī)的要求也會(huì)越高,因此,最終將網(wǎng)格數(shù)量確定在430萬(wàn)左右。計(jì)算模型網(wǎng)格劃分結(jié)果見圖2,各部分網(wǎng)格數(shù)量以及質(zhì)量見表2。
計(jì)算中選用SST [WTB1X]k[WTBX]ω湍流模型,該湍流模型融合了[WTB1X]k[WTBX]ω模型和[WTB1X]k[WTBX]ε模型的優(yōu)點(diǎn), 在近壁面調(diào)用[WTB1X]k[WTBX]ω模型,利用其較好的魯棒性捕捉黏性底層的流動(dòng),在核心區(qū)域調(diào)用[WTB1X]k[WTBX]ε模型,提高計(jì)算效率。該模型對(duì)于曲率變化較大的計(jì)算域可以進(jìn)行較為準(zhǔn)確的模擬,既能較好地預(yù)估模型水輪機(jī)內(nèi)部流場(chǎng)的聲源結(jié)構(gòu),又不至于對(duì)硬件的要求過(guò)高。計(jì)算精度設(shè)置為105。壁面設(shè)置為無(wú)滑移壁面;進(jìn)口邊界條件設(shè)置為流量進(jìn)口,出口邊界條件設(shè)置為自由出流;定常計(jì)算時(shí),動(dòng)靜交界面設(shè)置為凍結(jié)轉(zhuǎn)子(Frozen rotor)類型;非定常計(jì)算時(shí),動(dòng)靜交界面設(shè)置為瞬態(tài)凍結(jié)轉(zhuǎn)子(Transient rotor stator)類型。非定常計(jì)算的時(shí)間步長(zhǎng)設(shè)置為0001 s,即轉(zhuǎn)輪旋轉(zhuǎn)3°所需要的時(shí)間。采樣時(shí)間設(shè)置為16個(gè)周期,每個(gè)周期內(nèi)轉(zhuǎn)輪旋轉(zhuǎn)360°,選取最后2個(gè)周期的數(shù)據(jù)進(jìn)行壓力脈動(dòng)特性分析。
為獲得該混流式水輪機(jī)運(yùn)行時(shí)內(nèi)部壓力脈動(dòng)信息,分別在蝸殼內(nèi)部、轉(zhuǎn)輪進(jìn)口處以及尾水管內(nèi)部設(shè)置了若干監(jiān)測(cè)點(diǎn),見圖3。在蝸殼內(nèi)部,從進(jìn)口到鼻端,設(shè)置4個(gè)監(jiān)測(cè)點(diǎn),分別是G1至G4;在轉(zhuǎn)輪進(jìn)口處,沿高度方向,均勻布置3個(gè)監(jiān)測(cè)點(diǎn),分別是P1、P2、P3;在尾水管內(nèi)部,從進(jìn)口到出口處,設(shè)置5個(gè)監(jiān)測(cè)點(diǎn),分別是Q1至Q5。
1.2 聲場(chǎng)計(jì)算
將非定常計(jì)算最后8個(gè)周期的數(shù)據(jù)文件作為聲場(chǎng)計(jì)算的聲源, 應(yīng)用LMS Virtuallab中的間接聲學(xué)邊界元法(BEM)進(jìn)行流動(dòng)誘導(dǎo)噪聲數(shù)值計(jì)算,定義聲學(xué)數(shù)據(jù)為扇聲源,葉片表面的非定常壓力脈動(dòng)激勵(lì)經(jīng)過(guò)快速傅里葉變換之后作為聲學(xué)邊界條件,定義外聲場(chǎng)傳播介質(zhì)為空氣。間接法的理論基礎(chǔ)是由NS方程推導(dǎo)的Lighthill聲類比方程(FWH方程)[24]:
混流式水輪機(jī)中的主要噪聲源是由蝸殼、導(dǎo)葉、葉片等固體表面與湍流相干涉產(chǎn)生的偶極子噪聲源,本文主要對(duì)由葉片旋轉(zhuǎn)偶極子源產(chǎn)生的流動(dòng)誘導(dǎo)噪聲進(jìn)行研究。
2 流場(chǎng)數(shù)值計(jì)算結(jié)果分析
