邱漢迅 閆廷龍 李幸娟 楊俊和
摘要:
基于碳材料獨(dú)特的結(jié)構(gòu),概述了其優(yōu)異的熱學(xué)性能以及作為散熱材料在電子器件散熱領(lǐng)域中的應(yīng)用。著重介紹了石墨烯膜、碳納米管膜和石墨膜材料的研究進(jìn)展,同時(shí)闡述了影響碳膜材料熱導(dǎo)率的關(guān)鍵結(jié)構(gòu)及其控制方法,最后提出了發(fā)展高導(dǎo)熱碳基復(fù)合材料的研究策略以及面臨的挑戰(zhàn)。
關(guān)鍵詞:
碳膜材料; 熱學(xué)性能; 結(jié)構(gòu)控制; 熱導(dǎo)率
中圖分類(lèi)號(hào): TB 321 文獻(xiàn)標(biāo)志碼: A
Research Progress on Thermal Performance of All-carbon Film Materials
QIU Hanxun, YAN Tinglong, LI Xingjuan, YANG Junhe
(School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:
This paper summarizes the excellent thermal properties and applications of carbon based film materials as heat dissipation materials in the field of electronic devices.This article reviews the recent research progress of graphene,carbon nanotubes and graphite film materials,as well as the key factors and methods affecting the structure and thermal conductivity.Moreover,the strategies and challenges in developing highly thermally conductive all-carbon based composites are proposed.
Keywords:
carbon film materials; thermal property; structural control; thermal conductivity
隨著電子科技的迅猛發(fā)展,熱管理已經(jīng)成為限制大功率電子器件、高集成機(jī)電系統(tǒng)和精密電子設(shè)備發(fā)展的重要問(wèn)題[1-4]。電子設(shè)備在運(yùn)行過(guò)程中不可避免地會(huì)產(chǎn)生和累積大量的熱量,如果熱量不能被及時(shí)排出,過(guò)高的溫度會(huì)影響其工作穩(wěn)定性.因此尋求一種具有高熱導(dǎo)率的散熱材料,對(duì)于保障電子器件高效、長(zhǎng)期平穩(wěn)運(yùn)行是非常有必要的[5-9]。
從微觀的單體碳材料到宏觀的多維碳材料,碳基材料由于具有優(yōu)良的導(dǎo)熱性、低熱膨脹性、可控的柔韌性和耐高溫性,被認(rèn)為是理想且穩(wěn)定的散熱材料[10-13]。微觀尺度下,室溫下的單體碳材料都具有高的熱導(dǎo)率(K)值,如二維(2D)石墨烯(5 000 W·m-1·K-1)、2D天然石墨(NG,2 000 W·m-1·K-1)、一維(1D)碳納米管(CNT,3 500 W·m-1·K-1)和1D碳纖維(CF,1 000 W·m-1·K-1),這幾乎比金屬高了1個(gè)數(shù)量級(jí)[14-17]。它們的高熱導(dǎo)率源于碳原子的強(qiáng)sp2共價(jià)鍵結(jié)構(gòu),這個(gè)結(jié)構(gòu)有利于聲子在納米片、納米管或納米纖維的晶格平面上傳輸[18-23]。但是在熱管理中,這
些單體碳材料很難直接應(yīng)用于散熱裝置。
將高熱導(dǎo)率的單體碳材料組裝成宏觀碳材料是通往實(shí)際應(yīng)用的必經(jīng)之路。但宏觀碳材料與微觀單體之間的尺度不匹配,宏觀碳材料還存在界面、孔隙和取向等問(wèn)題,導(dǎo)致其K值較低(幾乎比微觀單體碳材料低1個(gè)數(shù)量級(jí))。具體而言,碳材料中的熱傳導(dǎo)主要是由聲子決定的。對(duì)于具有完美石墨晶型的單體碳材料,熱傳導(dǎo)是以聲子彈道傳輸?shù)姆绞綄?shí)現(xiàn)的,因此可以保持很高的K值。相比之下,宏觀碳材料含有大量的界面,界面極易引發(fā)聲子散射,進(jìn)而會(huì)大大降低K值。由于微觀和宏觀碳材料之間存在著結(jié)構(gòu)的相似性和差異性,恰恰可以通過(guò)優(yōu)化它們的結(jié)構(gòu)來(lái)改善材料的導(dǎo)熱性能。
近年來(lái),研究人員通過(guò)晶體取向化,納米填料插層,界面結(jié)合,界面石墨化等多種策略和方法對(duì)碳材料的結(jié)構(gòu)進(jìn)行改進(jìn)與優(yōu)化,在結(jié)構(gòu)本質(zhì)上最終還是以提高碳復(fù)合材料的熱導(dǎo)率為目標(biāo)[24-28]。由于散熱材料具有巨大的應(yīng)用潛力,高導(dǎo)熱碳材料已經(jīng)受到了廣泛的關(guān)注[29]。然而,以往的研究主要關(guān)注石墨烯和CNT等微觀單體碳材料的固有熱導(dǎo)率,多維碳材料的熱導(dǎo)率與其宏觀結(jié)構(gòu)之間的關(guān)系則很少被系統(tǒng)地研究與總結(jié)[30-32]。
為了更好地理解碳材料的熱導(dǎo)率,本文介紹了熱傳導(dǎo)的基礎(chǔ)知識(shí),總結(jié)了材料的結(jié)構(gòu)和制備參數(shù)對(duì)碳材料K值的影響,同時(shí)討論了這些控制策略與碳材料熱性能之間的關(guān)系。
1 碳納米管基導(dǎo)熱膜材料
根據(jù)報(bào)道,單壁CNT在室溫下的試驗(yàn)K值高達(dá)3 000 W·m-1·K-1[15,33]。但是,當(dāng)把CNT組裝成膜材料時(shí),由于其本征熱阻和界面熱阻的存在,會(huì)引發(fā)強(qiáng)的聲子散射作用,CNT膜的K值通常比單體CNT低1個(gè)數(shù)量級(jí)[34-36]。CNT的取向、長(zhǎng)度和晶化度等因素都會(huì)影響界面結(jié)構(gòu)和聲子傳輸,進(jìn)而影響CNT膜的K值。
取向隨機(jī)的CNT膜不能充分發(fā)揮CNT軸向高K值這一特性,并且CNT之間的接觸熱阻也阻礙碳膜達(dá)到高的K值。Prasher等[37]通過(guò)擠壓的方式制得了隨機(jī)取向的CNT膜,發(fā)現(xiàn)當(dāng)CNT的體積分?jǐn)?shù)為20%時(shí),K值達(dá)到最高,為0.19 W·m-1·K-1。此外,低密度和大孔隙度對(duì)K值也有負(fù)面的影響[38-40]。Heo等[41]報(bào)道,當(dāng)CNT膜的密度從0.126 g·cm-3增加到0.282 g·cm-3時(shí),面內(nèi)K值相應(yīng)地會(huì)從
9 W·m-1·K-1提高到19 W·m-1·K-1。因此,要獲得高K值,應(yīng)避免隨機(jī)取向,良好的取向有利于提高K值。
為了證明CNT的取向?qū)釋?dǎo)率的影響,Yang等[42]測(cè)量了2根獨(dú)立的多壁CNT之間的接觸熱阻.結(jié)果表明,CNT線性接觸的熱導(dǎo)率比交叉接觸的熱導(dǎo)率高近2個(gè)數(shù)量級(jí),這是因?yàn)榫€性接觸比交叉接觸CNT間的接觸面積更大(圖1)。另外,分子動(dòng)力學(xué)模擬也表明,熱導(dǎo)率與重疊CNT的長(zhǎng)度成正比[43]。因此,CNT的取向越好,線性接觸的面積越大,K值越高。對(duì)于CNT膜也有同樣的規(guī)律,拉伸或壓縮CNT陣列[44]、定向磁場(chǎng)[45]等方法可以增加CNT膜的取向度。Aliev等[36]利用垂直排列的CNT陣列制備多壁碳納米管薄片,其密度約為1.34 g·cm-3,在室溫下的K值高達(dá)50 W·m-1·K-1。此外,通過(guò)“多米諾骨牌推動(dòng)”方式可獲得線性排列的CNT膜,其K值可達(dá)153 W·m-1·K-1[46],膜中CNT取向良好,密度遠(yuǎn)遠(yuǎn)高于原始CNT陣列(圖2)。雖然此CNT膜的密度為0.6 g·cm-3,大約僅為理想值1.34 g·cm-3的1/2,但是CNT膜的熱導(dǎo)率高達(dá)331 W·m-1·K-1。該結(jié)果也與Zhang等[34]的報(bào)道相吻合,在其研究中,通過(guò)對(duì)CNT膜施加一定的壓力,隨著膜密度從0.81 g·cm-3增加到1.39 g·cm-3,K值也會(huì)從472 W·m-1·K-1穩(wěn)定提高到766 W·m-1·K-1。
除了CNT的取向外,CNT的本征結(jié)構(gòu)對(duì)CNT膜的界面性質(zhì)和K值也有顯著的影響。對(duì)于CNT單體,隨著其長(zhǎng)度的增加,熱傳導(dǎo)模式將從彈道傳導(dǎo)轉(zhuǎn)變?yōu)閿U(kuò)散傳導(dǎo)[47]。對(duì)于CNT膜,當(dāng)組成薄膜的CNT長(zhǎng)度從20 nm增加到4 μm時(shí),熱傳導(dǎo)模式從管間熱傳導(dǎo)轉(zhuǎn)變?yōu)楸菊鳠醾鲗?dǎo)[43]。事實(shí)上,對(duì)于由較短CNT組裝的CNT膜材料,隨著CNT長(zhǎng)度的減小,CNT膜中“自由”端CNT的線密度相對(duì)增加,界面熱阻也會(huì)隨之增加,K值會(huì)降低很多。模擬試驗(yàn)也顯示出當(dāng)CNT的熱傳導(dǎo)由管間傳導(dǎo)占主導(dǎo)時(shí),CNT膜的K值和單個(gè)CNT長(zhǎng)度成二次正相關(guān)性[48];熱傳導(dǎo)由本征傳導(dǎo)占主導(dǎo)時(shí),CNT長(zhǎng)度對(duì)CNT膜的總K值沒(méi)有明顯的影響[43]。Mahanta等[38]通過(guò)抽濾制備了CNT墊材料,當(dāng)CNT的長(zhǎng)度縮短時(shí),墊的密度會(huì)從0.106 g·cm-3增加到0.739 g·cm-3,CNT的更好堆積導(dǎo)致了平面內(nèi)的K值從12 W·m-1·K-1提高到157 W·m-1·K-1。
圖1 兩種不同接觸方式的CNTs電鏡圖及接觸熱阻測(cè)量值[43]
Fig.1 SEM images of two individual CNTs contacting in different ways and the total contact thermal resistance[43]
圖2 CNT陣列和CNT膜的微觀形貌圖[46]
Fig.2 SEM images of CNT alignments and buckypaper[46]
CNT的長(zhǎng)度會(huì)影響CNT間的界面結(jié)構(gòu),而CNT的本征晶化度則會(huì)影響CNT晶界處的聲子散射,對(duì)CNT的K值有很大的影響。Mahanta等[38]報(bào)道,CNT墊材料經(jīng)3 000 ℃高溫石墨化處理后,截面方向的K值會(huì)增加1個(gè)數(shù)量級(jí)。由于石墨結(jié)構(gòu)的晶化度增加,在1 100 ℃和3 000 ℃下處理的CNT墊的K值分別達(dá)到了1 400 W·m-1·K-1和1 600 W·m-1·K-1。Yan等[49]通過(guò)對(duì)電紡聚酰亞胺/瀝青的共混材料加以高溫處理,制備了CNT纖維墊,高溫石墨化后由于石墨晶型結(jié)構(gòu)的形成,CNT纖維墊的熱導(dǎo)率高達(dá)60 W·m-1·K-1。
綜上所述,CNT的取向、長(zhǎng)度和晶化度對(duì)CNT膜的K值有非常顯著的影響。對(duì)于CNT材料來(lái)講,良好的取向,適當(dāng)?shù)拈L(zhǎng)度和高的晶化度與高K值呈正相關(guān)關(guān)系?,F(xiàn)如今,CNT膜的K值仍然較低,這主要是由于CNT的1D納米結(jié)構(gòu)存在著大量的界面,2D平面結(jié)構(gòu)的石墨烯可以克服這個(gè)問(wèn)題。