通過(guò)數(shù)值計(jì)算得到混流式水輪機(jī)內(nèi)部各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)的時(shí)域信息,經(jīng)傅里葉變換得到壓力脈動(dòng)的頻域信息。為便于更加直觀分析壓力脈動(dòng)信息,參考文獻(xiàn)[25],定義壓力脈動(dòng)系數(shù),其計(jì)算公式為:
2.1 尾水管壓力脈動(dòng)分析
圖4所示為三種導(dǎo)葉開度下尾水管內(nèi)各監(jiān)測(cè)點(diǎn)的頻域特性。由圖4可知,尾水管內(nèi)壓力脈動(dòng)主頻為低頻脈動(dòng)(415 Hz),是轉(zhuǎn)頻(fr=83 Hz)的05倍,隨著導(dǎo)葉開度的增大,尾水管內(nèi)壓力脈動(dòng)幅值先減小后增大,小開度工況下壓力脈動(dòng)幅值最大為065,是大開度工況下壓力脈動(dòng)最大幅值的21倍。小開度工況下,尾水管進(jìn)口處壓力脈動(dòng)幅值最大,原因是開度小時(shí)轉(zhuǎn)輪出口水流明顯偏離法向出口,產(chǎn)生環(huán)量,引起較大的尾水管渦帶;額定開度和大開度工況下,尾水管彎肘處壓力脈動(dòng)幅值最大,原因是流體流經(jīng)該部位時(shí),流向突變且流量較大,其內(nèi)部水流的不均勻程度加劇,水流紊亂。
2.2 轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)分析
圖5所示為三種導(dǎo)葉開度下轉(zhuǎn)輪進(jìn)口處各監(jiān)測(cè)點(diǎn)的頻域特性。由圖5可知,轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)頻率主要為低頻脈動(dòng)(415 Hz)和葉頻(10833 Hz)。壓力脈動(dòng)幅值由上冠往下環(huán)方向逐漸增加,越靠近下環(huán)葉頻的影響越顯著,葉頻在下側(cè)點(diǎn)P3的幅值接近上側(cè)點(diǎn)P1幅值的14倍,主要是由于水流方向[HJ2.2mm]在轉(zhuǎn)輪進(jìn)口處由徑向變?yōu)檩S向,在靠近下環(huán)處角度變化更大近乎直角,水流更為紊亂。隨著導(dǎo)葉開度的增大,低頻脈動(dòng)的影響逐漸減弱,其最大幅值降低了069倍,而葉頻的影響逐漸加強(qiáng),說(shuō)明隨著導(dǎo)葉開度的增大,尾水管內(nèi)渦帶的影響逐漸減小,活動(dòng)導(dǎo)葉和轉(zhuǎn)輪之間的動(dòng)靜干涉影響逐漸增大。
2.3 蝸殼內(nèi)壓力脈動(dòng)分析
圖6所示為三種導(dǎo)葉開度下蝸殼內(nèi)各監(jiān)測(cè)點(diǎn)的頻域特性。由圖6可知,小開度工況下,蝸殼內(nèi)壓力脈動(dòng)主頻為低頻脈動(dòng),幅值由進(jìn)口到鼻端增大了245倍。額定開度和大開度工況下,主頻主要呈現(xiàn)為低頻脈動(dòng),但其幅值較小開度工況明顯減小,這是由于小開度工況下尾水管內(nèi)產(chǎn)生的低頻脈動(dòng)較大,并向上游傳播至蝸殼,導(dǎo)致蝸殼內(nèi)受低頻脈動(dòng)影響顯著;而額定開度和大開度工況下,尾水管內(nèi)產(chǎn)生的低頻脈動(dòng)明顯減小,故蝸殼內(nèi)低頻脈動(dòng)的幅值明顯降低,且在靠近鼻端的G4點(diǎn)壓力脈動(dòng)主頻為葉頻,這是[HJ2.1mm]由于鼻端距轉(zhuǎn)輪較近,更易受到轉(zhuǎn)輪葉片旋轉(zhuǎn)的影響。隨著導(dǎo)葉開度的增大,蝸殼內(nèi)葉頻的最大幅值增大了15倍,表明葉頻的影響逐漸加強(qiáng),說(shuō)明導(dǎo)葉開度越大,轉(zhuǎn)輪葉片旋轉(zhuǎn)對(duì)蝸殼的影響越大,主要原因是大開度工況下水流量較大,由此產(chǎn)生的壓力脈動(dòng)及轉(zhuǎn)輪的不穩(wěn)定性也隨之增加,因此由轉(zhuǎn)輪葉片旋轉(zhuǎn)引起的壓力脈動(dòng)向上游傳播后對(duì)蝸殼產(chǎn)生的影響也增大;而額定工況下機(jī)組內(nèi)部流態(tài)較好,有利于轉(zhuǎn)輪旋轉(zhuǎn)引起的壓力脈動(dòng)成分向上游傳播,導(dǎo)致蝸殼受轉(zhuǎn)輪葉片旋轉(zhuǎn)影響顯著。