2 石墨烯基導(dǎo)熱膜材料
柔性石墨烯膜(GP)可直接由石墨烯組裝而成,或者以氧化石墨烯(GO)為原料通過(guò)真空過(guò)濾[50-51]、電泳[52]、浸涂[53]、自組裝[54-55]、旋涂[56]、電噴霧沉積[8]和濕紡[57]等方式加以輔助還原制備而成。由于單體石墨烯片本征K值非常高,所以GP作為輕質(zhì)散熱材料具有很大的潛力,可以有效地進(jìn)行熱管理[8,24,58-59]。石墨烯的片層尺寸和晶化度會(huì)對(duì)其界面熱阻和聲子散射產(chǎn)生影響,并且石墨烯的結(jié)構(gòu)取向主導(dǎo)其聲子振動(dòng)的方向,導(dǎo)致K值的各向異性。
與單個(gè)石墨烯片不同,石墨烯片層尺寸所引起的接觸熱阻會(huì)對(duì)GP的K值有很大的影響[60-62]。Xiang等[63]通過(guò)真空抽濾聚乙烯亞胺和剝離石墨的混合溶液制備出獨(dú)立的GP,隨后在340 ℃下對(duì)其進(jìn)行了退火處理。圖3(a)和(b)分別是其制備的較大尺寸GP-15(納米片長(zhǎng)度為15 μm)和小尺寸GP-1(納米片長(zhǎng)度為1 μm)的SEM截面圖。大尺寸的GP片層結(jié)構(gòu)更清晰,孔隙率低;小尺寸的GP納米界面數(shù)量多,邊界處的聲子散射作用更強(qiáng),其K值(20.2 W·m-1·K-1)僅為GP-15(204 W·m-1·K-1)的10%[64]。
圖3 大尺寸GP-15和小尺寸GP-1的SEM截面圖[63]
Fig.3 SEM images of cross section of the as-made GP-15 paper and GP-1 paper[63]
另外,Kumar等[61]先用過(guò)濾的方式對(duì)GO分散液進(jìn)行尺寸分級(jí),后加以氫碘酸還原制備了不同尺寸的石墨烯片層構(gòu)成的GP。由大尺寸的GO(平均面積約23 μm2)制備的GP如圖4(a)所示,K值達(dá)到1 390 W·m-1·K-1,小尺寸GO(平均面積約1 μm2)制備的GP如圖4(b)所示,K值達(dá)到900 W·m-1·K-1。K值伴隨著GO片層尺寸的增加而增加,是因?yàn)榇笃瑢拥腉O具有較長(zhǎng)波長(zhǎng)的聲子,更有利于熱量的傳遞[65]。Malekpour等[62]對(duì)沉積在聚對(duì)苯二甲酸乙二醇酯基材上的GP進(jìn)行了研究,試驗(yàn)和模擬分析都得出,K值會(huì)隨著石墨烯片平均尺寸的增大而線性增大。進(jìn)一步證明GP中的熱傳導(dǎo)是受片層邊界控制,而不受GO本征性質(zhì)控制。最近,Liu等[57]報(bào)道了1種通過(guò)濕紡來(lái)快速組裝連續(xù)GP并可大規(guī)模生產(chǎn)的技術(shù),GP經(jīng)化學(xué)還原后的K值為530~810 W·m-1·K-1。所以,GO片層尺寸越大,晶界接觸越少,聲子散射越少,從而有利于K值的提高。
圖4 GO的微觀形貌圖[61]
Fig.4 SEM images of GO[61]
石墨烯片的尺寸影響石墨烯片的界面結(jié)構(gòu),而石墨烯的晶化度會(huì)影響石墨烯晶體缺陷處的聲子散射,對(duì)石墨烯的K值有更顯著的影響。由于含氧基團(tuán)會(huì)引起聲子散射,GO的K值只有石墨烯K值的5%[66]。用石墨烯代替GO的部分結(jié)構(gòu),由此制備出的GP的晶化度會(huì)提高,其K值也會(huì)大大提高[59,67]。因而,要獲得GP的超高K值,熱處理是非常必要的,這有助于去除GO上的含氧基團(tuán)或殘余聚合物,從而促進(jìn)碳網(wǎng)結(jié)構(gòu)的恢復(fù)。
Song等[68]用過(guò)濾的方法先制備出GO膜,然后進(jìn)行退火處理來(lái)制備GP,并且系統(tǒng)地研究了在不同退火溫度下的GP膜的結(jié)構(gòu)改變和K值的變化。研究發(fā)現(xiàn),1 000 ℃是提高和改善K值的臨界溫度。對(duì)于熱處理溫度低于1 000 ℃還原的GP,聲子傳輸主要是在sp2電子域之間跳躍和隧穿[69];而對(duì)于1 000 ℃以上退火處理的GP,原始的sp2電子域?qū)?huì)重新生成較小的sp2電子域,且彼此互相結(jié)合,聲子便于更好地傳輸。這種結(jié)構(gòu)的演變也與拉曼光譜中ID/IG的變化相一致。
Huang等[70]報(bào)道了1種還原GO的新策略。H2氣氛下,在銅箔基底上熱壓(900 ℃)GO膜來(lái)還原GO,Cu作為還原GO的有效催化劑,所獲得的GP的K值為1 219 W·m-1·K-1。Jiang等[71]先制備出GP,然后在石墨烯片之間生長(zhǎng)碳納米環(huán)。納米環(huán)在截面上以共價(jià)鍵連接石墨烯片,增加了晶化度,方便了聲子的振動(dòng)傳播,使截面的K值從2 W·m-1·K-1提高到5.8 W·m-1·K-1。然而在石墨烯平面內(nèi),納米環(huán)成為了聲子散射點(diǎn),面內(nèi)K值會(huì)從946 W·m-1·K-1降低到890 W·m-1·K-1。從另外一個(gè)角度講,碳納米環(huán)的引入是1種降低GP的K值各向異性的方法。另外,Xin等[8]報(bào)道了1種通過(guò)靜電噴霧沉積來(lái)制備大面積獨(dú)立式GP的方法。當(dāng)退火溫度從1 800 ℃升高到2 850 ℃時(shí),GP會(huì)逐漸變成高度有序的石墨層結(jié)構(gòu),并產(chǎn)生大尺寸的晶粒。這個(gè)結(jié)構(gòu)變化可以通過(guò)XRD圖譜表示,隨著退火溫度的增加,峰形會(huì)連續(xù)變窄并且位置向純石墨的特征峰(26.5°)逐漸轉(zhuǎn)移(圖5)[72]。在經(jīng)過(guò)2 850 ℃的退火后,K值高達(dá)1 434 W·m-1·K-1。
如上所述,熱處理可以修復(fù)石墨烯的晶體結(jié)構(gòu),也會(huì)使石墨烯片層更規(guī)則的堆積。這種連續(xù)的晶體片層結(jié)構(gòu)可以減小聲子傳輸過(guò)程的阻礙,增加GP的K值[60]。
圖5 GPs和不同熱處理溫度(1 600~2 850 ℃)下GPs的XRD圖譜[72]
Fig.5 XRD patterns of the as-made GPs and GPs annealed from 1 600 ℃ to 2 850 ℃[72]
通常引入1D碳材料可以提高碳復(fù)合材料的力學(xué)性能,也會(huì)對(duì)GP的界面結(jié)構(gòu)和K值產(chǎn)生影響。Hsieh等[73]將石墨烯和CNT在異丙醇中混合,隨后成膜并壓縮,在溫度為596 ℃時(shí),該膜面內(nèi)和截面的K值分別為1 991和76 W·m-1·K-1。K值的提高歸因于石墨烯和CNT形成了有效熱傳遞的3D導(dǎo)熱網(wǎng)絡(luò)。另外,Hwang等[74]發(fā)現(xiàn),加入過(guò)量的CNT不能有助于GO片層之間的互連,反而會(huì)增加聲子散射的密度,降低K值。
Kong等[24]先將GO沉積到CF前驅(qū)體上,然后在1 000 ℃下進(jìn)行熱壓和碳化制造柔性GP。結(jié)果顯示,GP的面內(nèi)K值高達(dá)977 W·m-1·K-1,遠(yuǎn)高于純GO片層堆疊的GP(318 W·m-1·K-1)。Seol等[75]認(rèn)為,當(dāng)石墨烯片層堆疊成膜時(shí),聲子在平面界面處的傳遞損失和面外的反轉(zhuǎn)散射導(dǎo)致了K值降低1個(gè)數(shù)量級(jí)。CF可以分散石墨烯片,在一定程度上消除了平面外聲子傳遞的干擾,石墨烯片在GP中的面內(nèi)傳熱能力就可以在很大程度上被表達(dá)出來(lái)。由于其熱傳導(dǎo)具有強(qiáng)的各向異性,截面的K值僅為0.38 W·m-1·K-1。GP平面內(nèi)相鄰的片層會(huì)起到阻礙聲子傳輸?shù)淖饔茫苽涓飨虍愋缘母邔?dǎo)熱GP的策略應(yīng)是在增加其密度的同時(shí)也要避免石墨烯片的過(guò)度堆疊[76]。
為了進(jìn)一步優(yōu)化取向K值及其各向異性,對(duì)GP的組成單元進(jìn)一步地取向優(yōu)化通常是有效的。在組裝石墨烯材料時(shí),石墨烯片層之間往往有許多的空隙[68]。Xin等[8]研究表明,GP的K值會(huì)隨著壓力的增加而增加,這是因?yàn)閴毫θコ薌P內(nèi)部的空隙,從而得到緊密的取向結(jié)構(gòu)。如圖6所示,隨著密度從0.5 g·cm-3增加到2.0 g·cm-3,退火
后GP的面內(nèi)K值從173 W·m-1·K-1提高到1 434 W·m-1·K-1。面內(nèi)K值的顯著增加是由于其密度和面內(nèi)方向上的聲子數(shù)量的增加而引起。Malekpour等[62]證明,由于具有較好的片層排列和較高的密度,壓縮的GP相對(duì)于未經(jīng)壓縮處理的GP(62 W·m-1·K-1)表現(xiàn)出更高的面內(nèi)K值(90 W·m-1·K-1)。因此,為了獲得更高的平面內(nèi)K值,可以通過(guò)壓縮來(lái)調(diào)節(jié)膜的取向結(jié)構(gòu),消除孔隙,在一定程度上增加GP的接觸面積[63]。然而,壓力也會(huì)導(dǎo)致截面方向K值的輕微降低,從而增加K值的各向異性。
圖6 GPs的K值與退火溫度和密度的函數(shù)關(guān)系[8]
Fig.6 K values of GPs as a function of annealing temperature and density[8]
最近,本課題組在碳基導(dǎo)熱膜材料的研究方面取得了重要進(jìn)展。Li等[77]提出微妙的“分子焊接”概念,制備了柔性、超薄、高導(dǎo)熱的石墨烯/聚酰亞胺(g-GO/PI)膜。嵌入的PI作為焊料在酰亞胺化過(guò)程中與GO形成酰胺鍵(CONH),從而起到焊接GO片的作用,不僅填充了GO片層之間的空隙,增大了GO的晶粒尺寸,同時(shí)為聲子傳輸提供了通道。與原始的g-GO膜相比,“分子焊接”的g-GO/PI混合膜在PI添加的質(zhì)量分?jǐn)?shù)為1%的情況下,平面內(nèi)的熱導(dǎo)率提高了近21.9%。這種新型的“分子焊接”概念不僅為開(kāi)發(fā)下一代用于熱管理的石墨烯基薄膜提供了嶄新的思路,也是其他領(lǐng)域制備石墨烯納米功能材料的有效方法。
總之,石墨烯的片層大小,晶化度和取向度都會(huì)影響GP的界面熱導(dǎo)率和聲子散射。大片層,高晶化度,良好取向度與GP的高K值呈正相關(guān)關(guān)系。1D碳材料的引入會(huì)對(duì)GP的K值產(chǎn)生復(fù)雜的影響。因?yàn)樗鼈儾粌H作為熱的良導(dǎo)體,同時(shí)也會(huì)帶來(lái)大量的界面,這個(gè)特征可以用來(lái)調(diào)整K值的各向異性。因此,通過(guò)優(yōu)化結(jié)構(gòu)并調(diào)整制備參數(shù),可以獲得具有高K值且各向異性的GP。
3 石墨基導(dǎo)熱膜材料
延展性石墨膜材料(EGP)可以通過(guò)對(duì)膨脹石墨(EG)施加單向壓力來(lái)制備[78-79]。對(duì)EG施加中等的壓力可以獲得高度多孔的石墨“泡沫”材料;施加強(qiáng)的壓力可以獲得柔性、高導(dǎo)熱性及防水性的碳膜材料[9,80]。壓縮過(guò)程(壓力)和本征結(jié)構(gòu)(片材尺寸,膨脹率和純度)對(duì)EG的孔結(jié)構(gòu),取向和界面導(dǎo)熱性有重要的影響,會(huì)改變熱流方向,進(jìn)而影響EGP的K值。