綜上所述,隨著導(dǎo)葉開度的增大,尾水管內(nèi)壓力脈動(dòng)幅值先減小后增大;轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)幅值逐漸增大,且低頻脈動(dòng)的影響逐漸減弱,葉頻的影響逐漸加強(qiáng);蝸殼內(nèi)葉頻的影響逐漸加強(qiáng)。
3 聲場(chǎng)數(shù)值計(jì)算結(jié)果分析
聲音的傳播具有明顯的方向性,為充分了解混流式水輪機(jī)流動(dòng)誘導(dǎo)噪聲的分布及其輻射水平,見圖7,針對(duì)三種導(dǎo)葉開度工況,以轉(zhuǎn)輪的旋轉(zhuǎn)中心為圓心,分別在XY平面、XZ平面以及YZ平面上建立一半徑為8 m的聲學(xué)監(jiān)測(cè)面,考察其外場(chǎng)聲壓分布情況,得到外場(chǎng)聲壓分布云圖。
圖8是三種導(dǎo)葉開度下混流式水輪機(jī)在XY平面的外場(chǎng)噪聲聲壓分布云圖。由圖8可以看出,XY平面上,三種導(dǎo)葉開度下外場(chǎng)聲壓分布均呈現(xiàn)出明顯的偶極子特性,在蝸殼鼻端中心對(duì)稱方向輻射出,
較大的聲壓,偶極子的聲壓分布基本關(guān)于Y軸對(duì)稱,噪聲輻射水平向四周逐漸衰減
且聲場(chǎng)的分布與混流式水輪機(jī)的幾何輪廓相吻合。隨著導(dǎo)葉開度的增大,外場(chǎng)輻射出較大聲壓的區(qū)域逐漸增大,在進(jìn)口側(cè)尤為顯著,主要原因是蝸殼進(jìn)口側(cè)靠近鼻端,水流流經(jīng)鼻端時(shí),過(guò)流斷面的面積發(fā)生突變,且鼻端距離轉(zhuǎn)輪較近,易受到活動(dòng)導(dǎo)葉和轉(zhuǎn)輪動(dòng)靜干涉的影響
為更加直觀觀察噪聲分布,進(jìn)一步分析了聲場(chǎng)的指向性分布。在距離轉(zhuǎn)輪中心8 m的圓周上每間隔10°布置一個(gè)監(jiān)測(cè)點(diǎn),每個(gè)面上布置36個(gè)監(jiān)測(cè)點(diǎn),計(jì)算得到混流式水輪機(jī)在葉頻下的噪聲指向性分布圖。圖11是三種導(dǎo)葉開度下混流式水輪機(jī)在XY平面、XZ平面以及YZ平面的外場(chǎng)噪聲的指向性分布圖。
由圖11(a)可以看出,XY平面上,聲壓極小值位于90°和270°附近,聲壓極大值位于0°和180°附近,表現(xiàn)出不對(duì)稱偶極子特性,隨著導(dǎo)葉開度的增大,外聲場(chǎng)聲壓分布的偶極子形狀兩端大小不一,方向相反。小開度工況下,靠近蝸殼進(jìn)口側(cè)聲壓值較其對(duì)稱側(cè)聲壓值?。淮箝_度工況下,靠近蝸殼進(jìn)口側(cè)聲壓值較其對(duì)稱側(cè)聲壓值大。由上文蝸殼內(nèi)壓力脈動(dòng)分析可知,小開度工況下,蝸殼進(jìn)口對(duì)稱側(cè)受葉頻影響較大,而大開度工況下,蝸殼進(jìn)口側(cè)受葉頻影響顯著增大,由此可知,活動(dòng)導(dǎo)葉與轉(zhuǎn)輪間的動(dòng)靜干涉作用是產(chǎn)生流動(dòng)誘導(dǎo)噪聲的主要原因。
由圖11(b)可以看出,XZ平面上,聲壓極小值位于0°和180°附近, 聲壓極大值位于90°和270°附近,表現(xiàn)出標(biāo)準(zhǔn)的偶極子特性,隨著導(dǎo)葉開度的增大,水輪機(jī)轉(zhuǎn)輪上冠上側(cè)噪聲輻射水平顯著增加,主要是由于導(dǎo)葉開度增大后上冠側(cè)主頻由低頻變?yōu)槿~頻。