在EGP成形過(guò)程中,施加的壓力會(huì)顯著改善其孔隙和界面結(jié)構(gòu),進(jìn)而影響K值。Celzard等[81]在理論上研究了EG的壓縮過(guò)程,未經(jīng)壓實(shí)的原始EG包括兩種類(lèi)型的孔隙度,粒間和粒內(nèi)孔隙度,其分別對(duì)應(yīng)于蠕蟲(chóng)石墨內(nèi)和蠕蟲(chóng)石墨間的孔隙分布。圖7為正在進(jìn)行壓縮過(guò)程的EG的示意圖,壓縮過(guò)程符合滲流轉(zhuǎn)變過(guò)程。隨著孔隙的縮小和界面的壓實(shí),當(dāng)達(dá)到臨界密度dc[82]時(shí),由于界面壓縮的作用,EGP會(huì)從絕熱狀態(tài)變?yōu)閷?dǎo)熱狀態(tài)。
圖7 EG的致密化示意圖[81]
Fig.7 Schematic illustration of the densification of EG[81]
取向和界面結(jié)構(gòu)的變化對(duì)石墨材料K值及其各向異性有顯著的影響。在EGP從各向同性轉(zhuǎn)變?yōu)楦飨虍愋灾?,面?nèi)和截面K值會(huì)隨壓力的增加而提高。在轉(zhuǎn)折點(diǎn)之后,面內(nèi)K值隨壓縮力的增加而提高,因面內(nèi)和界面的取向得到改善[83]。然而,截面方向K值的變化趨勢(shì)不同,K值先隨壓力的增加而緩慢提高,在壓力達(dá)到最大值(250 kg·cm-3)后穩(wěn)定下來(lái),最后降至穩(wěn)定值。隨著GP密度的增加,由于孔隙率和接觸熱阻的降低,截面K值穩(wěn)定提高。在這個(gè)階段中,有未完全垂直于壓縮方向排列的石墨片,這些石墨片平面上的熱傳導(dǎo)對(duì)整個(gè)截面的K值的提高有突出的貢獻(xiàn)。
隨著密度進(jìn)一步增加,減小的界面熱阻對(duì)K值提高的促進(jìn)作用和垂直于壓縮方向石墨片材對(duì)K值提高的阻礙作用互相抵消,片材截面的K值保持相對(duì)穩(wěn)定。當(dāng)石墨取向幾乎完全定向時(shí),截面熱傳導(dǎo)都在垂直于石墨片平面的方向上,所以K值穩(wěn)定在較低的水平面上,并且EGP的K值由各向同性變?yōu)楦飨虍愋?。?bào)道的EGP兩個(gè)不同結(jié)構(gòu)取向的最高K值的范圍分別為7~15 W·m-1·K-1和330~620 W·m-1·K-1[84-85]??梢?jiàn),EGP的K值的變化是取向定位和界面結(jié)構(gòu)共同作用的結(jié)果。
除了壓縮過(guò)程外,片材的尺寸、膨脹比和純度等內(nèi)在結(jié)構(gòu)也會(huì)影響到石墨材料的K值。Kuo等[86]研究了EG片材大小對(duì)EGP的K值的影響。與GP不同,盡管較小的片層在熱傳導(dǎo)時(shí)會(huì)產(chǎn)生較多的接觸面,但使用較小的顆粒(160目)比使用較大顆粒(80目)制備的材料更緊密。因?yàn)檩^小的顆粒在被壓縮時(shí)更容易滑動(dòng)并填充孔隙,從而產(chǎn)生更高的密度和K值。Wei等[87]發(fā)現(xiàn),使用低體積膨脹率的EG制備的EGP石墨片層取向優(yōu)于使用高體積膨脹率EG制備的EGP.這說(shuō)明低體積膨脹的EG能提高EGP的K值。Wei等[87]在制備EG時(shí)還發(fā)現(xiàn),使用高氯酸作為插入劑與使用硫酸相比更容易蒸發(fā),因此所得到的EG具有更高的純度。這對(duì)于制備高K值的EGP,尤其是用于散熱材料方面的EGP是非常重要的。首先,雜質(zhì)在熱傳導(dǎo)時(shí)會(huì)引起聲子散射,降低聲子平均自由程,從而降低聲子振動(dòng)和K值[58];其次,S等雜質(zhì)可能催化促進(jìn)石墨與金屬等結(jié)構(gòu)材料發(fā)生反應(yīng),導(dǎo)致結(jié)構(gòu)失效[88];再次,在高溫或真空條件下,石墨中的雜質(zhì)會(huì)污染傳感器等精密儀器[89]。因此,在散熱材料的實(shí)際應(yīng)用中,使用高純度EGP是非常必要的。
基于這些數(shù)據(jù),研究人員可以通過(guò)調(diào)控EG的本征結(jié)構(gòu)及壓力參數(shù)進(jìn)而控制EGP的密度和取向,然后對(duì)EGP的K值進(jìn)行預(yù)測(cè)和調(diào)控。
4 小 結(jié)
碳材料獨(dú)特的結(jié)構(gòu)和優(yōu)異的性能賦予其廣泛的應(yīng)用潛力,目前在多種有前景的領(lǐng)域中已有報(bào)道[90]。比如,對(duì)于飛機(jī)而言,高速且安全除冰非常重要。Ni-Cr合金是電熱設(shè)備中使用最廣泛的電阻材料之一,但其脆性大,密度高(>8 g·cm-3),電阻率小等因素制約了其進(jìn)一步的應(yīng)用。GP具有快速的電熱焦耳效應(yīng),質(zhì)量輕,靈活性高等優(yōu)點(diǎn),用于飛機(jī)機(jī)翼超快速除冰非常理想。具有高K值,高彈性和易加工性的GP也已被廣泛用于LED燈、智能手機(jī)等大功率散熱器件,正在逐漸取代傳統(tǒng)的金屬材料[57]。并且,GP通常表現(xiàn)出較大的K值各向異性(高平面內(nèi)和低平面內(nèi)K值),這對(duì)于減少局部過(guò)熱現(xiàn)象也是非常有利的。
碳材料中的熱傳導(dǎo)主要由聲子承擔(dān)。石墨烯,CNT,NG,EG等其他單體碳素材料,K值主要是由其內(nèi)部的微觀結(jié)構(gòu)決定。它們的共價(jià)sp2碳結(jié)構(gòu)可通過(guò)晶格的振動(dòng)有效地傳遞熱量。由于存在邊界、缺陷和雜質(zhì)等,晶格常常是非諧振的。除了改善其制備工藝(CVD、氧化插入、剝離和凈化),熱處理是修復(fù)sp2碳結(jié)構(gòu)和增加K值最有效的方式之一。由于是組裝的結(jié)構(gòu),碳復(fù)合材料的K值通常遠(yuǎn)低于單體碳素材料的K值,為了達(dá)到碳復(fù)合材料的高K值,需要調(diào)控其結(jié)構(gòu),主要包括界面、取向和密度。
本文綜述了高導(dǎo)熱碳材料的最新研究成果,實(shí)踐證明,碳基復(fù)合材料已經(jīng)在散熱領(lǐng)域顯示出巨大的潛力。在熱傳導(dǎo)方向上,界面越連續(xù)、晶面取向度越高、密度越大,越有助于提高復(fù)合材料的K值。然而,界面性能的改善通常需要高溫處理方可實(shí)現(xiàn),從可持續(xù)發(fā)展的角度來(lái)看,未來(lái)還需要探索出更溫和的技術(shù),通過(guò)修復(fù)和連接sp2碳結(jié)構(gòu)的界面,進(jìn)一步提高碳基薄膜材料的導(dǎo)熱性能。