由圖11(c)可以看出,YZ平面上,聲壓極小值位于20°和210°附近,聲壓極大值位于80°和300°附近,隨著導(dǎo)葉開度的增大,聲壓分布逐漸表現(xiàn)出偶極子特性??傮w而言,在轉(zhuǎn)輪靠近下環(huán)處噪聲輻射水平較大,與轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)變化規(guī)律一致。
綜合分析三個(gè)導(dǎo)葉開度下外場(chǎng)XY平面、XZ平面和YZ平面輻射的噪聲,可以發(fā)現(xiàn)導(dǎo)葉開度越大,外場(chǎng)聲壓分布的偶極子特性越明顯。且隨著導(dǎo)葉開度的增大,混流式水輪機(jī)輻射出的外場(chǎng)噪聲逐漸增大,輻射出較大聲壓的區(qū)域也逐漸增大,這與轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)幅值隨著導(dǎo)葉開度的增大而增大的規(guī)律一致。
4 結(jié)論
(1)混流式水輪機(jī)轉(zhuǎn)輪進(jìn)口處的壓力脈動(dòng)主頻是葉頻,且幅值沿著上冠到下環(huán)方向逐漸增大,蝸殼內(nèi)越靠近鼻端葉頻的影響越顯著;隨著導(dǎo)葉開度的增大,轉(zhuǎn)輪進(jìn)口處壓力脈動(dòng)幅值逐漸增大,而尾水管內(nèi)壓力脈動(dòng)幅值最大處由進(jìn)口變?yōu)閺澲馓帲仛?nèi)壓力脈動(dòng)受葉頻的影響顯著增大;導(dǎo)葉開度越大,尾水管內(nèi)渦帶對(duì)轉(zhuǎn)輪進(jìn)口和蝸殼內(nèi)壓力脈動(dòng)的影響越小,活動(dòng)導(dǎo)葉和轉(zhuǎn)輪之間的動(dòng)靜干涉對(duì)其影響越大。
(2)混流式水輪機(jī)外場(chǎng)噪聲的分布與水輪機(jī)的幾何輪廓相吻合,噪聲輻射水平在轉(zhuǎn)輪進(jìn)口靠近下環(huán)處最大,并向四周逐漸衰減;聲壓傳播到彎肘段以后明顯減小,尾水管彎肘段有助于混流式水輪機(jī)流動(dòng)噪聲傳播的衰減。
(3)隨著導(dǎo)葉開度的增大,混流式水輪機(jī)外聲場(chǎng)聲壓分布的偶極子形狀兩端大小不一,方向相反;輻射出的外場(chǎng)噪聲聲壓值逐漸增大,輻射出較大聲壓的區(qū)域也逐漸增大;導(dǎo)葉開度越大,外場(chǎng)聲壓分布的偶極子特性越明顯。
參考文獻(xiàn)(References):
[1] 鄭源,陳德新,等.水輪機(jī)[M].北京:中國(guó)水利水電出版社,2011.(ZHENG Y,CHEN D X,et al.Hydroturbine[M].Beijing:China Water Power Press,2011.(in Chinese))
[2] 劉小偉.混流式水輪機(jī)全流道仿真研究與壓力脈動(dòng)分析[D].昆明:昆明理工大學(xué),2017.(LIU X W.Simulation and pressure pulsation analysis of total flow path of Francis turbine[D].Kunming:Kunming University of Science and Technology,2017.(in Chinese))
[3] 王學(xué)謙,趙蘭浩.抽水蓄能電站地下廠房振因仿真分析[J].南水北調(diào)與水利科技,2013,11(3):7681.(WANG X Q,ZHAO L H.Simulation analysis of the vibration causes of underground powerhouse in pumped storage power station[J].SouthtoNorth Water Transfers and Water Science &Technology;,2013,11(3):7681.(in Chinese)) DOI:10.3724/SP.J.1201.2013.03076.