參考文獻(xiàn):
[1] WARZOHA R J,F(xiàn)LEISCHER A S.Heat flow at nanoparticle interfaces[J].Nano Energy,2014,6(10):137-158.
[2] SHAHIL K M F,BALANDIN A A.Thermal properties of graphene and multilayer graphene:Applications in thermal interface materials[J].Solid State Communications,2012,152(15):1331-1340.
[3] RYBISKI P,ANYSZKA R,IMIELA M,et al.Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials[J].Journal of Thermal Analysis & Calorimetry,2017,127(3):2383-2396.
[4] SHARMA S,KUMAR P,CHANDRA R.Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites:A molecular dynamics study[J].Journal of Composite Materials,2016,51(23):3299-3313.
[5] NIKA D.Graphene thermal properties:Applications in thermal management and energy storage[J].Applied Sciences,2014,4(4):525-547.
[6] LIANG Q,YAO X,WANG W,et al.A three-dimensional vertically aligned functionalized multilayer graphene architecture:an approach for graphene-based thermal interfacial materials[J].Acs Nano,2011,5(3):2392-2401.
[7] WARZOHA R J,F(xiàn)LEISCHER A S.Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials[J].Acs Applied Materials & Interfaces,2014,6(15):12868-12876.
[8] XIN G,SUN H,HU T,et al.Large-area freestanding graphene paper for superior thermal management[J].Advanced Materials,2014,26(26):4521-4526.
[9] QIN M,F(xiàn)ENG Y,JI T,et al.Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture[J].Carbon,2016,104:157-168.
[10] KAVINKUMAR T,MANIVANNAN S.Thermal and dielectric properties of multi-walled carbon nanotube-graphene oxide composite[J].Journal of Materials Science Materials in Electronics,2016:1-10.
[11] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[12] NOVOSELOV K S,F(xiàn)AL'KO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[13] BALANDIN A A,NIKA D L.Phononics in low-dimensional materials[J].Materials Today,2012,15(6):266-275.
[14] WANG F,DRZAL L T,YAN Q,et al.Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites[J].Journal of Materials Science,2015,50(3):1082-1093.
[15] POP E,MANN D,WANG Q,et al.Thermal conductance of an individual single-wall carbon nanotube above room temperature[J].Nano Letters,2006,6(1):96-100.
[16] HONE J,BATLOGG B,BENES Z,et al.Quantized phonon spectrum of single-wall carbon nanotubes[J].Science,2000,289(5485):1730-1733.
[17] EMMERICH F G.Youngs modulus,thermal conductivity,electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J].Carbon,2014,79(1):274-293.
[18] NIKA D L,BALANDIN A A.Thermal transport in graphene,few-layer graphene and graphene nanoribbons[M]∥Thermal Transport in Low Dimensions.Springer International Publishing,2016.