[4] 張飛,周喜軍,孫慧芳,等.水力激振作用下的蓄能機(jī)組泵工況穩(wěn)定性分析[J].南水北調(diào)與水利科技,2017,15(5):202208.(ZHANG F,ZHOU X J,SUN H F,et al.Stability of pumped storage unit in pump operation mode under hydraulic excitation[J].SouthtoNorth Water Transfers and Water Science &Technology;,2017,15(5):202208.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2017.05.031.
[5] 劉攀,陳學(xué)力,汪泉,李德忠.高水頭混流式水輪機(jī)的動(dòng)靜干涉與振動(dòng)問(wèn)題研究[J].水力發(fā)電學(xué)報(bào),2016,35(3):9198.(LIU P,CHEN X L,WANG Q,et al.Analysis of rotorstator interaction and vibration in highhead Francis turbines[J].Journal of Hydroelectric Engineering,2016,35(03):9198.(in Chinese)) DOI:10.11660/slfdxb.20160311.
[6] 盧磊,張禮達(dá),楊靜,等.低水頭混流式水輪機(jī)振動(dòng)噪聲的原因分析及研究[J].水力發(fā)電,2014,40(3):4749.(LU L,ZHANG L D,YANG J,et al.Analysis and Research on the Vibration and Noise of a Low Head Francis Turbine[J].Water Power,2014,40(3):4749.(in Chinese)) DOI:10.3969/j.issn.05599342.2014.03.014.
[7] 代翠,董亮,孔繁余,等.泵作透平振動(dòng)噪聲機(jī)理分析與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):114119.(DAI C,DONG L,KONG F Y,et al.Mechanism analysis of vibration and noise for centrifugal pump working as turbine[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(15):114119.(in Chinese)) DOI:10.3969/j.issn.10026819.2014.15.016.
[8] 劉樹紅,邵奇,楊建明,等.三峽水輪機(jī)的非定常湍流計(jì)算及整機(jī)壓力脈動(dòng)分析[J].水力發(fā)電學(xué)報(bào),2004(5):97101.(LIU S H,SHAO Q,YANG J M,et al.Unsteady turbulent simulation of three gorges hydraulic turbine and analysis of pressure in the whole passage[J].Journal of Hydroelectric Engineering,2004(5):97101.(in Chinese)) DOI:10.3969/j.issn.10031243.2004.05.021.
[9] 季斌,羅先武,西道弘,等.混流式水輪機(jī)渦帶工況下兩級(jí)動(dòng)靜干涉及其壓力脈動(dòng)傳播特性分析[J].水力發(fā)電學(xué)報(bào),2014,33(1):191196.(JI B,LUO X W,XI D H,et al.Analysis on characteristics of twostage rotorstator interaction and pressure fluctuation propagation in Francis turbine under partial load[J].Journal of Hydroelectric Engineering,2014,33(1):191196.(in Chinese))
[10] 張興,賴喜德,廖姣,等.混流式水輪機(jī)尾水管渦帶及其改善措施研究[J].水力發(fā)電學(xué)報(bào),2017,36(6):7985.(ZHANG X,LAI X D,LIAO J,et al.Pressure fluctuation generated by vortex rope and improvement measures inside draft tube of Francis turbine[J].Journal of Hydroelectric Engineering,2017,36(6):7985.(in Chinese)) DOI:10.11660/slfdxb.20170609.
[11] 鄭源,蔣文青,陳宇杰,等.貫流式水輪機(jī)低頻脈動(dòng)及尾水管渦帶特性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):165171.(ZHENG Y,JIANG W Q,CHEN Y J,et al.Investigation on low frequency pulsating and draft tube vortex of tubular turbine[J].Transactions of the Chinese Society of Agricultural Machinery.2018,49(4):165171.(in Chinese)) DOI:10.6041/j.issn.10001298.2018.04.019.
[12] 齊繼賀.混流式水輪機(jī)尾水管渦帶及壓力脈動(dòng)數(shù)值模擬[J].水資源與水工程學(xué)報(bào),2017,28(3):168172.(QI J H.Numerical simulation of francis turbine draft tube vortex and pressure pulsation[J].Journal of Water Resources &Water; Engineering.2017,28(3):168172.(in Chinese)) DOI:10.11705/j.issn.1672643X.2017.03.31.