[19] DUZYNSKA A,SWINIARSKI M,WROBLEWSKA A,et al.Phonon properties in different types of single-walled carbon nanotube thin films probed by Raman spectroscopy[J].Carbon,2016,105:377-386.
[20] VANGESSEL F,PENG J,CHUNG P W.A review of computational phononics:the bulk,interfaces,and surfaces[J].Journal of Materials Science,2017(2):1-43.
[21] PRASHER R.Graphene spreads the heat[J].Science,2010,328(5975):185-186.
[22] FORSYTH R,DEVADOSS A,GUY O J.Graphene field effect transistors for biomedical applications:Current status and future prospects[J].Diagnostics,2017,7(3):45.
[23] SADEGHI M M,PETTES M T,SHI L.Thermal transport in graphene[J].Solid State Communications,2012,152(15):1321-1330.
[24] KONG Q Q,LIU Z,GAO J G,et al.Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J].Advanced Functional Materials,2014,24(27):4222-4228.
[25] GANGULI S,REED A,JAYASINGHE C,et al.A simultaneous increase in the thermal and electrical transport in carbon nanotube yarns induced by inter-tube metallic welding[J].Carbon,2013,59(8):479-486.
[26] INAGAKI M,KABURAGI Y,HISHIYAMA Y.Thermal management material:Graphite[J].Advanced Engineering Materials,2014,16(5):494-506.
[27] PARK H K,KIM S M,LEE J S,et al.Flexible plane heater:Graphite and carbon nanotube hybrid nanocomposite[J].Synthetic Metals,2015,203:127-134.
[28] YUAN G,LI X,YI J,et al.Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity[J].Carbon,2015,95:1007-1019.
[29] GREIL P.Perspectives of nano-carbon based engineering materials[J].Advanced Engineering Materials,2015,17(2):124-137.
[30] MAITY N,KUILA A,CHATTERJEE D P,et al.An insight into the schizophrenic self-assembly of thermo and proton sensitive graphene oxide grafted block copolymer[J].Journal of Polymer Science Part A Polymer Chemistry,2016,54(24):3878-3887.
[31] HU L,HECHT D S,GRNER G.Carbon nanotube thin films:Fabrication,properties,and applications[J].Chemical Reviews,2010,110(10):5790-5844..
[32] NARDECCHIA S,CARRIAZO D,F(xiàn)ERRER M L,et al.Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:synthesis and applications[J].Chemical Society Reviews,2013,44(21):794-830.
[33] KIM P,SHI L,MAJUMDAR A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215502.
[34] ZHANG L,ZHANG G,LIU C,et al.High-density carbon nanotube buckypapers with superior transport and mechanical properties[J].Nano Letters,2012,12(9):4848-4852.
[35] JIANG K,WANG J,LI Q,et al.Superaligned carbon nanotube arrays,films,and yarns:A road to applications[J].Advanced Materials,2011,23(9):1154-1161.
[36] ALIEV A E,GUTHY C,ZHANG M,et al.Thermal transport in MWCNT sheets and yarns[J].Carbon,2007,45(15):2880-2888.
[37] PRASHER R S,HU X J,CHALOPIN Y,et al.Turning carbon nanotubes from exceptional heat conductors into insulators[J].Physical Review Letters,2009,102(10):105901.
[38] MAHANTA N K,ABRAMSON A R,LAKE M L,et al.Thermal conductivity of carbon nanofiber mats[J].Carbon,2010,48(15):4457-4465.
[39] HONE J,WHITNEY M,PISKOTI C,et al.Thermal conductivity of single-walled carbon nanotubes[J].Synthetic Metals,1999,103(4):2514-2516.
[40] XUE Q Z.Model for the effective thermal conductivity of carbon nanotube composites[J].Nanotechnology,2006,17(6):1655-1660.
[41] HEO Y J,YUN C H,KIM W N,et al.The effect of mesoscopic shape on thermal properties of multi-walled carbon nanotube mats[J].Current Applied Physics,2011,11(5):1144-1148.
[42] YANG J,WALTERMIRE S,CHEN Y,et al.Contact thermal resistance between individual multiwall carbon nanotubes[J].Applied Physics Letters,2010,96(2):23109.
[43] VOLKOV A N,SALAWAY R N,ZHIGILEI L V.Atomistic simulations,mesoscopic modeling,and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes[J].Journal of Applied Physics,2013,114(10):104301.
[44] ZHANG M,F(xiàn)ANG S,ZAKHIDOV A A,et al.Strong,transparent,multifunctional,carbon nanotube sheets[J].Science,2005,309(5738):1215-1219.
[45] GONNET P,LIANG Z,CHOI E S,et al.Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites☆[J].Current Applied Physics,2006,6(1):119-122.
[46] WANG D,SONG P,LIU C,et al.Highly oriented carbon nanotube papers made of aligned carbon nanotubes[J].Nanotechnology,2008,19(7):075609.
[47] MARCONNET A M,PANZER M A,GOODSON K E.Thermal conduction phenomena in carbon nanotubes and related nanostructured materials[J].Reviews of Modern Physics,2013,85(3):1295-1326.
[48] HSU I K,PETTES M T,BUSHMAKER A,et al.Optical absorption and thermal transport of individual suspended carbon nanotube bundles[J].Nano Letters,2009,9(2):590-594.
[49] YAN H,MAHANTA N K,WANG B,et al.Structural evolution in graphitization of nanofibers and mats from electrospun polyimide-mesophase pitch blends[J].Carbon,2014,71(5):303-318.
[50] XU Y,BAI H,LU G,et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].Journal of the American Chemical Society,2008,130(18):5856-5857.
[51] CHEN H,MLLER M B,GILMORE K J,et al.Mechanically strong,electrically conductive,and biocompatible graphene paper[J].Advanced Materials,2010,20(18):3557-3561.
[52] AN S J,ZHU Y,SUN H L,et al.Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition[J].Journal of Physical Chemistry Letters,2010,1(8):258-266.
[53] WANG X,LINJIE ZHI A,MLLEN K.Transparent,conductive graphene electrodes for dye-sensitized solar cells[J].Nano Letters,2008,8(1):323-327.