[13] 馮建軍,武樺,吳廣寬,等.偏工況下混流式水輪機(jī)壓力脈動(dòng)數(shù)值仿真及其改善措施研究[J].水利學(xué)報(bào),2014,45(9):10991105.(FENG J J,WU H,WU G K,et al.Numerical simulation of pressure fluctuation in a Francis turbine at part load conditions with improved measures[J].Journal of Hydraulic Engineering.2014,45(9):10991105.(in Chinese)) DOI:10.13243/j.cnki.slxb.2014.09.011.
[14] LI W F,F(xiàn)ENG J J,WU H,et al.Numerical investigation of pressure fluctuation reducing in draft tube of Francis turbines[J].International Journal of Fluid Machinery &Systems;,2015,8(3):202208.DOI:10.5293/IJFMS.2015.8.3.202.
[15] 鄭源,陳宇杰,毛秀麗,等.混流泵壓力脈動(dòng)特性及其對(duì)流動(dòng)誘導(dǎo)噪聲的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):6773.(ZHENG Y,CHEN Y J,MAO X L,et al.Pressure pulsation characteristics and its impact on flowinduced noise in mixedflow pump[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(23):6773.(in Chinese)) DOI:10.11975/j.issn.10026819.2015.23.009.
[16] 張德勝,王海宇,施衛(wèi)東,等.軸流泵多工況壓力脈動(dòng)特性試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):139145.(ZHANG D S,WANG H Y,SHI W D,et al.Experimental investigation of pressure fluctuation with multiple flow rates in scaled axial flow pump[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):139145.(in Chinese)) DOI:10.6041/j.issn.10001298.2014.11.022.
[17] 季燕羽,吳賢芳,劉厚林,等.軸流泵內(nèi)部流動(dòng)誘導(dǎo)噪聲數(shù)值研究[J].水電能源科學(xué),2018,36(7):130134.(JI Y Y,WU X F,LIU H L,et al.Numerical study on internal flowinduced noise in axial flow pump[J].Water Resources and Power,2018,36(7):130134.(in Chinese))
[18] SI Q R,YUAN S Q,YUAN J P,et al.Investigationon FlowInduced Noise due to Backflow in Low Specific Speed Centrifugal Pumps[J].Advances in Mechanical Engineering,2013,109048.
[19] OPPERWALL T,VACCA A.A combined FEM/BEM model and [JP+4]experimental investigation into the effects of fluidborne noise sources on the airborne noise generated by hydraulic pumps and motors[J].Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,2014,228(3):457471.DOI:10.1177/0954406213486591.
[20] 袁壽其,薛菲,袁建平,等.離心泵壓力脈動(dòng)對(duì)流動(dòng)噪聲影響的試驗(yàn)研究[J].排灌機(jī)械,2009,27(5):287-290.(YUAN S Q,XUE F,YUAN J P,et al.Experimental study on impact of pressure fluctuation on flow noise in centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2009,27(5):287-290.(in Chinese))
[21] 代翠.離心泵作透平流體誘發(fā)噪聲特性理論數(shù)值與試驗(yàn)研究[D].鎮(zhèn)江:江蘇大學(xué),2014.(DAI C.Flowinduced noise characteristics for centrifugal pump as turbine:theoretical,numerical and experimental investigations[D].Zhenjiang:Jiangsu University,2014.(in Chinese))
[22] YANG J,YUAN S,YUAN J,et al.Numerical and experimental study on Flowinduced noise at bladepassing frequency in centrifugal pumps[J].Chinese Journal of Mechanical Engineering,2014,27(3):606614.DOI:10.3901/CJME.2014.03.606.
[23] DONG R,CHU S,KATZ J.Effect of modification to tongue and impeller geometry on unsteady flow pressure fluctuations and noise in a centrifugal pump[J].Transcations of the ASME,1997(119):506515.
[24] 施偉.大型低揚(yáng)程泵優(yōu)化設(shè)計(jì)及內(nèi)部流動(dòng)特性研究[D].鎮(zhèn)江:江蘇大學(xué),2015.(SHI W.Study on internal flow characteristics and optimal design of largescale pumps with lowhead[D].Zhenjiang:Jiangsu University,2015.(in Chinese))
[25] 李啟章,張強(qiáng),于紀(jì)幸,等.混流式水輪機(jī)水力穩(wěn)定性研究[M].北京:中國(guó)水利水電出版社,2014.(LI Q Z,ZHANG Q,YU J X,et al.Study on hydraulic stability of Francis turbine[M].Beijing:China Water Power Press,2014.(in Chinese))