[54] WANG E,ZHANG G,DAI H,et al.Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature Nanotechnology,2008,3(9):538-542.
[55] COTE L J,KIM F,HUANG J.Langmuir-Blodgett assembly of graphite oxide single layers[J].Journal of the American Chemical Society,2009,131(3):1043-1049.
[56] TUNG V C,ALLEN M J,YANG Y,et al.High-throughput solution processing of large-scale graphene[J].Nature Nanotechnology,2009,4(1):25-29.
[57] LIU Z,LI Z,XU Z,et al.Wet-spun continuous graphene films[J].Chemistry of Materials,2014,26(23):6786-6795.
[58] BALANDIN A A.Thermal properties of graphene,carbon nanotubes and nanostructured carbon materials[J].Nature Material,2011,10(8):569-581.
[59] HOU Z L,SONG W L,WANG P,et al.Flexible graphene-graphene composites of superior thermal and electrical transport properties[J].Acs Applied Materials & Interfaces,2014,6(17):15026-15032.
[60] SHEN B,ZHAI W,ZHENG W.Ultrathin flexible graphene film:An excellent thermal conducting material with efficient EMI shielding[J].Advanced Functional Materials,2014,24(28):4542-4548.
[61] KUMAR P,SHAHZAD F,YU S,et al.Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J].Carbon,2015,94:494-500.
[62] MALEKPOUR H,CHANG K H,CHEN J C,et al.Thermal conductivity of graphene laminate[J].Nano Letters,2014,14(9):5155-5161.
[63] XIANG J,DRZAL L T.Thermal conductivity of exfoliated graphite nanoplatelet paper[J].Carbon,2011,49(3):773-778.
[64] WU H,DRZAL L T.Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties[J].Carbon,2012,50(3):1135-1145.
[65] NIKA D L,GHOSH S,POKATILOV E P,et al.Lattice thermal conductivity of graphene flakes:Comparison with bulk graphite[J].Applied Physics Letters,2009,94(20):203103-203103-3.
[66] SHEN X,LIN X,JIA J,et al.Tunable thermal conductivities of graphene oxide by functionalization and tensile loading[J].Carbon,2014,80(1):235-245.
[67] TIAN L,ANILKUMAR P,CAO L,et al.Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials[J].Acs Nano,2011,5(4):3052-3058.
[68] SONG N J,CHEN C M,LU C,et al.Thermally reduced graphene oxide films as flexible lateral heat spreaders[J].Journal of Materials Chemistry A,2014,2(39):16563-16568.
[69] VALLS C,NEZ J D,BENITO A M,et al.Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper[J].Carbon,2012,50(3):835-844.
[70] HUANG S Y,ZHAO B,ZHANG K,et al.Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity[J].Scientific Reports,2015,5:14260.
[71] ZHANG J,SHI G,JIANG C,et al.3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J].Small,2015,11(46):6197-6204.
[72] GHOSH T,BISWAS C,OH J,et al.Solution-processed graphite membrane from reassembled graphene oxide[J].Chemistry of Materials,2012,24(3):594-599.
[73] HSIEH C T,LEE C E,CHEN Y F,et al.Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets[J].Nanoscale,2015,7(44):18663-18670.
[74] HWANG Y,KIM M,KIM J.Enhancement of thermal and mechanical properties of flexible graphene oxide/carbon nanotube hybrid films though direct covalent bonding[J].Journal of Materials Science,2013,48(20):7011-7021.
[75] SEOL JH,JO I,MOORE AL,et al.Two-dimensional phonon transport in supported graphene[J].Science(New York,N.Y.),2010,328(5975):213-216.
[76] WEI Z Y,NI Z H,BI K D,et al.In-plane lattice thermal conductivities of multilayer graphene films[J].Carbon,2011,49(8):2653-2658.
[77] LI H L,DAI S C,MIAO J,et al.Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy[J].Carbon,2018,126:319-327.
[78] CHUNG D D L.Exfoliation of graphite[J].Journal of Materials Science,1987,22(12):4190-4198.
[79] CELZARD A,MARCH J F,F(xiàn)URDIN G.Modeling of exfoliated graphite[J].Progress in Materials Science,2005,50(1):93-179.
[80] CHUNG D D L.Interface-derived extraordinary viscous behavior of exfoliated graphite[J].Carbon,2014,68(3):646-652.
[81] CELZARD A,SCHNEIDER S,MARCH J F.Densification of expanded graphite[J].Carbon,2002,40(12):2185-2191.
[82] CELZARD A,MARCH J F,F(xiàn)URDIN G,et al.Electrical conductivity of anisotropic expanded graphite-based monoliths[J].Journal of Physics D Applied Physics,2000,33(23):3094-3101.
[83] WANG L W,METCALF S J,CRITOPH R E,et al.Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid[J].Carbon,2011,49(14):4812-4819.
[84] LIU R Y,CHEN J J,TAN M L,et al.Anisotropic high thermal conductivity of flexible graphite sheets used for advanced thermal management materials[C]∥International Conference on Materials for Renewable Energy and Environment.Chengdu,China:IEEE,2014:107-111.
[85] CHEN P H,CHUNG D D L.Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure[J].Carbon,2014,77(10):538-550.
[86] KUO W S,KO T H,LU H F.On the thermally conductive behaviour of compacted graphite nanosheets[J].Iet Micro & Nano Letters,2010,5(4):219-221.
[87] WEI X H,LIU L,ZHANG J X,et al.Mechanical,electrical,thermal performances and structure characteristics of flexible graphite sheets[J].Journal of Materials Science,2010,45(9):2449-2455.
[88] LI K Y,KUAN C F,KUAN H C,et al.Preparation,characterization,and flame retardance of high-density polyethylene/sulfur-free expandable graphite composites[J].High Performance Polymers,2014,26(7):798-809.
[89] YANG Y K,CHUANG M T,LIN S S.Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods[J].Journal of Materials Processing Technology,2009,209(9):4395-4400.
[90] 張旭,張慧娟.金屬基氧電極材料催化機(jī)理研究進(jìn)展[J].上海有色金屬,2016,37(6):293-300.